Ардуино расшифровка примеров программ на русский язык. Ардуино язык программирования: основные понятия

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по - рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать - это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.








Остальные отверстия, расположенные в середине платы, группируются по пять отверстий. Они используется для соединения деталей схемы.


Первое, что мы подключим к нашему микроконтроллеру, это светодиод. Схема электрических соединений показана на картинке.

Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V -напряжение на резистор
I - ток через резистор
R - сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много:wink: .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
это основная функция, которая выполняется после setup() . Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом



В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT) . Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode . Эта функция имеет два аргумента: pinNumber - это номер пина, который вы будете использовать.

Mode -задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT) . Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
- эта функция служит для того, чтобы задать состояние (state) пина (pinNumber) . Есть два основных состояния (вообще их 3), одно это HIGH , на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине, соединенном со светодиодом выставить высокий уровень HIGH .

Задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.
//LED Blink int ledPin = 7;//пин Arduino к которому подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// установка пина как ВЫХОД } void loop() { digitalWrite(ledPin, HIGH);//зажечь светодиод delay(1000);// задержка 1000 мсек (1 сек) digitalWrite(ledPin, LOW);//Выключить светодиод delay(1000);//ждать 1 сек }

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin - это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT) .
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

В первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:
//Multi LED Blink int led1Pin = 4; int led2Pin = 5; int led3Pin = 6; int led4Pin = 7; void setup() { //установка пинов как ВЫХОД pinMode(led1Pin, OUTPUT); pinMode(led2Pin, OUTPUT); pinMode(led3Pin, OUTPUT); pinMode(led4Pin, OUTPUT); } void loop() { digitalWrite(led1Pin, HIGH);//зажечь светодиод delay(1000);//задержка 1 сек digitalWrite(led1Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек //do the same for the other 3 LEDs digitalWrite(led2Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led2Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led3Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led3Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led4Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led4Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек }

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

DigitalWrite (led4Pin, HIGH); delay (1000); digitalWrite (led4Pin, LOW); delay (1000);
полный код скетча во вложении (скачиваний: 1384)

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "~ ". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite() . analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.
//Меняем яркость светодиода int ledPin = 9;//к этому выводу подсоединен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на вывод } void loop() { analogWrite(ledPin, 255);//полная яркость (255/255 = 1) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 191);//яркость на 3/4 (191/255 ~= 0.75) delay(1000);//пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 127);//половина яркости (127/255 ~= 0.5) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 63);//четверть яркости (63/255 ~= 0.25) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек }

Попробуйте поменять значение ШИМ в команде analogWrite () ,чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно,конечно, скопировать кусок кода 255 раз
analogWrite(ledPin, brightness); delay(5);//short delay brightness = brightness + 1;
Но, сами понимаете - это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0
for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); }
delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness- " ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0 .Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч. //плавно меняем яркость int ledPin = 9;//к этому пину подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на выход } void loop() { //плавно увеличиваем яркость (0 to 255) for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек //плавно уменьшаем яркость (255 to 0) for (int brightness=255;brightness>=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек } }
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.



//RGB LED - test //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //включение/выключение красного светодиод digitalWrite(red, HIGH); delay(500); digitalWrite(red, LOW); delay(500); //включение/выключение зеленого светодиода digitalWrite(green, HIGH); delay(500); digitalWrite(green, LOW); delay(500); //включение/выключение синего светодиода digitalWrite(blue, HIGH); delay(500); digitalWrite(blue, LOW); delay(500); }

В следующем примере используются команды analogWrite() и , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.
//RGB LED - random colors //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //pick a random color analogWrite(red, random(256)); analogWrite(blue, random(256)); analogWrite(green, random(256)); delay(1000);//wait one second }

Random(256) -возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. (скачиваний: 381)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: (скачиваний: 414)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2) . Вы видите, что оба аргумента объявлены как int , и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так:
int multiplier(int number1, int number2){ int product = number1*number2; return product; }
Обратите внимание, как мы объявили Тип int в качестве типа возвращаемого значения вместо
void .
Внутри функции идут команды, которые вы уже использовали в предыдущем скетче, только номера выводов заменили на color1 и color2 . Вызывается функция fader , ее аргументы вычисляются как color1 = red и color2 = green . В архиве полный скетч с использованием функций (скачиваний: 313)

Кнопка

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.


