Беспроводная передача энергии. Беспроводная передача электрической энергии

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.


Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий . За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли - порядка 70-75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/кв.м., в центре приемной – 230 Вт/кв.м.


Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый, Magnetron Directional Amplifier - MDA).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.


Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», - рассказывает Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе .

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).


На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии .

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего уже по технологии PoWiMax или от радиолокатора самолёта носителя):


Для БПЛА негатив от закона обратных квадратов (изотропно-излучающая антенна) частично «компенсирует» ширина луча антенны и диаграмма направленности:

Ведь БРЛС ЛА в импульсе может выдавать под 17 кВт энергии ЭМИ.

Это не сотовая связь -где ячейка должна обеспечить связь конечным элементам на 360 градусов.
Допустим такая вариация:
Самолёт носитель (для Perdix) это F-18 обладает (сейчас) БРЛС AN/APG-65:


максимальная средняя излучаемая мощность по 12000 Вт

Или в перспективе будет иметь AN/APG-79 AESA:


в импульсе должен выдавать под 15 кВт энергии ЭМИ

Этого вполне достаточно, что бы продлить активную жизнь Perdix Micro-Drones с нынешних 20 минут до часа, а может и больше.

Скорее всего будет использоваться промежуточный дрон Perdix Middle, которого будет облучать на достаточном расстоянии БРЛС истребителя, а он в свою очередь осуществит «раздачу» энергии для младших братьев Perdix Micro-Drones по PoWiFi/PoWiMax, параллельно обмениваясь с ними информацией (полётно -пилотажной, целевыми задачами, координацией роя).

Возможно вскоре дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, которые находятся в зоне действия Wi-Fi, Wi-Max или 5G?

Послесловие: 10-20 лет, после широкого внедрения в повседневную жизнь многочисленных электромагнитных излучателей СВЧ (Мобильные телефоны, Микроволновые печи, Компьютеры,WiFi,Blu tools и т.д.) внезапно тараканы в больших городах вдруг превратились в раритет! Теперь таракан- насекомое, которое можно встретить разве что в зоопарке. Они неожиданно исчезли из домов, которые раньше так любили.

ТАРАКАНЫ КАРЛ!
Эти монстры лидеры списка «радиорезистентных организмов» бесстыдно капитулировали!
Справка
LD 50 - средняя летальная доза, то есть доза убивает половину организмов в эксперименте; LD 100 - летальная доза убивает всех организмов в эксперименте.

Кто следующий на очереди?

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².
Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV - Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи»).
В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).
В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).
Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах.
Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам.
Принятые и в США и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.
Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько?
А как будет с беспроводной передачей электроэнергии СВЧ технологиями?
Тут мощности не ватты и мили ватты, а уже кВт…

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).


Теги:

  • Электроэнергия
  • СВЧ
  • PoWiFi
  • дроны
  • БПЛА
Добавить метки

Открыл закон (после названный в честь открывателя законом Ампера), показывающий, что электрический ток производит магнитное поле.

