Частотник для электродвигателя своими руками: схема, инструкция и подключение.

В данной статье будет рассмотрен частотник для электродвигателя, принцип его работы и основные компоненты. Основной упор будет сделан на теорию, чтобы вы поняли и смогли в дальнейшем осуществить проектировку и изготовление своими руками. Но для начала потребуется небольшой вводный курс, в котором будет рассказано о том, что такое частотник и для каких целей он необходим.

Функции частотного преобразователя

Львиную долю занимают в промышленности асинхронные двигатели. И ими управлять всегда было трудно, так как они имеют постоянную частоту вращения ротора, а изменять входное напряжение оказывается очень сложно, а порой даже невозможно. Но частотник полностью изменяет картину. И если раньше для изменения скорости движения транспортера, например, использовались разнообразные редукторы, то сегодня достаточно применить одно электронное устройство.

Кроме того, частотники позволяют получить не только возможность изменения параметров привода, но и несколько дополнительных степеней защиты. Отпадает необходимость в а порой даже не нужно иметь трехфазную сеть для обеспечения нормальной работы асинхронного двигателя. Все эти обязанности, связанные с коммутацией и включением электропривода, переходят к частотному преобразователю. Он позволяет изменять фазы на выходе, частоту тока (следовательно, и скорость вращения ротора меняется), проводить регулировку запуска и торможения, а также можно реализовать множество других функций. Все зависит от микроконтроллера, используемого в схеме управления.

Принцип действия

Сделать частотник для электродвигателя своими руками, схема которого приведена в статье, достаточно просто. Он позволяет осуществить преобразование одной фазы в три. Следовательно, появляется возможность использовать в быту асинхронный электродвигатель. При этом не потеряется его КПД и мощность. Ведь вы знаете, что при включении мотора в сеть с одной фазой происходит уменьшение этих параметров чуть ли не в два раза. А все дело в нескольких преобразованиях поступающего на вход устройства напряжения.

Первым по схеме идет выпрямительный блок. Более подробно о нем будет рассказано ниже. После выпрямленное напряжение подвергается фильтрации. И поступает чистый на вход инвертора. Он осуществляет преобразование постоянного тока в переменный с необходимым числом фаз. Вот этот каскад можно подвергнуть регулировкам. Он состоит из полупроводников, к которым подключена схема управления на микроконтроллере. Но теперь обо всех узлах более подробно.

Выпрямительный блок

Он может быть двух типов - одно- и трехфазным. Первый вид выпрямителя можно использовать в любой сети. Если у вас трехфазная, то достаточно произвести подключение к одной. Схема частотника для электродвигателя не обходится без выпрямительного блока. Так как имеется различие по числу фаз, значит, необходимо использовать определенное число полупроводниковых диодов. Если речь идет о частотных преобразователях, которые питаются от одной фазы, то требуется выпрямитель из четырех диодов. Они включаются по мостовой схеме.

Она позволяет уменьшить разницу между значением напряжения на входе и выходе. Конечно, можно использовать и однополупериодную схему, но она неэффективна, возникает большое число колебаний. Но если речь идет о трехфазном подключении, то необходимо в схеме использовать шесть полупроводников. Точно такая же схема в выпрямителе автомобильного генератора, никаких отличий нет. Единственное, что можно сюда добавить, так это еще три дополнительных диода, предназначенные для защиты от обратного напряжения.

Фильтрующие элементы

После выпрямителя идет фильтр. Его основное предназначение - это отсечка всей переменной составляющей Для более ясной картины нужно составить схему замещения. Итак, плюс проходит через катушку. А затем между плюсом и минусом включен электролитический конденсатор. Вот он-то и интересен в схеме замещения. Если катушка замещается то конденсатор при наличии различного тока может быть либо проводником, либо разрывом.

Как было сказано, в выпрямителе на выходе постоянный ток. А при подаче его на электролитический конденсатор не происходит ничего, так как последний является разрывом цепи. Но вот есть небольшая переменная в токе. А если течет переменный ток, то в схеме замещения конденсатор становится проводником. Следовательно, происходит замыкание плюса на минус. Данные выводы сделаны по законам Кирхгофа, которые являются основными в электротехнике.