Это значит, что пока кнопка не нажата, ток через неё не идёт, а после отпускания, кнопка возвращается в исходное положение.
В схеме, помимо кнопки используется резистор. В данном случае он не ограничивает ток, а "подтягивает" кнопку к 0в (GND). Т.е. пока кнопка не нажата на выводе Arduino, к которому она подключена, будет низкий уровень. Резистор, используемый в схеме 10 кОм.


//определяем нажатие кнопки int buttonPin = 7; void setup(){ pinMode(buttonPin, INPUT);//инициализируем пин на вход Serial.begin(9600);//инициализируем последовательный порт } void loop(){ if (digitalRead(buttonPin)==HIGH){//если кнопка нажата Serial.println("pressed"); // выводим надпись "pressed" } else { Serial.println("unpressed");// иначе "unpressed" } }
В этом скетче несколько новых команд.
-эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()

Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
- конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.
//button press detection with LED output int buttonPin = 7; int ledPin = 8; void setup(){ pinMode(buttonPin, INPUT);//this time we will set button pin as INPUT pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){ digitalWrite(ledPin,HIGH); Serial.println("pressed"); } else { digitalWrite(ledPin,LOW); Serial.println("unpressed"); } }

Аналоговый вход.

analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.
//analog input int potPin = A0;//к этому пину подсоединяется центральный вывод потенциометра void setup(){ //аналоговый пин по умолчанию включен на вход, поэтому инициализация не нужна Serial.begin(9600); } void loop(){ int potVal = analogRead(potPin);//potVal is a number between 0 and 1023 Serial.println(potVal); }
Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.
//button press detection with LED output and variable intensity int buttonPin = 7; int ledPin = 9; int potPin = A0; void setup(){ pinMode(buttonPin, INPUT); pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){//if button pressed int analogVal = analogRead(potPin); int scaledVal = map(analogVal, 0, 1023, 0, 255); analogWrite(ledPin, scaledVal);//turn on led with intensity set by pot Serial.println("pressed"); } else { digitalWrite(ledPin, LOW);//turn off if button is not pressed Serial.println("unpressed"); } }

Ardublock - это графический язык программирования для Ардуино, предназначенный для начинающих. Эта среда достаточно проста в использовании, ее легко установить, она практически полностью переведена на русский язык. Визуально сконструированную программу,напоминающую блоки...

Прерывания - очень важный механизм Arduino, позволяющий внешним устройствам взаимодействовать с контроллером при возникновении разных событий. Установив обработчик аппаратных прерываний в скетче, мы сможем реагировать на включение или выключение кнопки, нажатие клавиатуры,...

Serial.print() и Serial.println() – это основные функции Arduino для передачи информации от платы ардуино к компьютеру через последовательный порт. На самых популярных платах Arduino Uno, Mega, Nano нет встроенного дисплея, поэтому...

Можно ли заниматься ардуино проектами без самой платы Arduino? Оказывается, вполне. Благодаря многочисленным онлайн сервисам и программам, которые имеют свое название: эмулятор или симулятор Arduino. Самыми популярными представителями таких программ являются...

Serial begin - крайне важная инструкция Arduino, она позволяет установить контроллеру соединение с внешними устройствами. Чаще всего таким «внешним устройством» оказывается компьютер, к которому мы подключаем Arduino. Поэтому Serial begin интенсивней...

Глобальная переменная в Arduino – это переменная, область видимости которой распространяется на всю программу, ее видно во всех модулях и функциях. В этой статье мы рассмотрим несколько примеров использования глобальных переменных,...

Массивы Arduino – это элемент языка, активно используемый программистами для работы с наборами однотипных данных. Массивы есть практически во всех языках программирования, не исключением является и Arduino, синтаксис которого сильно похож...

Вам понадобится

  • - плата Arduino UNO,
  • - кабель USB (USB A - USB B),
  • - персональный компьютер,
  • - светодиод,
  • - резистор 220 Ом,
  • - пара проводов 5-10 см,
  • - при наличии - макетная плата (breadboard).

