Часы для улицы на светодиодах. Часы со светодиодной индикацией своими руками

Для тех, кто хоть немного разбирается в микроконтроллерах, а также хочет создать несложное и полезное устройство для дома, нет ничего лучше сборки с LED индикаторами. Такая вещь может украсить вашу комнату, а может пойти на уникальный подарок, сделанный своими руками, от чего приобретёт дополнительную ценность. Схема работает как часы и как термометр - режимы переключаются кнопкой или автоматически.

Схема электрическая самодельных часов с термометром

Микроконтроллер PIC18F25K22 берёт на себя всю обработку данных и отсчёт времени, а на долю ULN2803A остаётся согласование его выходов со светодиодным индикатором. Небольшая микросхема DS1302 работает как таймер точных секундных сигналов, частота её стабилизирована стандартным кварцевым резонатором 32768 Гц. Это несколько усложняет конструкцию, зато вам не придётся постоянно подстраивать и корректировать время, которое будет неизбежно запаздывать или спешить, если обойтись случайным ненастроенным кварцевым резонатором на несколько МГц. Подобные часы скорее простая игрушка, чем качественный точный хронометр.

При необходимости, датчики температуры могут быть расположены далеко от основного блока - они соединяются с ним трёхпроводным кабелем. В нашем случае один температурный датчик установлен в блок, а другой расположен снаружи, на кабеле длинной около 50 см. Когда пробовали кабель 5 м, то тоже прекрасно функционировало.

Дисплей часов изготовлен из четырех больших светодиодных цифровых индикаторов. Первоначально они были с общим катодом, но изменены на общий анод в финальной версии. Вы можете ставить любые другие, потом просто подберёте токоограничительные резисторы R1-R7 исходя из требуемой яркости. Можно было разместить его на общей, с электронной частью часов, плате, но так гораздо универсальнее - вдруг вы захотите поставить очень большой LED индикатор, чтоб их было видно на дальнем расстоянии. Пример такой конструкции уличных часов есть тут.

Сама электроника запускается от 5 В, но для яркого свечения светодиодов необходимо использовать 12 В. Из сети, питание поступает через понижающий трансформатор адаптер на стабилизатор 7805 , который образует напряжение строго 5 В. Обратите внимание на небольшую зелёную цилиндрическую батарейку - она служит источником резервного питания, на случай пропадания сети 220 В. Её не обязательно брать на 5 В - достаточно литий-ионного или Ni-MH аккумулятора на 3,6 вольта.

Для корпуса можно задействовать различные материалы - дерево, пластик, металл, либо встроить всю конструкция самодельных часов в готовый промышленный, например от мультиметра, тюнера, радиоприёмника и так далее. Мы сделали из оргстекла, потому что оно легко обрабатывается, позволяет увидеть внутренности, чтоб все видели - эти часы собраны своими руками. И, главное, оно было в наличии:)

Здесь вы сможете найти все необходимые детали предлагаемой конструкции самодельных цифровых часов, в том числе схему, топологию печатной платы, прошивки PIC и


Большие часы на светодиодах

Вступление.

Началось всё так. На даче у меня был старый механический будильник (made in USSR), у которого были проблемы с механикой. Я решил собрать электронные часы. Первая проблема - какой индикатор выбрать. ВЛИ и ГРИ не подходать из-за больших перепадов температур на даче. ЖКИ отпадает по той же причине. Остаётся светодиодный индикатор. Мне надоело разглядывать мелкие цифры на индикаторах, а большие семисегментники редкие и дорогие. Решено было сделать индикатор с высотой цифры 50мм из отдельных зелёных светодиодов.

С индикатором разобрались, но им нужно как-то управлять. При этом часы должны идти даже при длительном отсутсвии питания. Будем делать на МК ATTiny2313 и микросхеме RTC DS1307, которая так же имеет встоенный контроллер питания и позволяет подключить батарейку.

1. Индикатор.