  • В 1831 году Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • В 1864 году Джеймс Максвелл систематизировал результаты наблюдений и экспериментов, изучил уравнения по электричеству, магнетизму и оптике, создал теорию и составил строгое математическое описание поведения электромагнитного поля (см. уравнения Максвелла).
  • В 1888 году Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца представлял собой искровой передатчик «радиоволн» и создавал волны в диапазонах частот СВЧ или УВЧ .
  • В 1891 году Никола Тесла улучшил и запатентовал (патент номер 454,622; «Система электрического освещения») передатчик волн Герца для радиочастотного энергоснабжения.
  • В 1893 году Никола Тесла на всемирной выставке , проходившей в 1893 году в Чикаго , продемонстрировал беспроводное освещение люминесцентными лампами .
  • В 1894 году Никола Тесла зажёг без проводов фосфорную лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хаустон-стрит в Нью-Йорке с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • В 1894 году Джагдиш Чандра Боше дистанционно воспламенил порох , что привело к удару по колоколу, с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов .
  • 25 апреля (7 мая) года Александр Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества .
  • В 1895 году Боше передал сигнал на расстояние около одной мили .
  • 2 июня 1896 года Гульельмо Маркони подал заявку на изобретение радио.
  • В 1896 году Тесла передал сигнал на расстояние около 48 километров .
  • В 1897 году Гульельмо Маркони передал текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • В 1897 году зарегистрирован первый из патентов Тесла по применению беспроводной передачи.
  • В 1899 году в Колорадо-Спрингс Тесла писал: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха » .
  • В 1900 году Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • В 1901 году Маркони передал сигнал через Атлантический океан , используя аппарат Тесла.
  • В 1902 году Тесла и Реджинальд Фессенден конфликтовали из-за американского патента номер 21,701 («Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом») .
  • В 1904 году на Всемирной выставке, проходившей в Сент-Луисе , предложена премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт ) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м ) .
  • В 1917 году разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • В 1926 году Синтаро Уда и Хидэцугу Яги опубликовали первую статью «о регулируемом направленном канале связи с высоким усилением » , хорошо известном как «антенна Яги-Уда» или антенна «волновой канал ».
  • В 1945 году Семён Тетельбаум опубликовал статью «О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн», в которой впервые рассматривал эффективность микроволновой линии для беспроводной передачи электроэнергии .
  • В 1961 году Уильям Браун опубликовал статью по исследованию возможности передачи энергии посредством микроволн .
  • В 1964 году Уильям Браун и Уолтер Кроникт в эфире телеканала CBS News продемонстрировали модель вертолёта, получающего всю необходимую ему энергию от микроволнового луча.
  • В 1968 году Питер Глейзер предложил использовать беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч» . Это считается первым описанием орбитальной энергетической системы .
  • В 1973 году в Лос-Аламосской Национальной лаборатории продемонстрирована первая в мире пассивная система RFID .
  • В 1975 году на комплексе дальней космической связи обсерватории Голдстоун проведены эксперименты по передаче мощности в десятки киловатт .
    • В 2007 году исследовательская группа под руководством профессора Марина Солячича из передала беспроводным способом на расстояние 2 м энергию мощностю, достаточной для свечения лампочки мощностью 60 ватт , с КПД , равным 40 % , с помощью двух катушек диаметром 60 см .
    • В 2008 году фирма «Bombardier» предложила систему для беспроводной передачи энергии, названную «primove» и предназначенную для применения в трамваях и двигателях малотоннажной железной дороги .
    • В 2008 году сотрудники фирмы Intel воспроизвели опыты Никола Тесла 1894 года и опыты группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с КПД , равным 75 % .
    • В 2009 году консорциум заинтересованных компаний, названный «Wireless Power Consortium», разработал стандарт беспроводного питания для малых токов, названный « » . Qi стал применяться в портативной технике.
    • В 2009 году норвежская компания «Wireless Power & Communication» представила разработанный ею промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом.
    • В 2009 году фирма «Haier Group» представила первый в мире полностью беспроводной LCD-телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI) .
    • В 2011 году «Wireless Power Consortium» приступил к расширению спецификаций стандарта Qi для средних токов.
    • В 2012 году начал работу частный петербургский музей «Гранд Макет Россия », в котором миниатюрные модели автомобилей получали электропитание беспроводным способом через модель дорожного полотна.
    • В 2015 году учёные из Вашингтонского университета выяснили, что электричество можно передавать посредством технологии Wi-Fi .

    Технологии

    Ультразвуковой способ

    Ультразвуковой способ передачи энергии изобретён студентами университета Пенсильвании и впервые широкой публике представлен на выставке «The All Things Digital» (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, использовался приёмник и передатчик. Передатчик излучал ультразвук; приёмник, в свою очередь, преобразовывал слышимое в электричество. На момент презентации расстояние передачи достигало 7-10 метров , и была необходима прямая видимость приёмника и передатчика. Передаваемое напряжение достигало 8 вольт ; получаемая сила тока не сообщается. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии ультразвуковых частот на животных.

    Метод электромагнитной индукции

    При беспроводной передаче энергии методом электромагнитной индукции используется ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создаёт переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, всё большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

    Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция . Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щёток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приёмник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

    Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приёмник настроены на одну частоту. Производительность может быть улучшена ещё больше путём изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приёмная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

    Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких, как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приёмника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi .

    Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких, как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющемуся беспроводным передатчиком электрической энергии.

    Электростатическая индукция

    Лазерный метод

    В том случае, если длина волны электромагнитного излучения приближается к видимой области спектра (от 10 мкм до 10 нм ), энергию можно передать путём её преобразования в луч лазера , который затем может быть направлен на фотоэлемент приёмника.

