Чем отличаются типы экранов IPS и TFT. Какой тип экрана выбрать: IPS или TFT? Дисплей IPS или TFT лучше

Статья:

Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

Предисловие

В этой статье мы разберем устройство дисплеев современных мобильных телефонов, смартфонов и планшетов. Экраны крупных устройств (мониторов, телевизоров и т.п.), за исключением небольших нюансов, устроены аналогично.

Разборку будем проводить не только теоретически, но и практически, со вскрытием дисплея "жертвенного" телефона.

Рассматривать, как устроен современный дисплей, мы будем на примере наиболее сложного их них - жидкокристаллического (LCD - liquid crystal display ). Иногда их называют TFT LCD , где сокращение TFT расшифровывается "thin-film transistor" - тонкопленочный транзистор; поскольку управление жидкими кристаллами осуществляется благодаря таким транзисторам, нанесенным на подложку вместе с жидкими кристаллами.

В качестве "жертвенного" телефона, дисплей которого будет вскрыт, выступит дешевенький Nokia 105.

Основные составные части дисплея

Жидкокристаллические дисплеи (TFT LCD , и их модификации - TN, IPS, IGZO и т.д.) состоят укрупненно из трех составных частей: сенсорной поверхности, устройства формирования изображения (матрица) и источника света (лампы подсветки).Между сенсорной поверхностью и матрицей расположен еще один слой, пассивный. Он представляет собой прозрачный оптический клей или просто воздушный промежуток. Существование этого слоя связано с тем, что в ЖК-дисплеях экран и сенсорная поверхность представляют собой совершенно разные устройства, совмещенные чисто механически.

Каждая из "активных" составных частей имеет достаточно сложную структуру.

Начнем с сенсорной поверхности (тачскрин, touchscreen). Она располагается самым верхним слоем в дисплее (если она есть; а в кнопочных телефонах, например, ее нет).
Её наиболее распространенный сейчас тип - ёмкостная. Принцип действия такого тачскрина основан на изменении электрической емкости между вертикальными и горизонтальными проводниками при прикосновении пальца пользователя.
Соответственно, чтобы эти проводники не мешали рассматривать изображение, они делаются прозрачными из специальных материалов (обычно для этого используется оксид индия-олова).

Существуют также и сенсорные поверхности, реагирующие на силу нажатия (т.н. резистивные), но они уже "сходят с арены".
В последнее время появились и комбинированные сенсорные поверхности, реагирующие одновременно и на емкость пальца, и на силу нажатия (3D-touch -дисплеи). Их основу составляет емкостной сенсор, дополненный датчиком силы нажатия на экран.

Тачскрин может быть отделен от экрана воздушным промежутком, а может быть и склеен с ним (так называемое "решение с одним стеклом", OGS - one glass solution).
Такой вариант (OGS) имеет значительное преимущество по качеству, поскольку уменьшает уровень отражения в дисплее от внешних источников света. Это достигается за счет уменьшения количества отражающих поверхностей.
В "обычном" дисплее (с воздушным промежутком) таких поверхностей - три. Это - границы переходов между средами с разным коэффициентом преломления света: "воздух-стекло", затем - "стекло-воздух", и, наконец, снова "воздух-стекло". Наиболее сильные отражения - от первой и последней границ.

В варианте же с OGS отражающая поверхность - только одна (внешняя), "воздух-стекло".

Хотя собственно для пользователя дисплей с OGS очень удобен и имеет хорошие характеристики; есть у него и недостаток, который "всплывает", если дисплей разбить. Если в "обычном" дисплее (без OGS) при ударе разбивается только сам тачскрин (чувствительная поверхность), то при ударе дисплея с OGS может разбиться и весь дисплей целиком. Но происходит это не всегда, поэтому утверждения некоторых порталов о том, что дисплеи с OGS абсолютно не ремонтируемые - не верно. Вероятность того, что разбилась только внешняя поверхность - довольно велика, выше 50%. Но ремонт с отделением слоев и приклейкой нового тачскрина возможен только в сервис-центре; отремонтировать своими руками крайне проблематично.

Экран

Теперь переходим к следующей части - собственно экрану.

Он состоит из матрицы с сопутствующими слоями и лампы подсветки (тоже многослойной!).