Делать будем, как я уже сказал, из отдельных зелёных светодиодов диаметром 5мм. Вот схема индикатора:

Пояснять тут особо нечего. Резисторы токоограничивающие, диоды нужны для красивого рисования цифр. В каждом прямоугольнике на схеме должен быть один разряд (схема у всех одинаковая), по середине - разделительное двоеточие.

2. Основная часть.

Схема, как я уже говорил, на ATTiny2313 и DS1307. Вот она:

Тут уже пояснения требуются. Справа два сдвоенных семисегментника и два светодиода - внутренняя схема маленького индикатора с ОА. Зачем два индикатора? Ночью большой индикатор ярким свечением может мешать спать (часы будут около кровати), по этому индикацию можно переключить на маленький индикатор переключателем SW1. В положении "Ночн." работает маленький индикатор, в положении "Дневн." - большой. Этот маленький индикатор я достал из стиральной машины, распиновка есть на печетке. Батрейка на 3В, CR2032. Транзисторы Q1-Q4 можно заменить на любые другие маломощные PNP транзисторы, например на КТ315. Q6-Q9 - на PNP током КЭ не менее 1А, Q5 - на NPN с током коллектора не менее 0,4А. Блок питания может быть любой с напряжением 9-20В, полярность не важна, можно даже переменку пускать. Ток не менее 1А. Стабилизатор U4 нужно установить на радиатор. Кстати, чем меньше входное напряжение - тем легче живётся стабилизатору. У меня БП такой:

Теперь переходим к сборке.

3. Сборка.

Идём в магазин и покупаем детали.

Делаем платы и начинаем паять. Запаять 88 светодиодов, столько же резисторов и 44 диода - не легко, но оно того стоит.

Теперь соединяем всё проводами. Я использовать шлейфы и разъёмы PLS/PBS. Вам помогут эти картинки:

Теперь прошиваем МК. Вот фьюзы:

И включаем:

Кнопки и разъёмы я использовал такие:

4. Корпус.

Корпус я сделал из фанеры и бруска 20*40, зашкурил и покрыл лаком. Сзади поставил два крепежа для крепления на стену.

Кстати, для заклеивания окошек для индикаторов я использовал плёнку от зелёных бутылок, выглядит красиво и защищает от засветки солнцем.

Теперь несколько фотографий:

В продаже можно встретить много различных моделей и вариантов электронных цифровых часов, но большинство из них расчитаны на использование внутри помещений, так как цифры маленькие. Однако иногда требуется разместить часы на улице - например на стене дома, или на стадионе, площади, то есть там, где они будут видны на большом расстоянии многими людьми. Для этого и была разработана и успешно собрана данная схема больших светодиодных часов, к которым можно подключить (через внутренние транзисторные ключи) LED индикаторы сколь угодно большого размера. Увеличить принципиальную схему можно кликнув по ней:

Описание работы часов

  1. Часы. В данном режиме идёт стандартный вид отображения времени. Имеется цифровая коррекция точности хода часов.
  2. Термометр. В этом случае устройство производит измерение температуры комнаты либо воздуха на улице, с одного датчика. Диапазон от -55 до +125 градусов.
  3. Предусмотрен контроль источника питания.
  4. Вывод информации на индикатор попеременно - часов и термометра.
  5. Для сохранения настроек и установок при пропадании 220В, применена энергонезависимая память.


Основой устройства является МК ATMega8, который прошивают выставляя фузы согласно таблице:

Работа и управление часами

Включив часы в первый раз, на экране появится рекламная заставка, после чего переключится на отображение времени. Нажимая на кнопку SET_TIME индикатор пойдёт по кругу из основного режима:

  • режим отображения минут и секунд. Если в этом режиме одновременно нажать на кнопку PLUS и MINUS , то произойдет обнуление секунд;
  • установка минут текущего времени;
  • установка часов текущего времени;
  • символ t . Настройка продолжительности отображения часов;
  • символ o . Время отображения символов индикации внешней температуры (out);
  • величина ежесуточной коррекции точности хода часов. Символ c и значение коррекции. Пределы установки от -25 до 25 сек. Выбранная величина будет ежесуточно в 0 часов 0 минут и 30 секунд прибавлена или вычтена из текущего времени. Более подробно читайте в инструкции, что в архиве с файлами прошивки и печатных плат.