Инвертор на силовых транзисторах

А вот теперь добрались до самого главного узла - каскада транзисторов. На них сделан инвертор - преобразователь постоянного тока в переменный. Если изготавливается частотник для электродвигателя своими руками, то рекомендуется использовать сборки IGBT-транзисторов, найти их можно в любом магазине радиодеталей. Причем стоимость всех компонентов для изготовления частотника окажется в десятки раз меньше, нежели цена готового изделия, даже китайского производства.

Для каждой фазы используется два транзистора. Они включены между плюсом и минусом, как изображено на схеме, приведенной в статье. Но есть у каждого транзистора особенность - управляющий вывод. В зависимости от того, какой на него подан сигнал, изменяются свойства полупроводникового элемента. Причем можно это произвести как при помощи ручного переключения (например, несколькими микровыключателями подавать напряжение на необходимые управляющие выводы), так и автоматического. Вот о последнем и пойдет речь дальше.

Схема управления

И если подключение частотного преобразователя к электродвигателю выполнить просто, достаточно только соединить соответствующие выводы, то со схемой управления все куда сложнее. Все дело в том, что возникает необходимость в программировании устройства, чтобы добиться максимально возможных регулировок от него. В основе находится микроконтроллер, к нему производится подключение считывающих устройств и исполнительных. Так, необходимо наличие трансформаторов тока, которые будут постоянно следить за мощностью, потребляемой электроприводом. И в случае превышения должно произойти отключение частотника.

Подключение схемы управления

Кроме того, предусматривается защита от перегрева. На выход микроконтроллера при помощи (сборки Дарлингтона) производится подключение управляющих выводов IGBT-транзисторов. Кроме того, необходимо визуально контролировать параметры, поэтому нужно включить в схему LED-дисплей. Из считывающих устройств требуется добавить кнопки, которые позволят переключаться между режимами программирования, а также переменное сопротивление, вращением его изменяется скорость вращения ротора электродвигателя.

Заключение

Хочется отметить, что изготовить можно и самостоятельно частотник для электродвигателя, цена же готового изделия начинается от 5000 рублей. И это для электродвигателей, мощность которых не превышает 0,75 кВт. Если нужно осуществить управление более мощным приводом, потребуется частотник подороже. Для использования в быту достаточно схемы, рассмотренной ниже. Причина - нет необходимости в большом количестве функций и настроек, самое главное - это возможность изменения частоты вращения ротора.

Впервые мир познакомился с таким устройством, как трехфазный асинхронный электродвигатель , еще в конце 19 столетия. И начиная с того времени, его стали применять на каждом промышленном предприятии, где он стал обязательным элементом. Во время эксплуатации электродвигателя важно обеспечить его плавный пуск и остановку. Это можно сделать только при наличии специального устройства – преобразователя частоты.

В первую очередь, целесообразно оснащать преобразователем крупные электродвигатели, обладающие высокими показателями мощности. Польза от наличия такого устройства заключается в возможности менять пусковые токи, задавая необходимую их величину.

Принцип работы частотного преобразователя

Конечно, можно регулировать пусковой ток и вручную, однако в этом случае будет тратиться определенное количество энергии впустую, что негативным образом скажется на эксплуатационном ресурсе электродвигателя. Наблюдаемый в устройствах, не имеющих подобного приспособления, ток имеет величину, превышающую в 5-7 раз номинальное напряжение. В таких условиях невозможно создать нормальные условия для работы оборудования.

Действие такого устройства, как преобразователь частоты, основывается на использовании электронного механизма , который контролирует работу двигателя. Но его возможности не ограничиваются лишь мягким пуском. При помощи преобразователя частоты можно осуществлять плавную настройку работы привода, выбирая оптимальный показатель между напряжением и частотой, который рассчитывается строго по заданной формуле.