Задача матрицы и относящихся к ней слоев - изменить количество проходящего через каждый пиксель света от лампы подсветки, формируя тем самым изображение; то есть в данном случае регулируется прозрачность пикселей.

Немного детальнее об этом процессе.

Регулировка "прозрачности" осуществляется за счет изменения направления поляризации света при прохождении через жидкие кристаллы в пикселе под воздействием на них электрического поля (или наоборот, при отсутствии воздействия). При этом само по себе изменение поляризации еще не меняет яркости проходящего света.

Изменение яркости происходит при прохождении поляризованного света через следующий слой - поляризационную пленку с "фиксированным" направлением поляризации.

Схематично структура и работа матрицы в двух состояниях ("есть свет" и "нет света") изображена на следующем рисунке:


(использовано изображение из нидерландского раздела Википедии с переводом на русский язык)

Поворот поляризации света происходит в слое жидких кристаллов в зависимости от приложенного напряжения.
Чем больше совпадут направления поляризации в пикселе (на выходе из жидких кристаллов) и в пленке с фиксированной поляризацией, тем больше в итоге проходит света через всю систему.

Если направления поляризации получатся перпендикулярными, то свет теоретически вообще проходить не должен - должен быть черный экран.

На практике такое "идеальное" расположение векторов поляризации создать невозможно; причем как из-за "неидеальности" жидких кристаллов, так и не идеальной геометрии сборки дисплея. Поэтому и абсолютно-черного изображения на TFT экране не может быть. На лучших LCD экранах контрастность белое/черное может быть свыше 1000; на средних 500...1000, на остальных - ниже 500.

Только что была описана работа матрицы, изготовленной по технологии LCD TN+film. Жидкокристаллические матрицы по другим технологиям имеют схожие принципы работы, но другую техническую реализацию. Наилучшие результаты по цветопередаче получаются по технологиям IPS, IGZO и *VA (MVA, PVA и т.п.).

Подсветка

Теперь переходим к самому "дну" дисплея - лампе подсветки. Хотя современная подсветка собственно ламп и не содержит.

Несмотря на простое название, лампа подсветки имеет сложную многослойную структуру.

Связано это с тем, что лампа подсветки должна быть плоским источником света с равномерной яркостью всей поверхности, а таких источников света в природе крайне мало. Да и те, что есть, не очень подходят для этих целей из-за низкого КПД, "плохого" спектра излучения, или же требуют "неподходящего" типа и величины напряжения свечения (например, электролюминесцентные поверхности, см. Википедию ).

В связи с этим сейчас наиболее распространены не чисто "плоские" источники света, а "точечная" светодиодная подсветка с применением дополнительных рассеивающих и отражающих слоев.

Рассмотрим такой тип подсветки, проведя "вскрытие" дисплея телефона Nokia 105.

Разобрав систему подсветки дисплея до её среднего слоя, мы увидим в левом нижнем углу единственный светодиод белого свечения, который направляет свое излучение внутрь почти прозрачной пластины через плоскую грань на внутреннем "срезе" угла:

Пояснения к снимку. В центре кадра - разделенный по слоям дисплей мобильного телефона. В середине на переднем плане снизу - покрытая трещинами матрица (повреждена при разборке). На переднем плане вверху - срединная часть системы подсветки (остальные слои временно удалены для обеспечения видимости излучающего белого светодиода и полупрозрачной "световодной" пластины).
Сзади дисплея видна материнская плата телефона (зеленого цвета) и клавиатура (снизу с круглыми отверстиями для передачи нажатия от кнопок).

Эта полупрозрачная пластина является одновременно и световодом (за счет внутренних переотражений), и первым рассеивающим элементом (за счет "пупырышков", создающих препятствия для прохождения света). В увеличенном виде они выглядят так:


В нижней части изображения левее середины виден яркий излучающий белый светодиод подсветки.

Форма белого светодиода подсветки лучше различима на снимке с пониженной яркостью его свечения:

Снизу и сверху этой пластины подкладывают обыкновенные белые матовые пластиковые листы, равномерно распределяющие световой поток по площади:

Его условно можно назвать "лист с полупрозрачным зеркалом и двойным лучепреломлением". Помните, на уроках физики нам рассказывали про исландский шпат, при прохождении через который свет раздваивался? Вот это похоже на него, только еще и немного с зеркальными свойствами.