Настройка часов

Удерживая кнопки PLUS /MINUS делаем ускоренную установку значений. После изменения каких-либо настроек, через 10 секунд новые значения запишутся в энергонезависимую память и будут считаны оттуда при повторном включении питания. Новые настройки вступают в силу по ходу установки. Микроконтроллер отслеживает наличие основного питания. При его отключении питание прибора осуществляется от внутреннего источника. Схема резервного модуля питания показана ниже:


Для уменьшения тока потребления отключаются индикатор, датчики и кнопки, но сами часы продолжают отсчитывать время. Как только напряжение сети 220В появится - все функции индикации восстанавливаются.


Так как устройство задумывалось как большие светодиодные часы, в них есть два дисплея: большой светодиодный - для улицы, и маленький ЖКИ - для удобства настройки основного дисплея. Большой дисплей расположен на расстоянии несколько метров от блока управления и соединен двумя кабелями по 8 проводов. В управление анодами внешнего индикатора индикаторов, применены транзисторные ключи по приведенной в архиве схеме. Авторы проекта: Александрович & SOIR.

Вспоминаю… Тридцать лет назад шесть индикаторов были маленьким сокровищем. Тот, кто мог тогда сделать с такими индикаторами часы на ТТЛ логике, считался искушенным знатоком своего дела.

Свечение газоразрядных индикаторов казалось более теплым. Через несколько минут мне стало интересно, заработают ли эти старые лампы, и захотелось что-нибудь сделать на них. Теперь-то сделать такие часы очень просто. Достаточно взять микроконтроллер…

Поскольку тогда же я увлекался программированием микроконтроллеров на языках высокого уровня, я решил немного поиграть. Я попытался сконструировать простые часы на цифровых газоразрядных индикаторах.

Цель конструирования

Я решил, что часы должны иметь шесть цифр, а время должно устанавливаться минимальным количеством кнопок. Кроме того, я хотел попытаться использовать несколько наиболее распространенных семейств микроконтроллеров разных производителей. Программу я намеревался писать на языке C.

Газоразрядным индикаторам для работы требуется высокое напряжение. Но иметь дело с опасным сетевым напряжением я не хотел. Часы должны были питаться безвредным напряжением 12 В.

Поскольку основной моей целью была игра, вы не найдете здесь описания механической конструкции и чертежей корпуса. При желании, вы сами сможете изменить часы в соответствии со своими вкусами и опытом.

Вот что у меня получилось:

  • Индикация времени: ЧЧ ММ СС
  • Индикация будильника: ЧЧ ММ --
  • Режим отображения времени: 24 часа
  • Точность ±1 секунда в день (зависит от кварцевого резонатора)
  • Напряжении питания: 12 В
  • Потребляемый ток: 100 мА

Схема часов

Для устройства с шестиразрядным цифровым дисплеем естественным решением был мультиплексный режим.

Назначение большинства элементов блок-схемы (Рисунок 1) понятно без комментариев. В определенной степени нестандартной задачей было создание преобразователя уровней ТТЛ в высоковольтные сигналы управления индикаторами. Драйверы анодов сделаны на высоковольтных NPN и PNP транзисторах. Схема позаимствована у Стефана Кнеллера (http://www.stefankneller.de).

ТТЛ микросхема 74141 содержит двоично-десятичный дешифратор и высоковольтный драйвер для каждой цифры. Возможно, заказать одну микросхему будет сложно. (Хотя я не знаю, производятся ли они вообще кем-либо сейчас). Но уж если вы нашли газоразрядные индикаторы, 74141 могут оказаться где-то рядом:-). Во времена ТТЛ логики альтернативы микросхеме 74141 практически не было. Так что попробуйте найти где-нибудь одну штуку .