Среди достоинств такого устройства главным следует назвать то, что оно помогает уменьшить расход электроэнергии в среднем на 50%. К тому же частотный преобразователь позволяет выставлять такой режим работы, который будет в максимальной степени учитывать потребности определённого производства.

Действие подобного преобразователя основывается на принципе двойного преобразования напряжения .

  1. На начальном этапе выполняется регулировка напряжения сети путем его выпрямления и фильтрования, что достигается посредством использования системы конденсаторов.
  2. Далее настает черед электронного управления, благодаря которому для тока выставляется частота, соответствующая заранее выбранному режиму.

В результате возникают прямоугольные импульсы, которые корректируются обмоткой статора двигателя, что позволяет вывести ее на уровень синусоиды.

На что обратить внимание при выборе?

Если обратить внимание на доступные сегодня модели преобразователей, то определяющим фактором становится именно цена частотника. Дело в том, что наибольшим функционалом обладают лишь дорогие модели пребразователей частоты. Однако, чтобы выбираемый преобразователь смог успешно справляться с необходимыми задачами, нужно исходить из конкретных условий его использования.

Материалы

Чтобы сделать своими руками частотный преобразователь для однофазного электродвигателя , необходимо подготовить следующее:

  • IR2135(IR2133) – драйвер трёхфазного моста;
  • AT90SPWM3B – микроконтроллёр (используется как генератор PWM);
  • программатор (например, AVReAl);
  • шесть штук транзисторов IRG4BC30W;
  • ЖКИ индикатор;
  • шесть кнопок.

Самостоятельная сборка преобразователя частоты

Не стоит отказываться от идеи сделать своими силами преобразователь. Эту задачу решить по силам любому владельцу, учитывая, что в сети можно найти большое количество инструкций и схем по сборке подобного устройства и его подключению к асинхронному двигателю .

Рассматривая такой вариант, главное, о чем следует помнить – собираемая своими руками модель должна отличаться не только доступной ценой, но и надежностью, а также быть способна успешно решать задачи в бытовых условиях. Если же имеется потребность в устройстве для промышленного использования, то, естественно, оптимальным выбором будут преобразователи, предлагаемые магазинами.

Порядок действий по сборке схемы частотного преобразователя

Приводимая ниже схема рассчитана на проводку с напряжением 220В и одной фазой. Устройство предназначено для двигателя, мощность которого не превышает 1 кВт.

Вначале необходимо соединить между собой обмотки двигателя, для чего используется вариант «треугольник».

Основу конструкции оборудования образуют две платы . Первая будет уступать место для размещения таких элементов, как блок питания и драйвер. Помимо них здесь будут установлены транзисторы и силовые клеммы. Вторая плата используется для крепления микроконтроллера и индикатора. Для соединения плат друг с другом используется гибкий шлейф.

Для изготовления импульсного блока питания используется обычная схема, которую можно найти в сети.

Чтобы контролировать работу двигателя, нет необходимости воздействовать на ток при помощи внешних устройств. Однако нелишним будет добавить в конструкцию микросхему(IL300) путем введения линейной развязки.

Общий радиатор используется для размещения не только транзисторов, но и диодного моста.

Обязательным является наличие оптронов ОС2-4, назначение которых заключается в дублировании кнопок управления. На ОС-1 возлагается задача по выполнению пользовательских функций.

Если выбираемый частотный преобразователь имеет одну фазу, то он может работать без трансформатора. Альтернативой ему может служить токовый шунт, который выполняется в виде четырех витков манганинового провода сечением 0,5 км на оправе 3мм. Используемый шунт можно дополнить и усилителем DA-1.

Если мощность двигателя составляет 400 Вт , то он может работать и без термодатчика. С задачей по измерению напряжения сети успешно может справиться и DA-1-2 (усилитель).

Следует позаботиться о защите кнопок, установив на них пластиковые толкатели, управление же осуществляется посредством опторазвязки.

Если будут присутствовать длинные провода, то к ним следует добавить помехоподавляющие кольца.

Во время работы ротора двигателя можно выбирать любую скорость пределах частоты 1: 40. В режиме работы малых частот следует задействовать режим фиксированного напряжения.