Инструкция

Загрузите среду разработки Arduino для своей операционной системы (поддерживаются ОС Windows, Mac OS X, Linux) на странице http://arduino.cc/en/Main/Software, можно установщик, можно . Скачанный файл содержит также и драйверы для плат Arduino.

Установите драйвер. Рассмотрим вариант для ОС Windows. Для этого дождитесь, когда операционная система предложит установить драйвер. Откажитесь. Нажмите Win + Pause, запустите Диспетчер устройств. Найдите раздел "Порты (COM & LPT)". Увидите там порт с названием "Arduino UNO (COMxx)". Кликните правой кнопкой мыши на нём и выберите "Обновить драйвер". Далее выбираете расположение драйвера, который вы только что скачали.

Среда разработки уже содержит в себе множество примеров для изучения работы платы. Откройте пример "Blink": Файл > Примеры > 01.Basics > Blink.

Укажите среде разработки свою плату. Для этого в меню Сервис > Плата выберите "Arduino UNO".

Выберите порт, которому назначена плата Arduino. Чтобы узнать, к какому порту подключена плата, запустите диспетчер устройств и найдите раздел Порты (COM & LPT). В скобках после названия платы будет указан порта. Если платы нет в списке, попробуйте её от компьютера и, выждав несколько секунд, подключить снова.

Отключите плату от компьютера. Соберите схему, как показано на рисунке. Обратите внимание, что короткая ножка светодиода должна быть соединена с выводом GND, длинная через резистор с цифровым пином 13 платы Arduino. Удобнее пользоваться макетной платой, но при её отсутствии можно соединить провода скруткой.
Важное примечание! Цифровой пин 13 уже имеет свой резистор на плате. Поэтому при подключении светодиода к плате внешний резистор использовать не обязательно. При подключении светодиода к любым другим выводам Ардуино использование токоограничивающего резистора обязательно!

Теперь можно загрузить программу в память платы. Подключите плату к компьютеру, подождите несколько секунд, пока происходит инициализация платы. Нажмите кнопку "Загрузить", и Ваш скетч запишется в память платы Arduino. Программирование под Arduino весьма интуитивно и совсем не сложно. Посмотрите на изображение - в комментариях к программе есть небольшие пояснения. Этого достаточно чтобы разобраться с вашим первым экспериментом.

После ознакомления с основными элементами Arduino, а также написания программы «Hello World!» пришло время для знакомства с языком программирования.

Структура языка основана главным образом на C/C++, поэтому те, кто ранее программировал на этом языке, не будут испытывать затруднений при освоении программирования Arduino. Остальные должны освоить основную информацию о командах управления, типах данных и функциях.

Большая часть информации, содержащейся здесь, будет совместима с любым курсом C/C++, с учетом различий в типах данных, а также несколько конкретных инструкций, касающихся программирования портов ввода/вывода.

Основы основ

Несколько формальных вещей, то есть таких, о которых все знают, но иногда забывают…

В Arduino IDE, как в C/C++, необходимо помнить о регистрах символов. Ключевые слова, такие как if, for всегда записываются в нижнем регистре. Каждая инструкция заканчивается на «;». Точка с запятой сообщает компилятору, какую часть интерпретировать как инструкцию.

Скобки {..} используются для обозначения программных блоков. Мы используем их для ограничения тела функции (см. ниже), циклов и условных операторов.

Хорошей практикой является добавление комментариев к содержимому программы, это помогает легко понять код. Однострочные комментарии начинаются с // (двойная косая черта). Многострочные комментарии начинаются с /* и заканчиваются на */

Если мы хотим подключить в нашу программу какую-либо библиотеку, мы используем команду include. Вот примеры подключения библиотек:

#include // стандартная библиотека #include «svoya_biblioteka.h» // библиотека в каталоге проекта

Функции в Arduino

Функция (подпрограмма) является отдельной частью программы, выполняющая некоторые операции. Функции используются для упрощения основной программы и улучшения читаемости кода. Полезно использовать функции, поскольку мы можем легко использовать их во многих своих проектах.