Индикаторам требуется напряжение порядка 170 В. Разрабатывать специальную схему для преобразователя напряжения не имеет смысла, поскольку существует огромное количество микросхем повышающих преобразователей. Я выбрал недорогую и широко доступную микросхему MC34063. Схема преобразователя почти полностью скопирована с технического описания MC34063. К ней лишь добавлен силовой ключ T13. Внутренний ключ для такого высокого напряжения не подходит. В качестве индуктивности для преобразователя я использовал дроссель. Он показан на Рисунке 2; его диаметр 8 мм, а длина 10 мм.

КПД преобразователя вполне хороший, а выходное напряжение относительно безопасно. При токе нагрузки 5 мА выходное напряжение падает до 60 В. R32 выполняет функцию токоизмерительного резистора.

Для питания логики используется линейный регулятор U4. На схеме и на плате есть место для резервного аккумулятора. (3.6 В - NiMH или NiCd). D7 и D8 - это диоды Шоттки, а резистор R37 предназначен для ограничения зарядного тока в соответствии с характеристиками аккумулятора. Если вы собираете часы просто для развлечения, аккумулятор, D7, D8 и R37 вам не потребуются.

Окончательная схема показана на Рисунке 3.

Рисунок 3.

Кнопки установки времени подключены через диоды. Состояние кнопок проверяется установкой логической «1» на соответствующем выходе. В качестве бонусной функции к выходу микроконтроллера подключен пьезоизлучатель. Чтобы заткнуть этот противный писк, используйте маленький выключатель. Для этого вполне подошел бы и молоток, но это уж на крайний случай:-).

Перечень компонентов схемы, рисунок печатной платы и схему размещения элементов можно найти в разделе «Загрузки».

Процессор

Управлять эти несложным устройством может практически любой микроконтроллер с достаточным количеством выводов, минимально необходимое количество которых указано в Таблице 1.

Таблица 1.
Функция Выводы
Питание 2
Кварцевый резонатор 2
Управление анодами 6
Драйвер 74141 4
Вход кнопок 1
Пьезоизлучатель 1
Всего 16

Каждый изготовитель разрабатывает собственные семейства и типы микроконтроллеров. Расположение выводов индивидуально для каждого типа. Я постарался сконструировать универсальную плату для нескольких типов микроконтроллеров. На плате установлена 20-контактная панелька. С помощью нескольких проволочных перемычек вы можете адаптировать ее для разных микроконтроллеров.

Ниже перечислены микроконтроллеры, проверенные в этой схеме. Вы можете поэкспериментировать с другими типами. Преимуществом схемы является возможность использования разных процессоров. Радиолюбители, как правило, используют одно семейство микроконтроллеров и имеют соответствующий программатор и программный инструментарий. С микроконтроллерами других изготовителей могут возникнуть проблемы, поэтому я дал вам возможность выбора процессора из любимого семейства.

Вся специфика включения различных микроконтроллеров отражена в Таблицах 2…5 и на Рисунках 4…7.

Таблица 2.
Freescale
Тип MC68HC908QY1
Кварцевый резонатор 12 МГц
Конденсаторы C1, C2 22 пФ
Программа freescale.zip
(см. раздел «Загрузки»)
Установки

Примечание: Параллельно кварцевому резонатору включен резистор 10 МОм.

Таблица 3.
Microchip
Тип PIC16F628A
Кварцевый резонатор 32.768 кГц
Конденсаторы C1, C2 22 пФ
Программа pic628.zip
(см. раздел «Загрузки»)
Установки Внутр. генератор 4 МГц - I/O RA6,
MCLR OFF, WDT OFF, LVP OFF,
BROUT OFF, CP OFF, PWRUP OFF

Примечание: Микросхему необходимо развернуть в панельке на 180°.