Подключение частотного преобразователя

Если используемая проводка имеет одну фазу и напряжение 220В, то в качестве предпочтительной схемы подключения используется вариант «треугольник». Важно помнить о том, что ток на выходе может быть больше номинального не более, чем на 50%.

Если речь идет о трехфазной проводке с напряжением 380В , то для подключения к двигателю частотного преобразователя выбирается схема «звезда». Для простоты выполнения этой процедуры на преобразователе присутствуют клеммы, на поверхности которых имеются подсказки в виде букв.

  • R, S, T– к этим контактам подводят провода сети в любом порядке;
  • U , V , W – при помощи их выполняется включение асинхронного двигателя (в тех случаях, когда двигатель работает в режиме реверса, для возвращения к нормальному вращению достаточно любой из двух проводов поменять местами на контактах).

Обязательно в конструкции имеется клемма, используемая для заземления.

Чтобы собранный своими руками частотный преобразователь смог успешно выполнять свои функции на протяжении длительного времени, владелец должен выполнять следующие рекомендации:

Заключение

Частотный преобразователь является необходимым оборудованием, повышающим эффективность работы асинхронного двигателя . При необходимости его можно изготовить своими силами. Для этого достаточно подготовить необходимые материалы и в точности следовать схеме сборки. При этом следует уделить особое внимание обслуживанию частотного преобразователя, так как при отсутствии должного внимания к его состоянию это оборудование может довольно скоро выйти из строя, что негативным образом скажется и на работе электродвигателя.

Асинхронные двигатели – устройства, наиболее часто применяемые в промышленности.

{ ArticleToC: enabled=yes }

Для плавного запуска пользуются частотными преобразователями, способными контролировать ток пусковой и позволяющие регулировать скорость вращения. Но, важно понимать, что частотный преобразователь для однофазного электродвигателя отличается от того, который требуется трехфазному.

Асинхронные моторы в сравнении с иными электрическими машинами более мощные и производительные, но имеющие такой недостаток, как необходимость оснащения дополнительными элементами, отвечающими за скорость вращения ротора.

Также обстоят дела с пусковым током, который в 5-7 раз превышает номинальный, из-за чего ударные нагрузки приводят к потере энергии и все вместе сокращает его срок службы.

Для борьбы с этими проблемами существует класс приборов, автоматически контролирующий пусковые токи. Называются они частотными преобразователями.

С их помощью удается в 5 раз уменьшить пусковые токи, осуществив плавный запуск.

Кроме этого, регулируя частоты с напряжением, управляют ротором.

Помимо этих достоинств, применение таких приборов имеет следующие:

  • во момент пуска экономится до 50% энергии;
  • с их помощью осуществляется между смежными проводниками обратная связь. Их
  • можно назвать генераторами трехфазного напряжения нужного значения и частоты.

В их основе лежит инвертор двойного преобразования.

Принцип функционирования заключен в следующем:

  • вначале входной ток входной синусоидальный 220 или 380в выпрямляется, проходя диодный мостик;
  • после этого, он поступает на конденсаторную группу, где сглаживается; пройдя через конденсаторы, он подается на управляющие микросхемы и биполярный БТИ транзистор, точнее мостовые ключи, где из него формируют заданных параметров широтно-импульсную трехфазную последовательность;
  • полученные импульсы, имеющие форму прямоугольника, под воздействием индуктивности обмоток превращаются на выходе в синусоидальное напряжение.

Ниже приведена схема, позволяющая понять, как работает частотный преобразователь:



Выбор преобразователей частотных

Для производителей этих устройств, чтобы завоевать рынок, важна цена, как и для любого электронного оборудования. Чтобы ее снизить, ими создаются приборы, у которых набор функций минимален, т.е. чем дороже стоит частотный преобразователь, тем прибор универсальнее, что важно для потребителя, желающего продлить срок службы двигателя.