    Лазерная передача энергии по сравнению с другими методами беспроводной передачи обладает рядом преимуществ:

    • передача энергии на большие расстояния (за счёт малой величины угла расходимости между узкими пучками монохроматической световой волны);
    • удобство применения для небольших изделий (благодаря небольшим размерам твердотельного лазера - фотоэлектрического полупроводникового диода);
    • отсутствие радиочастотных помех для существующих средств связи, таких, как Wi-Fi и сотовые телефоны (лазер не создаёт таких помех);
    • возможность контроля доступа (получить электроэнергию могут только приёмники, освещённые лазерным лучом).

    У данного метода есть и ряд недостатков:

    • преобразование низкочастотного электромагнитного излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 % , хотя эффективность преобразования монохроматического света значительно выше, чем эффективность солнечных панелей;
    • потери в атмосфере;
    • необходимость прямой видимости между передатчиком и приёмником (как и при микроволновой передаче).

    Технология передачи мощности с помощью лазера ранее, в основном, исследовалась при разработке новых систем вооружений и в аэрокосмической промышленности, а в настоящее время разрабатывается для коммерческой и потребительской электроники в маломощных устройствах. Системы беспроводной передачи энергии с применением в потребительских целях должны удовлетворять требованиям лазерной безопасности стандарта IEC 60825. Для лучшего понимания лазерных систем следует принимать во внимание то, что распространение лазерного луча гораздо в меньшей степени зависит от дифракционных ограничений, как пространственное и спектральное согласование характеристик лазеров позволяют увеличить рабочую мощность и дистанцию, как длина волны влияет на фокусировку.

    Драйденский лётно-исследовательский центр НАСА продемонстрировал полёт лёгкого беспилотного самолёта-модели, питаемого лазерным лучом. Это доказало возможность периодической подзарядки посредством лазерной системы без необходимости приземления летательного аппарата.

    Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст . Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях (3,2-4,8 километрах ) над уровнем моря и благодаря потоку ионов, то есть электрической проводимости через ионизированную область, расположенную на высоте выше 5 км . Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через неё и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря ёмкостному плазменному разряду в ионизированной атмосфере .

    Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывалась как коммерческий проект по трансатлантической беспроводной телефонии и стала реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования .

    Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4,5 миль (7,2 км ) .

    Глобальная система передачи электроэнергии без проводов, так называемая „Всемирная беспроводная система“, основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате „короткого замыкания“ между заряженной атмосферой и землей .

    Всемирная беспроводная система

    Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

    В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успеха можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приёмниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения её полной исключительности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учётом физических свойств нашей планеты».

    Одним из условий создания всемирной беспроводной системы является строительство резонансных приёмников. Заземлённый винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приёмной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732 от 18 января 1902 года, «Аппарат для передачи электрической энергии»). Тесла предложил установить более тридцати приёмо-передающих станций по всему миру. В этой системе приёмная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приёмной.

    Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействовало бы объединению электрических генераторов в глобальном масштабе.

    См. также

    • WiTricity

    Примечания

    1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
    2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
    3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
    4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
    5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
    6. Jagadish Chandra Bose (англ.)
    7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
    8. June 5, 1899, Nikola Tesla Colorado Spring Notes  1899-1900, Nolit, 1978 (англ.)
    9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
    10. The Electrician (London), 1904 (англ.)
    11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
    12. Тетельбаум С. И. О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн // Электричество. - 1945. - № 5 . - С. 43-46 .
    13. Костенко А. А. Квазиоптика: исторические предпосылки и современные тенденции развития // Радиофизика и радиоастрономия. - 2000. - Т. 5 , № 3 . - С. 231 .
    14. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
    15. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
    16. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
    17. Solar Power Satellite patent (англ.)
    18. History of RFID (англ.)
    19. Space Solar Energy Initiative (англ.)
    20. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
    21. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
    22. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года. ,
      Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года.
    23. Bombardier PRIMOVE Technology
    24. Intel imagines wireless power for your laptop (англ.)
    25. wireless electricity specification nearing completion
    26. Global Qi Standard Powers Up Wireless Charging - HONG KONG, Sept. 2 /PRNewswire/
    27. TX40 and CX40, Ex approved Torch and Charger (англ.)
    28. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
      Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Проверено 6 сентября 2010.