Вот так выглядят обычные наручные часы, если часть их прикрыть этим листом:

Вероятное назначение этого листа - предварительная фильтрация света по поляризации (сохранить нужную, отбросить ненужную). Но не исключено, что и в плане направления светового потока в сторону матрицы эта пленка тоже имеет какую-то роль.

Вот так устроена "простенькая" лампа подсветки в жидкокристаллических дисплеях и мониторах.

Что касается "больших" экранов, то их устройство - аналогично, но светодиодов в устройстве подсветки там больше.

В более старых жидкокристаллических мониторах вместо светодиодной подсветки использовали газосветные лампы с холодным катодом (CCFL, Cold Cathode Fluorescent Lamp) .

Структура дисплеев AMOLED

Теперь - несколько слов об устройстве нового и прогрессивного типа дисплеев - AMOLED (Active Matrix Organic Light-Emitting Diode ).

Устройство таких дисплеев значительно проще, так как там нет лампы подсветки.

Эти дисплеи образованы массивом светодиодов и светится там каждый пиксель в отдельности. Достоинствами дисплеев AMOLED являются "бесконечная" контрастность, отличные углы обзора и высокая энергоэффективность; а недостатками - уменьшенный срок "жизни" синих пикселей и технологические сложности изготовления больших экранов.

Также надо отметить, что, несмотря на более простую структуру, стоимость производства дисплеев AMOLED пока что выше, чем дисплеев TFT LCD.

Из серии «Взгляд изнутри» речь зашла о повседневных вещах, но, не смотря на обилие материала, полученного в этом направлении в течение прошедшего месяца, всё-таки давайте вернёмся к тематике, связанной с IT.

Специально ко Дню Защитника Отечества на препарационный стол легли LCD и E-Ink дисплеи, которые, так или иначе, достались мне в несколько побитом жизнью виде.

Как Антон кидал телефон об стену, а также о результатах скрупулёзного разбора дисплеев читайте под катом.

Предисловие

Жил-был на свете Антон Городецкий.
Бросила жена, он грустил не по-детски…

Так начинается известная песня группы Уматурман. Так же начинается и история с исследованием дисплеев. После первой публикации на Хабре пришёл ко мне мой друг-аспирант ФНМ МГУ и говорит: «Я тут свой мобильник разбил, не хочешь ли ты его распилить?» Я удивился, потому что этот человек всегда носил с собой китаефон, который я считал практически не убиваемым. Придя однажды домой, Антон по привычке кинул телефон в шкаф, но, видимо, что-то не рассчитав попал аккурат дисплеем в ребро полки.

Осознавая свои смехотворные потери от утраты мобильного и ввиду общего плохого настроения в тот день, он поступил, как истинный джентльмен, швыряя вновь и вновь бездыханное тело телефона о бетонную стену. Когда же останки дошли до меня, то половина китаефона просто отсутствовала, дисплей был покрыт мелкой паутинкой трещин.
Пришлось отложить его до лучших времён (как я тогда полагал, пока кто-нибудь таким же образом не поступит с iPhone или другим сенсорным смартфоном) и начать заниматься HDD и CD, потом лампочками, флешками и т.д.

Через некоторое время уже мой сосед приносит мне треснувший E-Ink дисплей. Его друг разбил тонкое стекло в небезызвестной читалке с порядковым номером 601 во время игры в страйкбол, кажется, и отдал читалку практически даром для ремонта и восстановления.

Вот это уже было интереснее, две технологии можно сравнить между собой, попытаться разглядеть RGB-субпиксели и микрокапсулы, в которых плавают заряженные частицы. Но я надеялся на получение смартфона с ёмкостным сенсором, чтобы сравнить заодно его и резистивный сенсор китаефона.

И вот Василий (научный коллега по одной из лабораторий факультета), приехав к нам на ХимФак из Черноголовки и увидев, чем я собственно занимаюсь с электронным микроскопом, сказал, что готов пожертвовать телефон известного корейского производителя с несколько побитым дисплеем для разборки и распила с пометкой «ради науки ничего не жалко».

Несмотря на все заверения, что сенсор ёмкостной, он оказался резистивным, пусть и более продвинутой конструкции, нежели сенсорная панель китаефона. Из этого телефона была добыта важная деталь, которая ждёт своего часа распила – матрица фото/видео камеры…

Часть теоретическая

Как устроен LCD дисплей?
Мы все так давно пользуемся плоскими телевизорами, мониторами, телефонами, смартфонами, что уже и забыли, что когда-то хороший монитор весил килограмм 10-15 (у нас один такой мастодонт ещё стоит и, главное, исправно работает!).