Основные критерии выбора

К ним относятся:

  • управление . По этому показателю преобразователи частотные подразделяются на скалярные и векторные, которые чаще встречаются, но стоят дороже. Объясняется это тем, что они способны обеспечить более высокоточную регулировку, которую не могут дать первые. Скалярные же могут только удерживать заданное соотношение напряжения на выходе и частоты. Их поэтому ставят в приборы с невысокой нагрузкой на мотор;
  • мощность. Понятно, что чем этот параметр больше, тем лучше. Но, помимо цифры, важен производитель: оборудование, находящееся в «близком родстве» работает намного эффективнее.Помимо этого, использование однобрендовых преобразователей важен для взаимозаменяемости;
  • напряжение сети. Чтобы защитить устройства от скачков напряжения, которые нередко случаются в отечественных сетях, желательно, чтобы напряжение имело большой рабочий диапазон;
  • диапазон регулировки частоты. Здесь исходят из требований конкретного устройства. На практике применяют преобразователи с частотой 10-100 Герц; дискретные входы. Они предназначены для передачи команд. Также благодаря им обеспечивается запуск двигателя и остановка, вращение в обратном направлении и торможение;
  • аналоговые входы. Благодаря им осуществляют контроль при рабочем двигателе и настройку привода;
  • цифровые. Их назначение – передача высокочастотных сигналов, которые генерируются датчиками угла поворота. Чем входов больше, тем это лучше, но дороже прибор;
  • помимо входов , важны дискретные выходы, с которых сигнал сообщает о возникших неисправностях (перегреве, авариях, отклонении напряжения на входе от нормы и пр.);
  • выходы аналоговые отвечают за передачу обратной связи. Их выбирают по выше описанному принципу;
  • у шины управления число входов и выходов совпадать должно со схемой преобразователя. Но, лучше, если у нее будет запас, который может понадобиться при усовершенствовании устройства;
  • перегрузочная способность. Нормальным считается, когда мощность частотного преобразователя больше на 10-15%, чем у двигателя. Выше, чем номинальный, должен быть у него и ток.

Их выпускают мощностью 5-10 Вт. Этого достаточно для работы центрифуг, бытовых холодильников, стиральных машин, станков обрабатывающих и пр. Характеристики технические у них хуже, в сравнении с трехфазными:

Мощность составляет всего 70% от трехфазного, ниже и перегрузочная способность.

На статоре АД расположены обмотки — основная и пусковая. Последнюю используют при запуске короткозамкнутого ротора «беличье колесо».

Чтобы понять, зачем необходима обмотка пусковая, обратимся к примеру: мотор соединен лишь с рабочей обмоткой (220В).

В ней I1(однофазный ток) создает магнитное пульсирующее поле. Его можно разложить на два – с одинаковой амплитудой и скоростями вращения, но противоположно направленных — Фа и Фв. При неподвижном роторе эти поля создают моменты крутящие М1 и М2 отличные по знаку, но равные по величине.

Результирующий пусковой момент равен нулю (Мn= M1 – M2), т.е. мотор не сможет вращаться без приложения к валу нагрузки.

Поэтому и требуется пусковая обмотка. Создаваемое ею поле заставляет вращаться мотор. Направление вращения определяет пусковой начальный момент.

Электрический двигатель — это машина, преобразующая электрическую энергию в механическую, благодаря которой в движение приводятся механизмы. При обратном преобразовании энергии эти устройства выступают в роли генератора. Ротор (вращающийся) и статор (неподвижный) — основные компоненты электродвигателей.

Для создания вращающегося поля требуется две обмотки на статоре, смещенные в пространстве под определенным углом. Пусковая укладывается на статор в соответствие с этим со смещением относительно рабочей в 90 градусов. Чтобы обеспечить сдвиг токов, при подключении ее к сети используют фазосдвигающий элемент – катушку, конденсатор или активный резистор.

Когда по проводнику течет ток, создается магнитное поле, действующее на него с силой F. Если проводник изогнуть в рамку и поместить в магнитное поле, две стороны, находящиеся под углом 90 градусов к полю, испытают действие такой же силы, но направленной в противоположную сторону, которые и создают крутящий момент.