    Беспроводное электричествостало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.

    На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.

    Как это работает

    Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.

    Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.

    • Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.
    • Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.
    • При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.
    • На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.

    Принципы передачи

    До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.

    Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.

    Эксперимент позволил передать на частоте 20 кГц:

    1. 209 Вт на 5 м;
    2. 471 Вт на 4 м;
    3. 1403 Вт на 3 м.

    Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.

    Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:

    • Лазерное излучение . Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
    • Микроволновое излучение . Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.

    Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.

    Особенности

    • Самая реалистичная из технологий — беспроводное электричество на основе электромагнитной индукции. Но существуют ограничения. Ведутся работы по масштабированию технологии, но здесь появляются вопросы безопасности для здоровья.
    • Технологии передачи электричества при помощи ультразвука, лазера и микроволнового излучения также будут развиваться и тоже найдут свои ниши.
    • Орбитальные спутники с громадными солнечными батареями нуждаются в ином подходе, потребуется прицельная передача электроэнергии. Здесь уместен лазер и СВЧ. На данный момент нет идеального решения, однако имеется много вариантов со своими плюсами и минусами.
    • В настоящее время крупнейшие производители телекоммуникационного оборудования объединились в консорциум беспроводной электромагнитной энергии с целью создания всемирного стандарта для беспроводных зарядных устройств, которые действуют по принципу электромагнитной индукции. Из крупных производителей поддержку стандарта QI на ряде своих моделей обеспечивают Sony, Samsung, Nokia, Motorola Mobility, LG Electronics, Huawei, HTC. В скором времени QI станет единым стандартом для любых подобных устройств. Благодаря этому можно будет создавать беспроводные зоны подзарядки гаджетов в кафе, на транспортных узлах и в иных общественных местах.

    Применение

    • Микроволновый вертолет. Модель вертолета имела ректенну и поднималась на высоту 15 м.
    • Беспроводное электричество применяется для питания электрических зубных щеток. Зубная щетка имеет полную герметичность корпуса и не имеет разъемов, что позволяет избежать удара током.
    • Питание самолетов при помощи лазера.
    • В продаже появились системы беспроводной зарядки мобильных устройств, которые можно использовать повседневно. Они работают на базе электромагнитной индукции.
    • Универсальная зарядная площадка. Они позволяют питать энергией большую часть популярных моделей смартфонов, которые не оборудованы модулем для беспроводной зарядки, в том числе обычные телефоны. Кроме самой зарядной площадки будет нужно купить чехол-приемник для гаджета. Он соединяется со смартфоном через USB-порт и через него заряжается.
    • На текущий момент на мировом рынке продается свыше 150 устройств до 5 Ватт, которые поддерживают стандарт QI. В будущем появится оборудование средней мощности до 120 Ватт.

    Перспективы

    Сегодня ведутся работы над крупными проектами, которые будут использовать беспроводное электричество. Это питание электромобилей «по воздуху» и бытовые электросети:

    • Густая сеть автозарядных точек позволит уменьшить аккумуляторы и значительно снизить себестоимость электромобилей.
    • В каждой комнате будут устанавливаться источники питания, которые будут передавать электроэнергию аудио- и видеоаппаратуре, гаджетам и бытовым приборам, оборудованными соответствующими адаптерами.

    Достоинства и недостатки

    Беспроводное электричество имеет следующие преимущества:

    • Не требуются источники питания.
    • Полное отсутствие проводов.
    • Упразднение необходимости использования батарей.
    • Требуется меньше технического обслуживания.
    • Огромные перспективы.

    К недостаткам также можно отнести:

    • Недостаточная проработанность технологий.
    • Ограниченность по расстоянию.
    • Магнитные поля не являются полностью безопасными для человека.
    • Высокая стоимость оборудования.

    Сам принцип действия наглядно показан на простой поделке , в которой светодиод может загораться без проводов на расстоянии 2 см от источника энергии. Схема, которая действует как повышающий преобразователь напряжения, а также беспроводные передатчик и приемник электроэнергии, может быть улучшена и реализована во многих мозгопроектах .