Стандартный курс программирования содержит информацию о функциях, которые приведем в следующих статьях. В случае с Arduino функции будут обсуждаться в начале, потому что даже простейшая программа должна иметь две специальные функции. Это уже упоминалось в предыдущих статьях, но здесь мы систематизируем эту информацию.

Объявление функции

Схема объявления функции выглядит следующим образом:

Тип имя_функции(параметр) { // инструкции для выполнения (тело функции) return (/* возвращение значения*/); }

тип — это имя любого доступного типа данных на данном языке программирования. Список типов, доступных при программировании Arduino приведем в отдельной статье.

После исполнения, функция вернет значение объявленного типа. В случае, если функция не принимает никакого возвращаемого значения, то тип данных будет «void».

имя_функции позволяет ее однозначно идентифицировать. Для того чтобы вызвать (запустить) функцию, мы даем ей имя.

параметр — параметр вызова функции. Параметры не обязательны, но зачастую они бывают полезны. Если мы напишем функцию, у которой нет аргументов, мы оставляем круглые скобки пустыми.

Внутри скобок «{…}» содержится собственно тело функции или инструкция, которые мы хотим выполнить. Описание конкретных инструкций укажем в отдельной статье.

Все функции, возвращающие значение, заканчиваются оператором return, за которым следует возвращаемое значение. Только функции, объявленные нулевым указателем («void»), не содержат оператор return. Необходимо знать, что оператор return завершает выполнение функции независимо от местоположения.

Ниже приведены некоторые примеры деклараций функций.

Void f1() { //тело функции } —————————————— int minus() { //тело функции return (0); } —————————————— int plus(int a, int b) { return (a+b); }

Как вы можете видеть на примерах, объявление функции может принимать различные формы в зависимости от ваших потребностей.

Настоятельно рекомендуем вам изучить и применять функции при написании собственных программ. Со временем, у каждого программиста набирается собственная библиотека функций «на все случаи жизни», которая позволяет облегчить и ускорить процесс написания новых программ.

Теперь, когда мы знаем, как можно написать свою собственную функцию, необходимо научиться ее использовать.

Вызов функции

Все функции мы записываем в один файл/программу. Существует конечно более элегантное решение, но мы постараемся описать его в следующий раз.

Объявив функцию, мы можем использовать ее в других функциях с соответствующим именем и любыми требуемыми параметрами. Ниже приведены примеры вызова функций, которые мы привели выше:

F1(); plus(2,2); y=plus(1,5);

Как вы можете видеть в примерах, вызов функции выполняется путем указания его имени и требуемого количества параметров. Важно всегда вызывать функцию в соответствии с ее объявлением.

Если функция f1() объявлена без параметров, то при ее вызове нельзя указывать никакие параметры, т.е. вызов функции f1(0) будет неверным.

Функция plus(int a, int b) требует ровно двух параметров, поэтому вызов с одним или тремя параметрами невозможно.

Вызов y=plus(1,5) приведет к выполнению функции «plus» с параметрами «1» и «5» и сохранить возвращаемое значение в переменную «y».

Функции setup() и loop().

Обладая знаниями об объявлении и вызове функций, мы можем перейти к системным функциям Arduino: setup() и loop() . Arduino IDE в обязательном порядке необходимо объявлять эти две функции.

setup () — это функция, которая вызывается автоматически при включении питания или нажатии кнопки RESET.

В соответствии с ее именем она используется для установки начальных значений переменных, деклараций входов и выходов системы, которые обычно задаются в начальных параметрах. Благодаря своей специфике эта функция не возвращает значения и не вызывается с параметрами. Правильная декларация функции setup() представлена ниже:

Void setup () { // тело функции — инициализация системы }

loop () — это функция, которая вызывается в бесконечном цикле. Данная функция также не возвращает значения и не вызывается с параметрами. Ниже показано правильное объявление функции loop():

Void loop () { // тело функции — программный код }

Как вы видите, объявление функции loop () идентично объявлению функции setup (). Различие состоит в выполнении этих функций микроконтроллером.