Нужен малогабаритный однофазный частотный преобразователь, чтобы осуществлять управление мотором асинхронными с конденсаторным пуском (АИРЕ, АВЕ и пр.)

Устанавливают такие моторы в вентиляторах электрических, моечных машинах, холодильниках и т.д.

На сайте http://xn--80aqahnfuib9b.xn--p1ai/esq_A200.html можно посмотреть все характеристики устройства. Здесь же его можно купить, определившись по таблице с моделью.

Модель Ток, А Мощность, кВт Габариты (ВхШхГ) Вес, кг Цена, руб с НДС
Серия ESQ-А200, однофазные 1/1 фаза, 200-260 В (для однофазных электродвигателей)
Преобразователь частоты ESQ-A200-2S0007 для однофазного двигателя 0,75 кВт 4,7 0,75 141x85x113 1,1 14 338
Преобразователь частоты ESQ-A200-2S0015 для однофазного двигателя 1,5 кВт 7,5 1,5 141x85x113 1,2 13 874
Преобразователь частоты ESQ-A200-2S0022 для однофазного двигателя 2,2 кВт 10 2,2 170x125x113 2 19 007

В интернет-магазине http://npf-oberon.com.ua/index.php?route=product/product&path=59_63_65&product_id=62/ его стоимость 170 долларов . Там же ознакомиться можно с характеристиками.

Используют его для управления моторами, установленными в сельскохозяйственном оборудовании, транспортерах, миксерах, мощных насосах.

Огромный выбор одно- и трехфазных преобразователей разных производителей на сайте https://chastotnik.com.ua/preobrasovateli//p5 .

Чтобы сказать лучше ли однофазный преобразователь частотный или трехфазный, нужно четко знать для чего он требуется. В однофазных моторах они нужны для управления и регулирования. Переменное напряжение такими преобразователями частотными преобразуется в импульсное, у которого частота 0-1000 колеб./сек. Скорость, с которой вращается ротор асинхронного мотора, получающий напряжение синусоидальное, при этом, меняется пропорционально частоте такого питания.

Отличается частотный преобразователь для электродвигателя 380 от моторов, работающих от бытовой сети, напряжением, подаваемым на инвертор. Частота трехфазного напряжения на выходе лежит в диапазоне 0-1 кГц.

От него в дальнейшем питается мотор, т.е. такой преобразователь позволяет привод запитывать от бытовой сети, одновременно регулирует его характеристики.

Сегодня такие приборы используют редко, поскольку на смену им пришли трехфазные преобразователи частотные, у которых намного шире возможности. Трехфазный частотный преобразователь для трехфазного электродвигателя способен преобразовывать промышленное напряжение сети (трехфазное).

Их к асинхронному двигателю подключают «звездой», а однофазные – «треугольником», т.е регулируют они большее число параметров, что дает возможность выбрать оптимальный режим.

У них значительно меньше габариты и большие функциональные возможности, высокие показатели долговечности и надежности, вполне приемлемая стоимость.

Видео: Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Асинхронные двигатели используются в промышленности для обеспечения работы различных механизмов. Но они имеют один существенный недостаток - при запуске происходит кратковременный скачок тока в пять–семь раз. Кроме потерь электроэнергии, промышленные механизмы терпят ударные нагрузки, что приводит к их преждевременному изнашиванию. Поэтому было разработан частотный преобразователь или инвертор, обеспечивающий плавный пуск и останов асинхронных двигателей.

Основы работы преобразователя

Преобразователь частоты не только обеспечивает плавный пуск-остановка двигателя , но и изменяет частоту вращения ротора , регулируя частоту напряжения на входе двигателя. При этом инверторы изменяют частоту в широком диапазоне от значения частоты питающей сети. В величина напряжения питания определяет частоту вращения магнитного поля, создаваемого статором. Обозначим частоту напряжения , тогда угловая скорость магнитного поля двигателя определяется следующей формулой:

где -число пар полюсов статора. Закон пропорциональности зависит от момента нагрузки. Если момент нагрузки постоянный, то напряжение на статоре регулируется по закону

Для вентиляторов применяется следующая зависимость:

.