Всё это стало возможным, благодаря открытиям вековой давности (жидкие кристаллы открыты в 1888 году) и развитию технологий в последние 30-40 лет (1968 год – устройство для отображения информации, использовавшее ЖК, 1970-е – общедоступность жидких кристаллов). Многое о жидких кристаллах и ЖК-мониторах можно подчерпнуть на Wiki.

Итак, практически любой ЖК-монитор состоит из следующих основных частей: активной матрицы, представляющей собой набор транзисторов, с помощью которых и формируется изображение, слоя жидких кристаллов со светофильтрами, которые либо пропускают свет, либо нет, и системы подсветки, которую на сегодняшний день стараются полностью перевести на светодиоды. Хотя на моём «стареньком» Asus G2S дисплей великолепного качества подсвечивается именно люминесцентными лампами.

Как это всё работает? Свет, поступая от источника (LED или лампы) через специальную прозрачную пластину-волновод, рассеивается таким образом, чтобы вся матрица имела равную освещённость по всей свой площади. Далее фотоны проходят поляризационный фильтр, который пропускает только волны с заданной поляризацией . Затем проникнув через стеклянную подложку, на которой находится активная матрица из тонкоплёночных транзисторов, свет попадает на молекулу жидкого кристалла.

Эта молекула получает «команду» от нижележащего транзистора, на какой угол повернуть поляризацию световой волны, чтобы она, пройдя сквозь ещё один поляризационный фильтр, задала интенсивность свечения отдельного субпиксела. А за окраску субпиксела отвечает слой светофильтров (красных, зелёных или синих). Смешиваясь, волны от трёх невидимых глазу человека субпикселей формируют пиксел изображения заданного цвета и интенсивности.

а) Схематическое устройство LCD дисплея, б) устройство жидкокристаллической плёнки в деталях.

Очень наглядно, как мне кажется, это продемонстрировано в ролике компании Sharp :

Помимо хорошо зарекомендовавшей себя технологии LCD + TFT (thin-film transistors – тонкоплёночные транзисторы) существует активно продвигаемая технология органических светодиодов OLED + TFT, то есть AMOLED – active matrix OLED. Основное отличие последней заключается в том, что роль поляризатора, слоя ЖК и светофильтров играют органические светодиоды трёх цветов.

По сути, это молекулы, способные при протекании электрического тока испускать свет, а в зависимости от количества протекшего тока менять интенсивность окраски, подобно тому, как это происходит в обычных LED. Убрав поляризаторы и ЖК из панели, мы потенциально можем сделать её более тонкой, а самое главное – гибкой!

Какие сенсорные панели бывают?
Так как сенсоры на данный момент больше применяют с LCD и OLED дисплеями, то думаю, будет разумно сразу про них и рассказать.

Очень подробное описание танчскринов или сенсорных панелей дано (источник когда-то жил , но почему-то исчез), поэтому я не буду описывать все типы сенсорных панелей, остановлюсь лишь на двух основных: резистивном и ёмкостном.

Начнём с резистивного сенсора. Состоит он из 4 основных компонент: стеклянной панели (1), как носителя всей сенсорной панели, двух прозрачных полимерных мембран с резистивным покрытием (2, 4), слоя микроизоляторов (3), разделяющих эти мембраны, и 4, 5 или 8 проводков, которые и отвечают за «считывание» касания.


Схема устройства резистивного сенсора

Когда мы нажимаем на такой сенсор с определённой силой, то происходит соприкосновение мембран, электрическая цепь замыкается, как показано на рисунке ниже, измеряется сопротивление, которое впоследствии пересчитывается в координаты:


Принцип расчёта координат для 4-х проводного резистивного дисплея ()

Всё предельно просто.

Важно помнить две вещи: а) резистивные сенсоры на многих китайских телефонах не отличаются высоким качеством, это может быть связано как раз с неравномерностью расстояния между мембранами или некачественными микроизоляторами, то есть «мозг» телефона не может адекватно пересчитать измеренные сопротивления в координаты; б) такой сенсор требует именно нажатия, продавливания одной мембраны до другой.