Теперь мы проанализируем следующий псевдокод:

Void setup () { on_led1 (); //включаем светодиод led1 off_led1 (); //выключаем светодиод led1 } void loop () { on_led2 (); //включаем светодиод led2 off_led2 (); //выключаем светодиод led2 }

В функции setup () есть две инструкции: первая включает светодиод led1, подключенный к плате (например, контакт 13), а вторая выключает светодиод led1.

Функция loop () имеет идентичные инструкции для включения и выключения светодиода led2, подключенного к плате (например, контакт 12).

В результате запуска программы светодиод led1 мигнет один раз, в то время как led2 будет загораться и гаснуть до тех пор, пока включено питание Arduino.

Нажатие кнопки RESET приведет к тому, что led1 снова мигнет один раз, а led2 снова начнет постоянно мигать.

Подведем итог:

  • Функции setup () и loop () — это системные функции, которые должны быть определены в каждом проекте. Даже в ситуации, когда в одном из них мы не пропишем какой-либо код, мы все равно должны объявить эти две функции;
  • Функция setup () выполняется один раз, loop() выполняется непрерывно;
  • Мы создаем собственные функции в одном файле;
  • Мы можем вызвать свои функции как из setup () и loop (), так и из других функций;
  • Наши собственные функции можно вызывать с параметрами и возвращать значение;
  • Вызов функции должен быть совершен в соответствии с ее декларацией.

Данный раздел посвящен книгам из мира Arduino. Для новичков и профессионалов.

Все книги и материалы представлены исключительно в ознакомительных целях, после ознакомления просим вас приобрести цифровую или бумажную копию.

Программы для чтения книг:

  • Книги формата PDF: Adobe Acrobat Reader или PDF Reader .
  • Книги формата DJVU: или Djvu Reader .

Практическая энциклопедия Arduino

В книге обобщаются данные по основным компонентам конструкций на основе платформы Arduino, которую представляет самая массовая на сегодняшний день версия ArduinoUNO или аналогичные ей многочисленные клоны. Книга представляет собой набор из 33 глав-экспериментов. В каждом эксперименте рассмотрена работа платы Arduino c определенным электронным компонентом или модулем, начиная с самых простых и заканчивая сложными, представляющими собой самостоятельные специализированные устройства. В каждой главе представлен список деталей, необходимых для практического проведения эксперимента. Для каждого эксперимента приведена визуальная схема соединения деталей в формате интегрированной среды разработки Fritzing. Она дает наглядное и точное представление - как должна выглядеть собранная схема. Далее даются теоретические сведения об используемом компоненте или модуле. Каждая глава содержит код скетча (программы) на встроенном языке Arduino с комментариями.

Электроника. Твой первый квадрокоптер. Теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера. Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ для компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.

Проекты с использованием контроллера Arduino (2-е изд.)

В книге рассмотрены основные платы Arduino и платы расширения (шилды), добавляющие функциональность основной плате. Подробно описан язык и среда программирования Arduino IDE. Тщательно разобраны проекты с использованием контроллеров семейства Arduino. Это проекты в области робототехники, создания погодных метеостанций, "умного дома", вендинга, телевидения, Интернета, беспроводной связи (bluetooth, радиоуправление).

Во втором издании добавлены проекты голосового управления с помощью Arduino, работа с адресуемыми RGB-лентами, управление iRobot Create на Arduino. Рассмотрены проекты с использованием платы Arduino Leonardo. Приведены пошаговые уроки для начинающих разработчиков.

Изучаем Arduino: инструменты и методы технического волшебства

Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.

Быстрый старт. Первые шаги по освоению Arduino

Книга ARDUINO Быстрый старт. Первые шаги по освоению ARDUINO содержит всю информацию для ознакомления с платой Arduino,а также 14 практических экспериментов с применением различных электронных компонентов и модулей.

Быстрый старт с набором Arduinо. Полученные знания, в дальнейшем, дадут возможность создавать свои собственные проекты и с легкостью воплощать их в жизнь.

Arduino, датчики и сети для связи устройств (2-е изд.)