    Шаг 1: Нам понадобится

    NPN транзистор — я взял 2N3904, но вы можете использовать любой NPN транзистор (337, BC547 и т.д.), PNP транзистор тоже будет работать только соблюдайте полярность соединений.
    обмоточный или изолированный провод — около 3-4 метров (провода можно «добыть» из многих приборов, трансформаторов, динамиков, моторчиков, реле и т.д.)
    резистор 1 кОм – будет использоваться для защиты транзистора от сгорания в случае перегрузки, также можно использовать резисторы до 5 кОм, можно даже без резистора, но тогда аккумулятор будет разряжаться быстрее.
    светодиод – сгодится любой, главное следовать схеме.
    батарейка 1.5В – не применяйте батарейки большего вольтажа, чтобы не повредить транзистор.
    ножницы или нож.
    паяльник (опционально).
    зажигалка(опционально) для удаления изоляции с проводов.

    Шаг 2: Смотрим видео процесса

    Шаг 3: Резюмируя видео

    Итак, на цилиндрический предмет наматываем катушку из 30 витков, это будет катушка А. Далее наматываем вторую катушку того же диаметра, но при этом сначала накручиваем 15 витков и делаем отвод, а затем еще 15 витков, это катушка В. Катушки закрепляем от разматывания любым подходящим способом, например просто делаем узлы из выводов катушек. Важный момент: для правильного функционирования этой поделки диаметры обеих катушек и количество витков должны быть одинаковыми.

    Выводы обеих катушек зачищаем и приступаем к пайке цепи. Определяемся с эмиттером, базой и коллектором своего транзистора и к базе припаиваем резистор. Другой вывод резистора припаиваем к свободному выводу катушки В, не к выводу-отводу. Второй свободный вывод катушки В, снова не отвод, припаиваем к коллектору.

    Для удобства можно к эмиттеру припаять небольшой кусочек провода, так буде проще подсоединять батарейку.

    Цепь приемника собирается легко: к выводам катушки А припаиваем светодиод. И мозгоподелка готова!

    Шаг 4: Принципиальная схема

    Шаг 5: Наглядный рисунок

    Шаг 6: Тестирование


    Для приведения самоделки в работоспособное состояние подключаем отвод катушки В к «плюсу» батарейки, а «минус» к эмиттеру транзистора. Затем подносим катушки параллельно друг к другу и диод светится!

    Шаг 7: Пояснение

    Немного поясню, как все это функционирует.

    Передатчик в нашей поделке это цепь осциллятора. Вы может слышали о «цепи ворующей Джоули», которая поразительна схожа с нашей цепью передатчика. В «цепи ворующей Джоули» электроэнергия от батарейки 1.5В преобразуется в более высокое напряжение, но импульсное. Светодиоду требуется 3В, но благодаря «цепи ворующей Джоули» он прекрасно светится и от 1.5В.

    «Цепь, ворующая Джоули» известна как конвертер и генератор, цепь, которую мы создали, также является генератором и конвертером. А энергия на светодиод подается посредством индукции, возникающей в катушках, которую можно пояснить на мозгопримере обычного трансформатора.

    Предположим, что трансформатор имеет две одинаковые катушки. Тогда во время прохождения электричества по одной катушке она становится магнитом, вторая катушка попадает в магнитное поле первой и, вследствие этого, по ней тоже начинает течь ток. Если напряжение в первой катушке переменное, следовательно, она импульсно теряет свои магнитные свойства, значит и вторая катушка импульсно попадает в магнитное поле первой, то есть и во второй катушке образуется переменное напряжение.

    В нашей самоделке катушка передатчика создает магнитное поле, в которое попадает катушка приемника, соединенная со светодиодом, который преобразует полученную энергию в свет!

    Представленная мозгоподелка преобразует полученную энергию в свет, но можно использовать ее более разнообразно. Также можно применять принципы этой самоделки для создания фокусов, забавных подарков или научных проектов. Если варьировать диаметры и число витков на катушках, то можно добиться максимальных значений, или можно изменить форму катушек и т.д., возможности не ограничены!

    Шаг 9: Устранение неисправностей

    При создании этой самоделки возможны следующие проблемы:
    Транзистор слишком греется – проверьте номинал резистора, возможно его нужно повысить. Я сначала не использовал резистор, и транзистор при этом сгорел. Или как вариант используйте радиатор для транзистора, а может и другой транзистор, с более высоким значением усиления.
    Светодиод не светится – причин может быть много. Проверьте качество соединения, правильно ли распаяли базу и коллектор, убедитесь, что катушки равного диаметра, нет ли короткого замыкания в цепи.