Если момент нагрузки обратно пропорционален скорости, то напряжение и частота связаны формулой:

По принципу управления преобразователи можно разделить на типы:

  • со скалярным управлением;
  • с векторным управлением.

Принцип скалярного управления заключается в управлении частотой питающего тока и силы этого тока . Скалярное управление предусматривает поддержание заданного соотношения частоты и напряжения при неизменном крутящемся моменте. Инвертор с управлением по скалярному принципу применяется для вентиляторов, компрессоров, насосов . Допускается подключение к одному преобразователю несколько двигателей.

Скалярный режим позволяет осуществлять регулировку скорости двигателя в узком диапазоне и в среднем колеблется от 1Гц до 100Гц. Это означает, что инвертор преобразует частоту вращения электрического тока сети 50Гц на входе в частоту вращения электрического тока на выходе в диапазоне 1:100Гц .

Важной характеристикой частотных преобразователей является диапазон сохранения скорости с сохранением крутящего момента вала двигателя.

Принцип действия инвертора с векторным управлением заключается в управление характеристиками частоту, силы тока и фазы питающего тока. Так как вращение ротора отстает от вращения магнитного поля статора на 3-5% при максимальном КПД и соответственно максимальной мощности и крутящем моменте, то инвертор с векторным управлением регулирует вращение фазы магнитного поля статора по отношению к вращению ротора, так, чтобы оно было всегда впереди на 3-5%.

При использовании частотного преобразователя реализованного по векторному принципу необходимы датчики обратной связи , которые отслеживают положение ротора электродвигателя. С использованием датчиков диапазон регулирования скорости увеличивается и может достигать показаний выходного тока от 1Гц до 800Гц, что составляет диапазон 1:800Гц . Что актуально для регулирования скорости в лифтовых механизмах, станках.

Название «векторное управление» возникло из-за математического представления тока, создаваемого магнитным полем статора в виде вектора, величина которого равна величине тока, а координаты зависят от фазы тока. Кратко можно сказать, что при векторном режиме управления двигатель развивает максимальный момент тогда, когда вектор магнитного поля находится под углом 103 0 — 105 0 к электрическому току в обмотке ротора. Векторный режим обеспечивает постоянный момент вращения на малых скоростях, высокую точность управления и возможность быстро регулировать скорость изменением частоты.

В инверторе используется принцип преобразования напряжения сети в два этапа. На первом этапе переменное напряжение сети (220 В/380 В) выпрямляется, сглаживается с помощью диодов и конденсаторов. В итоге на первом этапе получается напряжение постоянного тока. На втором этапе формируются прямоугольные импульсы заданной частоты. Через транзисторы инвертора они поступают на обмотки статора, где под воздействием магнитного поля превращаются в синусоидальные, соответствующие переменному току.

Преобразователи с методом широтно-импульсной модуляции напряжения (ШИМ) формируют синусоидальную кривую, параметры которой определяют амплитуду и частоту напряжения.

Виды частотных преобразователей

По назначению преобразователи выпускаются для однофазного и трехфазного напряжения. По типу управления - со скалярным или векторным управлением, о чем рассказывали выше. По типу преобразования делятся на два вида:

  • с автономным инвертором напряжения (АИН);
  • автономным инвертором тока (АИТ).

Современная промышленность выпускает частотные преобразователи в широком ассортименте, разной мощности и с разными функциями.

Виды входной и выходной информации

Частотные преобразователи различаются по количеству входов и выходов. Входные(выходные) сигналы делятся на следующие типы, которые приведены в таблице 1.

Таблица 1

Дискретные сигналы Аналоговые сигналы Цифровые сигналы
Входные Выходные Входные Выходные Входные Выходные
Пуск Готов Задание частоты от систем управления или получение сигналов от датчиков Для подключения к устройствам отображения информации Передают информацию от датчиков положения и скорости. Для передачи данных АСУ
Стоп Работа
Блокировка пуска Отказ
Торможение
Реверс
Выбор скорости

Преобразователи частоты по способу подключения к сети делятся на однофазные и трехфазные. Однофазные частотники подключаются к бытовой сети 220 В , а на выходе формируют трехфазное напряжение. К двигателю они подключаются по схеме «треугольник» . При этом необходимо, чтобы выходной ток составлял не больше половины номинального.