Ёмкостные сенсоры несколько отличаются от резистивных. Стоит сразу оговориться, что речь будет идти лишь о проекционно-ёмкостных сенсорах, которые сейчас применяется в iPhone и прочих портативных устройствах.

Принцип работы такого тачскрина довольно прост. На внутренней стороне экрана наносится сетка электродов, а внешняя покрывается, например, ITO – сложным оксидом индия-олова. Когда мы касаемся стекла, наш палец образует с таким электродом маленький конденсатор, а обрабатывающая электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).

Соответственно, ёмкостной сенсор реагирует только на плотное прикосновение и только проводящими предметами, то есть от касания гвоздём такой экран работать будет через раз, равно как и от руки, вымоченной в ацетоне или обезвоженной. Пожалуй, основным преимуществом данного тачскрина перед резистивным является возможность сделать достаточно прочную основу – особо прочное стекло, как, например, Gorilla Glass.


Схема работы поверхностно-ёмкостного сенсора()

Как устроен E-Ink дисплей?
Пожалуй, E-Ink по сравнению с LCD устроен гораздо проще. Вновь мы имеем дело с активной матрицей, ответственной за формирование изображения, однако ЖК-кристаллов и ламп подсветки здесь нет и в помине, вместо них – колбочки с двумя типами частиц: отрицательно заряженными чёрными и положительно заряженными белыми. Изображение формируется подачей определённой разности потенциалов и перераспределения частиц внутри таких микроколбочек, на рисунке ниже это наглядно продемонстрировано:


Сверху схема работы E-Ink дисплея, снизу реальные микрофотографии такого работающего дисплея ()

Если кому-то этого недостаточно, то принцип работы электронной бумаги продемонстрирован в этом видео:

Помимо технологии E-Ink существует технологи SiPix, в которой есть только один вид частиц, а сама «заливка» чёрная:


Схема работы SiPix дисплея ()

Тем же, кто серьёзно хочет ознакомиться с «магнитной» электронной бумагой, прошу сюда , в Персте когда-то была отличная статья.

Часть практическая

Китаефон vs корейский смартфон (резистивный сенсор)
После «аккуратной» отвёрточной разборки оставшейся от китаефона платы и дисплея, я с превеликим удивлением обнаружил упоминание одного известного корейского производителя на материнской плате телефона:


Самсунг и китаефон едины!

Экран разбирал бережно и аккуратно – так, что все поляризаторы остались целыми, поэтому просто не мог не поиграться с ними и с работающим большим братом препарируемого объекта и вспомнить практикум по оптике:


Так работают 2 поляризационных фильтра : в одном положении световой поток практически не проходит через них, при повороте на 90 градусов – полностью проходит

Обратите внимание, что вся подсветка зиждется всего-навсего на четырёх крохотных светодиодах (я думаю, их суммарная мощность не более 1 Вт).

Затем долго искал сенсор, искренне полагая, что это будет довольно толстая панелька. Оказалось совершенно наоборот. Как в китайском, так и в корейском телефоне сенсор представляет из себя несколько листов пластика, которые очень качественно и плотно приклеены к стеклу внешней панели:


Слева сенсор китаефона, справа – корейского телефона

Резистивный сенсор китайского телефона выполнен по схеме «чем проще, тем лучше», в отличие от своего более дорогого собрата из Южной Кореи. Если я не прав, то поправьте меня в комментариях, но слева на картинке – типичный 4-х контактный, а справа – 8-ми контактный сенсор.

LCD-дисплей китаефона
Так как дисплей китайского телефона всё равно был разбит, а корейского – всего лишь незначительно повреждён, то на примере первого я и постараюсь рассказать о LCD. Но пока не будем его ломать окончательно, а посмотрим под оптическим микроскопом:


Оптическая микрофотография горизонтальных линий LCD-дисплея китайского телефона. Левой верхней фотографии присущ некоторый обман нашего зрения из-за «неправильных» цветов: белая тонкая полоска и есть контакт.

Один провод питает сразу две линии пикселов, а развязка между ними устроена с помощью совершенно необычного «электрического жука» (правая нижняя фотография). За всей это электрической схемой находятся дорожки-светофильтры, выкрашенные в соответствующие цвета: красный (R), зелёный (G) и синий (B).