    Сегодняшний эксперимент с индукцией закончен, благодарю за внимание и успехов в творчестве!

    Это простая схема, которая может обеспечить энергией электролампочку без каких-либо проводов, на расстоянии почти 2,5 см! Эта схема действует и как повышающий преобразователь напряжения, и как беспроводной передатчик электроэнергии и приемник. Её очень просто сделать и, если усовершенствовать, то можно использовать различными способами. Итак, приступим!

    Шаг 1. Необходимые материалы и инструменты.

    1. NPN транзистор. Я использовал 2N3904, но можно использовать любой NPN транзистор, например, ВС337, BC547 и т.д. (Любой PNP транзистор будет работать, только соблюдайте полярность соединений.)
    2. Обмоточный или изолированный провод. Около 3-4 метров провода должно быть достаточно (провода обмоточные, просто медные провода с очень тонкой эмалевой изоляцией). Подойдут провода от большинства электронных устройств, таких как трансформаторы, колонки, электродвигатели, реле и т.д.
    3. Резистор с сопротивлением 1 кОм. Этот резистор будет использоваться для защиты транзистора от перегорания в случае перегрузки или перегрева. Вы можете использовать более высокие значения сопротивления до 4-5 кОм. Можно не использовать резистор, но при этом существует риск более быстрого разряда батареи.
    4. Светодиод. Я использовал светодиод диаметром 2 мм ультра яркий белый. Вы можете использовать любой светодиод. Фактически назначение светодиода здесь - только показывать работоспособность схемы.
    5. Батарея размера АА напряжением 1,5 Вольт. (Не используйте батареи высокого напряжения, если не хотите повредить транзистор.)

    Необходимые инструменты:

    1) Ножницы или нож.

    2) Паяльник (Необязательно). Если у вас нет паяльника, можно просто сделать скрутку проводов. Я делал это, когда у меня не было паяльника. Если вы хотите попробовать схему без пайки, это только приветствуется.

    3) Зажигалка (Необязательно). Мы будем использовать зажигалку, чтобы сжечь изоляцию на проводе, а затем используем ножницы, или нож, чтобы соскоблить остатки изоляции.

    Шаг 2: Посмотрите видео, чтобы узнать, как это сделать

    Шаг 3: Краткий повтор всех шагов.

    Итак, прежде всего вы должны взять провода, и сделать катушку, намотав 30 витков вокруг круглого цилиндрического объекта. Назовем эту катушку А. С тем же круглым предметом, начинаем делать вторую катушку. После наматывания 15-го витка создать ответвление в виде петли из провода и затем намотайте на катушку еще 15 оборотов. Так что теперь у вас есть катушка с двумя концами и одним ответвлением. Назовем эту катушку В. Свяжите узлы на концах проводов, так чтобы они не раскручивались сами по себе. Обожгите изоляцию на концах проводов и на ответвлении на обоих катушках. Также вы можете использовать ножницы или нож для снятия изоляции. Убедитесь, что диаметры и количество витков обоих катушек равны!

    Создайте передатчик: Возьмите транзистор и поместите его так, чтобы плоская его сторона была обращена вверх и обращена к Вам. Контакт слева будет присоединен к излучателю, средний будет базовым, а контакт справа будет присоединен к коллектору. Возьмите резистор и подключите один из его концов к базовому контакту транзистора. Возьмите другой конец резистора и соедините его с одним из концов (не с ответвлением) катушки B. Возьмите другой конец катушки B и подключите его к коллектору транзистора. Если хотите, можете подключить небольшой кусок проволоки к эмиттеру транзистора (Она будет работать в качестве расширения Эмитента.)

    Настройте приемник. Чтобы создать приемник, возьмите катушку А и присоедините ее концы к разным контактам вашего светодиода.

    Вы собрали схему!

    Шаг 4: Принципиальная схема.

    Здесь мы видим принципиальную схему нашего соединения. Если вы не знаете каких-то обозначений на схеме, не волнуйтесь. В следующих изображениях все показано.

    Шаг 5. Чертеж соединений схемы.

    Здесь мы видим объяснительный чертеж соединений нашей цепи.

    Шаг 6. Использование схемы.