Таблица 4.
Atmel
Тип ATtiny2313
Кварцевый резонатор 12 МГц
Конденсаторы C1, C2 15 пФ
Программа attiny.zip
(см. раздел «Загрузки»)
Установки Кв. генератор 8 МГц, RESET ON

Примечание: Добавьте SMD компоненты R и C к выводу RESET (10 кОм и 100 нФ).

Таблица 5.
Atmel
Тип AT89C2051
Кварцевый резонатор 12 MHz
Конденсаторы C1, C2 22 пФ
Программа at2051.zip
(см. раздел «Загрузки»)
Установки --

Примечание: Добавьте SMD компоненты R и C к выводу RESET (10 кОм и 100 нФ); выводы, отмеченные звездочками, соедините с шиной питания +Ub через SMD резисторы 3.3 кОм.

Сравнив коды для разных микроконтроллеров, вы увидите, что они очень похожи. Различия имеются в доступе к портам и определению функций прерываний, а также в том, что зависит от компонентов обвязки.

Исходный код состоит из двух секций. Функция main() настраивает порты и запускает таймер, формирующий сигналы прерывания. После этого программа сканирует нажатые кнопки и устанавливает соответствующие значения времени и будильника. Там же в главном цикле текущее время сравнивается с будильником и включается пьезоизлучатель.

Вторая часть является подпрограммой обработки прерываний от таймера. Подпрограмма, которая вызывается через каждую миллисекунду (в зависимости от возможностей таймера), инкрементирует переменные времени и управляет цифрами дисплея. Кроме того, проверяется состояние кнопок.

Запуск схемы

Монтаж компонентов и настройку начинайте с источника питания. Запаяйте регулятор U4 и окружавшие его компоненты. Проверьте наличие напряжения 5 В для микросхемы U2 и 4.6 В для U1. Следующим шагом соберите высоковольтный преобразователь. Подстроечным резистором R36 установите напряжение 170 В. Если диапазона подстройки окажется недостаточно, немного измените сопротивление резистора R33. Теперь установите микросхему U2, транзисторы и резисторы схемы драйверов анодов и цифр. Соедините входы U2 с шиной GND и последовательно подключайте по одному из резисторов R25 - R30 к шине питания +Ub. В соответствующих позициях должны зажигаться цифры индикаторов. На последнем этапе проверки схемы соедините с землей вывод 19 микросхемы U1 - должен запищать пьезоизлучатель.

Исходные коды и откомпилированные программы вы найдете в соответствующем ZIP файле в разделе «Загрузки». После зашивки программы в микроконтроллер тщательно проверьте каждый вывод в позиции U1 и установите необходимые перемычки из проволоки и припоя. Сверяйтесь с изображениями микроконтроллеров, приведенными выше. Если микроконтроллер запрограммирован и подключен правильно, должен заработать его генератор. Вы можете установить время и будильник. Внимание! На плате есть место для еще одной кнопки - это запасная кнопка для будущих расширений:-).

Проверьте точность частоты генератора. Если она не укладывается в ожидаемый диапазон, слегка измените номиналы конденсаторов C1 и C2. (Припаяйте параллельно конденсаторы небольшой емкости или замените их другими). Точность хода часов должна улучшиться.

Заключение

Небольшие 8-битные процессоры вполне приспособлены для языков высокого уровня. Изначально язык C не предназначался для небольших микроконтроллеров, однако для простых приложений вы прекрасно можете использовать его. Ассемблер лучше подойдет для сложных задач, требующих соблюдения критических времен или максимальной загрузки процессора. Для большинства радиолюбителей подойдут как бесплатные, так и условно-бесплатные ограниченные версии компилятора C.

Программирование на C одинаково для всех микроконтроллеров. Вы должны знать функции аппаратных средств (регистров и периферии) выбранного типа микроконтроллера. Будьте осторожны с битовыми операциями - язык C к манипуляциям с отдельными битами не приспособлен, что можно увидеть на примере исходного когда для ATtiny.