С противоположного конца матрицы по отношению к месту крепления шлейфа можно найти аналогичную цветовую разбивку, номера дорожек и всё те же переключатели (если бы кто-нибудь просветил в комментариях, как это работает, то было бы очень здорово!):


Номера-номера-номера…

Так вживую выглядит работающий LCD дисплей под микроскопом:

Вот и всё, теперь этой красоты мы уже не увидим, я раскрошил в буквальном смысле этого слова, а немножко помучавшись одну такую кроху «расщепил» на два отдельных кусочка стекла, из которых и состоит основная часть дисплея…

Теперь можно посмотреть на отдельные дорожки светофильтров. О тёмных «пятнах» на них я расскажу чуть позже:


Оптическая микрофотография светофильтров с загадочными пятнами…

А теперь небольшой методический аспект, касающийся электронной микроскопии. Те же самые цветные полосы, но уже под пучком электронного микроскопа: цвет исчез! Как я и говорил ранее (например, в самой первой статье) электронному пучку совершенно «чёрно-бело» взаимодействует ли он с цветным веществом или нет.


Вроде бы те же полоски, но уже без цвета…

Заглянем и на обратную сторону. На ней расположены транзисторы:


В оптический микроскоп – в цвете…


И электронный микроскоп – черно-белое изображение!

В оптический микроскоп это видно чуть хуже, но СЭМ позволяет разглядеть окантовку каждого субпикселя – это довольно важно для нижеследующего вывода.

Итак, что это за странные тёмные области?! Долго думал, ломал себе голову, прочитал много источников (пожалуй, самым доступным оказалась Wiki) и, кстати, по этой причине задержал выпуск статьи в четверг 23 февраля. И вот к какому выводу я пришёл (возможно, я не прав – поправьте!).

В VA- или MVA-технологии – одна из самых простых, и не думаю, что китайцы придумали что-то новое: каждый субпиксел должен быть чёрный. То есть через него не проходит свет ( приведён пример работающего и неработающего дисплея), принимая во внимание то, что в «обычном» состоянии (без приложения внешнего воздействия) жидкий кристалл разориентирован и не даёт «нужной» поляризации, то логично предположить, что каждый отдельный субпиксел имеет свою плёнку с ЖК.

Таким образом, вся панель собрана из единичных микро-ЖК-дисплеев. Сюда органично вписывается и замечание об окантовке каждого отдельного субпиксела. Для меня это стало, своего рода, неожиданным открытием прямо по ходу подготовки статьи!

Дисплей корейского телефона ломать я пожалел: надо ведь что-то показывать детям и тем, кто приходит к нам на факультет на экскурсию. Не думаю, что можно было бы увидеть ещё что-то интересное.

Далее, баловства ради приведу пример «организации» пикселов у двух ведущих производителей коммуникаторов: HTC и Apple. iPhone 3 был пожертвован на безболезненную операцию одним добрым человеком, а HTC Desire HD собственно мой:


Микрофотографии дисплея HTC Desire HD

Небольшое замечание по поводу дисплея HTC: специально не искал, но не может ли быть вот эта полоса посреди верхних двух микрофотографий тем частью того самого ёмкостного сенсора?!


Микрофотографии дисплея iPhone 3

Если мне не изменяет память, то у HTC дисплей – superLCD, а у iPhone 3 – обычный LCD. Так называемый Retina Display, то есть LCD, у которого оба контакта для переключения жидкого кристалла лежат в одной плоскости, In-Plane Switching – IPS, устанавливается уже в iPhone 4.

Надеюсь, что скоро на тему сравнения различных технологий дисплеев выйдет статья при поддержке 3DNews. А пока хочу просто отметить тот факт, что дисплей HTC действительно необычен: контакты на отдельные субпикселы заведены нестандартным образом – как-то сверху, в отличие от iPhone 3.

И напоследок в этом разделе добавлю, что размеры одного субпиксела у китаефона – 50 на 200 микрометров, HTC – 25 на 100 микрометров, а iPhone – 15-20 на 70 микрометров.

E-Ink известного украинского производителя
Начнём, пожалуй, с банальных вещей – «пикселов», а точнее ячеек, которые ответственны за формирование изображения:


Оптическая микрофотография активной матрицы E-Ink дисплея

Размер такой ячейки около 125 микрометров. Так как смотрим мы на матрицу через стекло, на которое она нанесена, то прошу обратить внимание на жёлтый слой на «заднем» плане – это золотое напыление, от которого нам впоследствии предстоит избавиться.