    Просто возьмите ответвление катушки B и присоедините его к положительному концу батареи. Подключите отрицательный полюс батареи к эмиттеру транзистора. Теперь, если вы приближаете катушку с светодиодом к катушке B, светодиод загорается!

    Шаг 7. Как это объясняется с научной точки зрения?

    (Я просто попытаюсь объяснить науку этого явления простыми словами и аналогиями, и я знаю, что могу ошибиться. Для того, чтобы правильно объяснить сие явление, мне придется углубляться во все подробности, что я не в состоянии сделать, поэтому я просто хочу провести общие аналогии для объяснения схемы).

    Схема передатчика, который мы только что создали это схема Осциллятора. Вы, возможно, слышали о так называемой схеме Вор джоулей, так вот она имеет поразительное сходство с цепью, которую мы создали. Схема Вор джоулей принимает электроэнергию от батареи напряжением 1,5 Вольт, выводит электроэнергию с более высоким напряжением, но с тысячами интервалов между ними. Светодиоду достаточно напряжения 3 вольт, чтобы загореться, но в данной схеме он вполне может загореться и с батареей напряжением 1,5 вольт. Так схема Вор джоулей известна как повышающий напряжение конвертер, а также как излучатель. Схема, которую мы создали также является излучателем и конвертером, повышающим напряжение. Но может возникнуть вопрос: "Как зажечь светодиод на расстоянии?" Это происходит из-за индукции. Для этого можно, к примеру, использовать трансформатор. Стандартный трансформатор имеет сердечник с обеих своих сторон. Предположим, что провод на каждой стороне трансформатора равен по величине. Когда электроток проходит через одну катушку, катушки трансформатора становятся электромагнитами. Если через катушку протекает переменный ток, то колебания напряжения происходят по синусоиде. Поэтому, когда переменный ток протекает через катушку, проволока приобретает свойства электромагнита, а затем снова теряет электромагнетизм, когда падает напряжение. Моток проволоки становится электромагнитом, а затем теряет свои электромагнитные характеристики с такой же скоростью, с какой магнит движется из второй катушки. Когда же магнит быстро движется через катушку провода, вырабатывается электроэнергия, таким образом колебательное напряжение одной катушки на трансформаторе, индуцирует электричество в другой катушке провода, и электричество передается от одной катушки к другой без проводов. В нашей цепи, ядром катушки является воздух, и напряжение переменного тока проходит через первую катушку, таким образом вызывает напряжение во второй катушке и зажигает лампочки!!

    Шаг 8. Польза и советы по улучшению.

    Таким образом, в нашей схеме мы просто использовали светодиод, чтобы показать эффект схемы. Но мы могли бы сделать больше! Схема приемника получает электричество от переменного тока, так что мы могли бы использовать ее, чтобы осветить люминесцентные лампы! Также с помощью нашей схемы можно делать интересные фокусы, забавные подарки и др. Чтобы максимизировать результаты, вы можете поэкспериментировать с диаметром катушек и числом оборотов на катушках. Также Вы можете попробовать сделать катушки плоскими, и посмотреть, что получится! Возможности безграничны!!

    Шаг 9. Причины, по которым схема может не работать.

    С какими проблемами вы можете столкнуться и как их возможно исправить:

    1. Транзистор слишком сильно нагревается!

    Решение: Вы использовали резистор с нужными параметрами? Я не использовал резистор в первый раз, и транзистор у меня задымился. Если это не помогает, попробуйте использовать термоусадку или используйте транзистор более высокого класса.

    1. Светодиод не горит!

    Решение: Может быть очень много причин. Для начала проверьте все соединения. Я случайно поменял базу и коллектор в своем соединении, и это стало большой проблемой для меня. Итак, проверьте все связи в первую очередь. Если у вас есть такой прибор, как мультиметр, можете использовать его, чтобы проверить все соединения. Также убедитесь, что обе катушки у вас одного и того же диаметра. Проверьте, вдруг в вашей сети имеется короткое замыкание.

    Я не знаю о каких-либо еще проблемах. Но если вы таки с ними столкнулись, дайте мне знать! Я постараюсь помочь, чем смогу. Кроме того, я ученик 9 класса школы и мои научные познания крайне ограничены, и поэтому, если вы обнаружите у меня ошибки, сообщите мне о них. Предложения по улучшению более чем приветствуется. Удачи вам в вашем проекте!