Рассмотрены 33 проекта на основе микроконтроллерной платы Arduino, в которых показано, как сделать, чтобы электронные устройства могли обмениваться между собой данными и реагировать на команды. Показано, как изменить настройки домашнего кондиционера, «позвонив ему» со своего смартфона; как создавать собственные игровые контроллеры, взаимодействующие по сети; как использовать устройства ZigBee, Bluetooth, инфракрасное излучение и обычное радио для беспроводного получения информации от различных датчиков и др. Рассмотрены языки программирования Arduino, Processing и PHP.

Прочитав книгу — «Arduino, датчики и сети для связи устройств», Вы научитесь создавать сети интеллектуальных устройств, которые обмениваются данными и реагируют на команды. Книга идеально подходит для людей, которые стремятся воплотить на практике свои творческие идеи. Вам не надо обладать специальными техническими знаниями и навыками в области электроники, Для начала реализации проектов необходимы только книга, идеи и недорогой набор с контроллером Arduino и некоторыми сетевыми модулями и датчиками.

Arduino Essentials

The Arduino is an open source microcontroller built on a single circuit board that is capable of receiving sensory input from its environment and controlling interactive physical objects. It is also a development environment that allows you to write software to the board, and is programmed in the Arduino programming language. The Arduino has become the most popular microcontroller platform and thus hundreds of projects are being developed using it, from basic to advanced levels.

This book will first introduce you to the most important board models of the Arduino family. You will then learn to set up the Arduino software environment. Next, you will work with digital and analog inputs and outputs, manage the time precisely, establish serial communications with other devices in your projects, and even control interrupts to make your project more responsive. Finally, you will be presented with a complete real-world example by utilizing all the concepts learned so far in the book. This will enable you to develop your own microcontroller projects.

Arduino Development Cookbook

If you want to build programming and electronics projects that interact with the environment, this book will offer you dozens of recipes to guide you through all the major applications of the Arduino platform. It is intended for programming or electronics enthusiasts who want to combine the best of both worlds to build interactive projects.

The single-chip computer board Arduino is small in size but vast in scope, capable of being used for electronic projects from robotics through to home automation. The most popular embedded platform in the world, Arduino users range from school children to industry experts, all incorporating it into their designs.

Arduino Development Cookbook comprises clear and step-by-step recipes that give you the toolbox of techniques to construct any Arduino project, from the simple to the advanced. Each chapter gives you more essential building blocks for Arduino development, from learning about programming buttons through to operating motors, managing sensors, and controlling displays. Throughout, you’ll find tips and tricks to help you troubleshoot your development problems and push your Arduino project to the next level!

Arduino Sketches: Tools and Techniques for Programming Wizardry

Master programming Arduino with this hands-on guide Arduino Sketches is a practical guide to programming the increasingly popular microcontroller that brings gadgets to life. Accessible to tech-lovers at any level, this book provides expert instruction on Arduino programming and hands-on practice to test your skills. You’ll find coverage of the various Arduino boards, detailed explanations of each standard library, and guidance on creating libraries from scratch plus practical examples that demonstrate the everyday use of the skills you’re learning.

Work on increasingly advanced programming projects, and gain more control as you learn about hardware-specific libraries and how to build your own. Take full advantage of the Arduino API, and learn the tips and tricks that will broaden your skillset. The Arduino development board comes with an embedded processor and sockets that allow you to quickly attach peripherals without tools or solders. It’s easy to build, easy to program, and requires no specialized hardware. For the hobbyist, it’s a dream come true especially as the popularity of this open-source project inspires even the major tech companies to develop compatible products.

Arduino and LEGO Projects

We all know how awesome LEGO is, and more and more people are discovering how many amazing things you can do with Arduino. In Arduino and LEGO Projects, Jon Lazar shows you how to combine two of the coolest things on the planet to make fun gadgets like a Magic Lantern RF reader, a sensor-enabled LEGO music box, and even an Arduino-controlled LEGO train set.

* Learn that SNOT is actually cool (it means Studs Not on Top)
* See detailed explanations and images of how everything fits together
* Learn how Arduino fits into each project, including code and explanations

Whether you want to impress your friends, annoy the cat, or just kick back and bask in the awesomeness of your creations, Arduino and LEGO Projects shows you just what you need and how to put it all together.