Вперёд на амбразуру!


Сравнение горизонтальных (слева) и вертикальных (справа) «вводов»

Кроме всего прочего, на стеклянной подложке обнаружилось много интересных вещей. Например, позиционных меток и контактов, которые, по всей видимости, предназначены для тестирования дисплея на производстве:


Оптические микрофотографии меток и тестовых контактных площадок

Конечно, такое происходит не часто и обычно является несчастным случаем, но дисплеи иногда ломаются. Например, эта едва заметная трещина толщиной меньше человеческого волоса способна навсегда лишить радости читать любимую книгу о туманном Альбионе в душном московском метро:


Если дисплеи ломают, значит это кому-нибудь нужно… Мне, например!

Кстати, вот оно, то золото, о котором я упоминал – гладкая площадка «снизу» ячейки для качественного контакта с чернилами (о них чуть ниже). Золото удаляем механически и вот результат:


You"ve got a lot of guts. Let"s see what they look like! (с)

Под тонкой золотой плёнкой скрываются управляющие компоненты активной матрицы, если можно её так именовать.

Но самое интересно, конечно же, это сами «чернила»:


СЭМ-микрофотография чернил на поверхности активной матрицы.

Конечно, трудно найти хотя бы один разрушенную микрокапсулу, чтобы заглянуть внутрь и увидеть «белые» и «чёрные» пигментные частицы:

СЭМ-микрофотография поверхности электронных «чернил»


Оптическая микрофотография «чернил»

Или всё-таки внутри что-то есть?!


То ли разрушенная сфера, то ли выдранная из несущего полимера

Размер отдельных шариков, то есть некоторого аналога субпиксела в E-Ink, может составлять всего 20-30 мкм, что значительно ниже геометрических размеров субпикселов в LCD-дисплеях. При условии, что такая капсула может работать в половину своего размера, то и изображение получается на хороших, качественных E-Ink дисплеях гораздо более приятным, чем на LCD.

И на десерт – видео о том, как работают E-Ink дисплеи под микроскопом.

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

LCD дисплей – это самый распространенный вид экранов телевизоров и мониторов, а также дисплеев телефонов и других устройств. Такое распространение данный вид экрана получил благодаря целому ряду неоспоримых преимуществ.

Для того чтобы понять все положительные качества ЖК дисплеев следует понять, что это такое, а также знать принцип работы и устройства таких экранов. Именно об этом и пойдет речь в данной статье.

1. Расшифровка LCD

ЖК-дисплей означает – жидкокристаллический экран, если перевести на английский язык - Liquid crystal display. Из этого следует, что ЖК и LCD – это одно и тоже. Данная технология получила такое название благодаря применению уникального вещества, которое всегда находится в жидком состоянии и обладает оптическими свойствами, присущими кристаллам.

Современный ЖК экран отличается рядом преимуществ, которые обеспечиваются именно жидкими кристаллами. Постоянное жидкое состояние молекул жидких кристаллов позволяет управлять их оптическими свойствами, воздействуя на них электричеством. При этом молекулы меняют свое расположение, преломляя проходящий свет под нужным углом, отсеивая определенный спектр излучения.

2. Устройство ЖК дисплея

Практически все существующие сегодня ЖК дисплеи имеют идентичное устройство. Если говорить о конструкции, то любой LCD монитор или телевизор состоит из следующих компонентов:

  • ЖК матрицы;
  • Источник света;
  • Контактного жгута;
  • Обрамление (корпус).

ЖК матрица представляет собой две стеклянные пластины, между которыми располагается тонкий слой жидких кристаллов. По сути – это массив, состоящий из огромного множества ячеек, называемых пикселями. Каждый пиксель матрицы состоит из нескольких молекул жидких кристаллов и двух поляризационных фильтров. Причем плоскости этих фильтров расположены перпендикулярно относительно друг друга.

Каждый пиксель матрицы расположен между двумя специальными прозрачными электродами, что дает возможность управлять расположением молекул в каждом пикселе отдельно. LCD технология может основываться на прохождении либо отражении света, в зависимости от устройства монитора, через молекулы жидких кристаллов. Разницы между этими типами матриц практически нет. Однако стоит отметить, что большинство ЖК дисплеев работают на прохождение света через слой жидких кристаллов.