Трехфазные инверторы подключаются к сети 380 В , подключение проводится по принципу «звезда» .

Частотный преобразователь на корпусе имеет ряд клемм для подключения с соответствующей маркировкой. Рассмотрим их обозначения и функции.

Отдельно имеются цифровые выходы для подключения к управляющей аппаратуре (АСУ). Количество выходов определяется производителем инверторов, подробнее они описаны в инструкции по эксплуатации на конкретную модель.

Основные правила выбора преобразователя

В зависимости от требований по мощности и типу управляемых механизмов подбирается частотный преобразователь.

  • Мощность инвертора , указанная в документации, должна быть равной или больше механической мощности электродвигателя . Но при этом необходимо дополнительно ориентироваться на тип подключаемых механизмов. Для подъемных устройств выбирается преобразователь, имеющий величину мощности выше паспортного значения мощности двигателя. А для центробежного насоса допускается мощность инвертора ниже.
  • Если подключаемая нагрузка отличается большой инерционностью , то в зависимости от требуемого времени разгона подбирается мощность преобразователя. Для быстрого разгона потребуется преобразователь с мощностью, больше номинальной мощности двигателя на 10-15% .
  • При выборе частотника номинальный рабочий ток должен превышать значение номинального тока электродвигателя на 10% , чтобы не допустить блокировку по превышению тока.

Основным критерием выбора частотного преобразователя при невозможности одновременно удовлетворить требования по току и напряжению является выбор по полной номинальной мощности, которая должна превышать номинальную мощность двигателя.

При выборе инвертора нельзя обойти вниманием и количество входных (выходных) сигналов и их тип, что позволяет осуществлять автоматизацию производственным процессом и ее модернизацию. При этом желательно ориентироваться принципом - «входов много не бывает».

Как уже обсуждали, в первую очередь выбирается метод управления: скалярный или векторный. Скалярный способ используется для простых механизмов , где требуется обеспечение заданной скорости вращения (вентиляторы, компрессоры и т. д.), где не требуются датчики обратной связи . Векторное управление подразделяется на управление по напряжению и по току. При высоких требованиях к регулировке скорости (от 1:800) дополнительно предусмотрены специальные приводы. И есть необходимость ставить датчики обратной связи на вал

На использовании сигнала обратной связи основана работа ПИД — регулятора . ПИД — регулятор расшифровывается как пропорционально – интегрально — дифференциальный регулятор. Измеряется отклонение величины (скорости, напряжения) от уставки (заранее заданного отклонения) и управляющей системой формируется сигнал по корректировке с учетом статистической ошибки. Такая система используется при работе насосов, станков.

Использование преобразователя частоты позволяет обеспечить защиту двигателя от перегрузки (холостого хода), возникающих при сбое в работе присоединенных механизмов. При обнаружении перегрузки преобразователь формирует аварийный сигнал и выдает команду «Останов».

Дополнительная функция «Летящий пуск» позволяет осуществлять задержку пуска двигателя в зависимости от условий вращения, при перезапуске двигателя. Особенно это актуально для механизмов, допускающих вращение в одну или другую сторону.

Фильтр ЕМС уменьшает электромагнитные помехи , обеспечивая защиту преобразователя и машин, чувствительных к помехам.

Среди функций защиты системы преобразователь - двигатель перечислим основные, которые осуществляются с помощью частотника:

  • от перегрузки по току;
  • от перегрева;
  • от замыкания выходных фаз;
  • от перенапряжения;
  • от неисправностей в системе питания.

Разные производители оснащают инверторы различными дополнительными функциями по согласованию с заказчиком. Поэтому выбор частотного преобразователя определяется подключаемым оборудованием и задачами, выполнение которых должна обеспечивать система преобразователь - двигатель.

Содержание:

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко . Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее - от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе , в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.