Arduino Workshop

The Arduino is a cheap, flexible, open source microcontroller platform designed to make it easy for hobbyists to use electronics in homemade projects. With an almost unlimited range of input and output add-ons, sensors, indicators, displays, motors, and more, the Arduino offers you countless ways to create devices that interact with the world around you.

In Arduino Workshop, you’ll learn how these add-ons work and how to integrate them into your own projects. You’ll start off with an overview of the Arduino system but quickly move on to coverage of various electronic components and concepts. Hands-on projects throughout the book reinforce what you’ve learned and show you how to apply that knowledge. As your understanding grows, the projects increase in complexity and sophistication.

C Programming for Arduino

Building your own electronic devices is fascinating fun and this book helps you enter the world of autonomous but connected devices. After an introduction to the Arduino board, you’ll end up learning some skills to surprise yourself.

Physical computing allows us to build interactive physical systems by using software & hardware in order to sense and respond to the real world. C Programming for Arduino will show you how to harness powerful capabilities like sensing, feedbacks, programming and even wiring and developing your own autonomous systems.

C Programming for Arduino contains everything you need to directly start wiring and coding your own electronic project. You’ll learn C and how to code several types of firmware for your Arduino, and then move on to design small typical systems to understand how handling buttons, leds, LCD, network modules and much more.

Arduino для начинающих волшебников

Эта книга о платформе Arduino, которая день ото дня становится все популярнее, и целая армия экспериментаторов-надомников, конструкторов-любителей и хакеров начинает использовать ее для воплощения в жизнь как прекрасных, так и совершенно сумасшедших проектов. С помощью Arduino любой гуманитарий может познакомиться с основами электроники и программирования и быстро начать разработку собственных моделей, не тратя на это значительных материальных и интеллектуальных ресурсов. Arduino объединяет игру и обучение, позволяет создать что-то стоящее и интересное под влиянием внезапного порыва, воображения и любопытства. Эта платформа расширяет возможности креативного человека в сфере электроники, даже если он в ней ничего не смыслит! Экспериментируйте и получайте удовольствие!

Программирование микроконтроллерных плат Arduino/Freeduino

Рассмотрено программирования микроконтроллерных плат Arduino/Freduino. Описана структура и функционирование микроконтроллеров, среда программирования Arduino, необходимые инструменты и комплектующие для проведения экспериментов. Подробно рассмотрены основы программирования плат Arduino: структура программы, команды, операторы и функции, аналоговый и цифровой ввод/вывод данных. Изложение материала сопровождается более 80 примерами по разработке различных устройств: реле температуры, школьных часов, цифрового вольтметра, сигнализации с датчиком перемещения, выключателя уличного освещения и др. Для каждого проекта приведен перечень необходимых компонентов, монтажная схема и листинги программ. На FTP-сервере издательства выложены исходные коды примеров из книги, технические описания, справочные данные, среда разработки, утилиты и драйверы.

Arduino and Kinect Projects

If you’ve done some Arduino tinkering and wondered how you could incorporate the Kinect—or the other way around—then this book is for you. The authors of Arduino and Kinect Projects will show you how to create 10 amazing, creative projects, from simple to complex. You’ll also find out how to incorporate Processing in your project design—a language very similar to the Arduino language.

The ten projects are carefully designed to build on your skills at every step. Starting with the Arduino and Kinect equivalent of «Hello, World,» the authors will take you through a diverse range of projects that showcase the huge range of possibilities that open up when Kinect and Arduino are combined.

Atmospheric Monitoring with Arduino

Makers around the globe are building low-cost devices to monitor the environment, and with this hands-on guide, so can you. Through succinct tutorials, illustrations, and clear step-by-step instructions, you’ll learn how to create gadgets for examining the quality of our atmosphere, using Arduino and several inexpensive sensors.

Detect harmful gases, dust particles such as smoke and smog, and upper atmospheric haze—substances and conditions that are often invisible to your senses. You’ll also discover how to use the scientific method to help you learn even more from your atmospheric tests.