Закончили? Тогда настройтесь на созерцание вакуумных ламп и смотрите…

…возвращаются старые времена … :-)

Примечание редакции

Полным аналогом SN74141 является микросхема К155ИД1, выпускавшаяся минским ПО «Интеграл».
Микросхему без труда можно найти в сети Интернет.

Еще в юности мне хотелось собрать электронные часы. Мне казалось, что собрать часы, это было вершиной мастерства. В итоге я собрал часы с календарем и будильником на серии К176. Сейчас они уже морально устарели и мне захотелось собрать что-нибудь более современное. После долгих поисков по интернету (никогда не думал, что мне так трудно угодить;)) понравилась эта схема. Отличие от приведенной схемы в том, что не используется редкая микросхема ТРIC6В595 , а ее составной и более мощный аналог на микросхемах 74HC595 и ULN2003 . Исправления в схеме приведены ниже.



Схема электронных LED часов бегущая строка

Автор схемы уважаемый ОLED , прошивка тоже его. Часы индицируют текущее время, год, месяц и день недели а также температуру на улице и внутри дома бегущей строкой. Имеют 9 независимых будильников. Имеется возможность подстройки (коррекции) хода +- минуту в сутки, выбор скорости бега строки, смена яркости свечения светодиодов, в зависимости от времени суток.

При пропадании электричества, часы питаются либо от ионистора (емкости 1 Фарад хватает на 4 суток хода), либо от батарейки. Кому что по душе, плата рассчитана на установку того и другого. Имеют очень удобное и понятное меню управления (все управления производится всего двумя кнопками). В часах использованы следующие детали (все детали в СМД корпусах):

Микроконтролер АтМЕГА 16А

-
Сдвиговый регистр 74HC595

-
Микросхема ULN2803 (восемь ключей Дарлингтона)

-
Датчики температуры DS18B20 (устанавливаются по желанию)

-
25 резисторов на 75 Ом (типономинала 0805)

-
3 резистора 4.7кОм

-
2 резистора 1.5 кОм

-
1 резистор 3.6 кОм

-
6 СМД конденсаторов емкостью 0.1 мкф

-
1 конденсатор на 220 мкф

-
Часовой кварц на частоту 32768 герц.

-
Матрицы3 штуки марки 23088-АSR 60х60 мм - общий катод

-
Бузер любой на 5 вольт.



Плата печатная электронных LED часов бегущая строка

Для жителей Украины подскажу, матрицы есть в магазине Луганского радиомаркета. Преимущества часов перед другими аналогичными устройствами это минимум деталей и высокая повторяемость. Светодиодные часы начинают работать сразу после прошивки, если конечно отсутствуют косяки в монтаже. Прошивается микроконтроллер внутрисхемно, для этого на плате предусмотрены специальные выводы. Я прошивал программой Понипрог. Скрины фьюзов для программ понипрог и AVR приведены ниже, также выложены файлы прошивки на украинском и русском языке, кому что роднее.


Если Вам не нужны датчики температуры, то их можно не устанавливать. Часы автоматически распознают подключение датчиков, и если один или оба датчика отсутствуют, то устройство просто перестаёт отображать температуру (если отсутствует один датчик, то не отображается температура на улице, если оба - то не отображается температура вообще).

Самодельный корпус для LED часов

Для демонстрации работы часов приведено видео, оно не высокого качества, поскольку снималось фотоаппаратом, но уж какое есть.

Видеоролик работы часов

Собрано уже четыре экземпляра данных часов, дарю каждый на день рождения родственникам. И всем они очень понравились. Если вам тоже захотелось собрать эти часы и у вас возникли вопросы, милости прошу на наш форум. С уважением, Войтович Сергей (Сергей-7 8 ).

Обсудить статью ЧАСЫ ЭЛЕКТРОННЫЕ СВЕТОДИОДНЫЕ