* Get up to speed on Arduino with a quick electronics primer
* Build a tropospheric gas sensor to detect carbon monoxide, LPG, butane, methane, benzene, and many other gases
* Create an LED Photometer to measure how much of the sun’s blue, green, and red light waves are penetrating the atmosphere
* Build an LED sensitivity detector—and discover which light wavelengths each LED in your Photometer is receptive to
* Learn how measuring light wavelengths lets you determine the amount of water vapor, ozone, and other substances in the atmosphere

Руководство по освоению Arduino

Издание представляет собой русскоязычный перевод одного из документов по работе с набором ARDX (Starter Kit for Arduino), предназначенного для экспериментов с Arduino. В документации описано 12 простейших проектов, ориентированных на начальное знакомство с модулем Arduino.

Основная цель этого набора - интересно и с пользой провести время. А помимо этого — освоить разнообразные электронные компоненты путем сборки небольших простых и интересных устройств. Вы получаете работающее устройство и инструмент, позволяющий понять принцип действия.

Большая Энциклопедия Электрика

Самая полная на сегодняшний день книга, в которой вы найдете массу полезной информации, начиная с азов. В книге раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое.

В книге «Большая энциклопедия электрика» раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое. Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

Arduino блокнот программиста

Этот блокнот следует рассматривать, как удобное, лёгкое в использовании руководство по структуре команд и синтаксису языка программирования контроллера Arduino. Для сохранения простоты, были сделаны некоторые исключения, что улучшает руководство при использовании начинающими в качестве дополнительного источника информации — наряду с другими web-сайтами, книгами, семинарами и классами. Подобное решение, призвано акцентировать внимание на использовании Arduino для автономных задач и, например, исключает более сложное использование массивов или использование последовательного соединения.

Начиная с описания структуры программы для Arduino на языке C, этот блокнот содержит описание синтаксиса наиболее общих элементов языка и иллюстрирует их использование в примерах и фрагментах кода. Блокнот содержит примеры функций ядра библиотеки Arduino, а в приложении приводятся примеры схем и начальных программ.

Аналоговые интерфейсы микроконтроллеров

Данное издание является практическим пособием по применению различных интерфейсов для подключения аналоговых периферийных устройств к компьютерам, микропроцессорам и микроконтроллерам.

Раскрывается специфика применения таких интерфейсов, как I2C, SPI/Microware, SMBus, RS-232/485/422, токовая петля 4-20 мА и др. Дается обзор большого количества современных датчиков: температурных, оптических, ПЗС, магнитных, тензодатчиков и т. д. Подробно описываются контроллеры, АЦП и ЦАПы, их элементы — УВХ, ИОН, кодеки, энкодеры.

Рассмотрены исполнительные устройства — двигатели, терморегуляторы — и вопросы их управления в составе систем автоматического управления различного типа (релейного, пропорционального и ПИД). Книга снабжена иллюстрациями, наглядно представляющими аппаратные и программные особенности применения элементов аналоговой и цифровой техники. Заинтересует не только начинающих радиолюбителей, но и специалистов, имеющих стаж работы с аналоговой и цифровой техникой, а также студентов технических колледжей и вузов.

Руководство по использованию АТ-команд для GSM/GPRS модемов

В этом пособии изложено детальное описание полного набора АТ команд для работы с модемами компании Wavecom. Приведены специальные АТ команды для работы с протоколами стека IP, программно реализованными в модемах Wavecom.

Книга ориентирована на разработчиков, создающих программные и программно-аппаратные приложения на базе продукции Wavecom. Руководство так же рекомендуется инженерам, отвечающим за эксплуатацию систем различного назначения, применяющим в качестве канала передачи данных сети GSM. Отличный справочник для студентов, которые используют в своей курсовой или дипломной работе тематику передачи данных в GSM сетях.

Расскажи о нас

Сообщение

Если у Вас есть опыт в работе с Arduino и собственно есть время для творчества, мы приглашаем всех желающих стать авторами статей публикуемых на нашем портале. Это могут быть как уроки, так и рассказы о ваших экспериментах с Arduino. Описание различных датчиков и модулей. Советы и наставления начинающим. Пишите и размещайте свои статьи в .