3. Принцип работы ЖК дисплея

Принцип работы LCD дисплея заключается в том, что при условии отсутствия молекул жидких кристаллов свет пропускается первым поляризационным фильтром и полностью блокируется – вторым.

Сами жидкие кристаллы расположены между этими фильтрами таким образом, чтобы преломлять свет, проходящий через первый фильтр так, чтобы он беспрепятственно проходил через второй. Так устроены TN матрицы. Жидкокристаллические дисплеи с другими типами матриц могут действовать наоборот, однако принцип работы при этом не меняется. То есть в спокойном состоянии излучение блокируется и не проходит через матрицу, а при возбуждении электромагнитного поля плоскость излучения меняется так, чтобы свет проходил без препятствий

Для того чтобы молекулы жидких кристаллов располагались в нужном порядке без воздействия электричеством, на контактирующую поверхность электродов нанесены специальные микроскопические бороздки, выстраивающие молекулы в нужном порядке. Таким образом, если воздействовать на определенные области матрицы получается изображение.

Каждый современный жидкокристаллический экран имеет высокое разрешение. Это означает, что матрица состоит из огромного количества пикселей, при этом управлять ими можно каждым в отдельности. Другими словами, если увеличить какую-либо область экрана можно заметить мелкие ячейки, меняя напряжение каждой из этих ячеек можно изменить угол преломления света именно в данной точке. Путем создания необходимого напряжения в каждой из ячеек и создается определенное изображение.

4. Тип подсветки ЖК матрицы

Современные LCD дисплеи могут использовать два варианта подсветки:

  • Люминесцентные лампы;
  • Светодиодная подсветка.

Конечно же, тип подсветки существенно влияет на качество изображения. Люминесцентные лампы считаются устаревшим методом подсветки. Главной проблемой данного типа подсветки является невозможность равномерного распределения света по всей плоскости экрана, что не позволяет достичь высокого качества изображения. Он использовался в первых ЖК матрицах и сегодня встречается все реже.

Светодиодная подсветка, более известная под название LED, является последней разработкой, которая позволила достичь более высокого качества изображения. Такой тип подсветки отличается рядом преимуществ.

Во-первых – это низкое потребление электроэнергии. Во-вторых, LED подсветка излучает более интенсивный свет, который позволяет более равномерно распределить излучение. Благодаря компактным размерам такая подсветка не занимает много места, что позволяет делать экраны еще более тонкими.

5. Типы ЖК матриц

В мире существует несколько типов LCD матриц, однако на отечественном рынке встречается только два вида:

  • TN+Film;

Оба варианта имеют достаточно высокие характеристики. Если говорить о том, какой вариант лучше выбрать, то следует отметить, что все больше производителей отдают предпочтение IPS матрицам, так как они позволяют передать более естественные цвета.

Конечно, как и в любой другой технологии, здесь также есть свои плюсы и минусы. IPS матрицы отличаются отличным качеством изображения, высокой четкостью и прекрасной цветопередачей. Однако при этом имеют медленный отклик. Современные технологии позволили улучшить этот показатель до высокого уровня.

TN+Film матрицы уступают по качеству и четкости изображения. Однако при этом они имеют быстрый отклик, который позволяет таким мониторам отображать самые яркие спецэффекты и быстрые видео записи. Однако стоит понимать, что все эти измерения проводятся при помощи специальной техники. В домашних условиях вы вряд ли сможете заметить существенную разницу между этими матрицами. Поэтому выбор остается за вами.

6. Устройство TFT дисплея: Видео

Конечно, зная все эти нюансы, люди, которые занимаются обработкой фотографий, предпочитают IPS матрицы, так как им не требуется быстрый отклик, но при этом необходима максимально естественная цветопередача. В других случаях, тип матрицы не играет роли.

Ну и, конечно же, все характеристики зависят и от производителя, а также от используемой технологии и материалов. Не стоит думать, что все IPS матрицы одинаковы, они также могут отличаться между собой. Стоит понимать, что чем дороже монитор (или телевизор) тем более высокое качество изображения вы сможете получить. То же самое можно сказать и о TN+Film матрицах.

Какой бы жидкокристаллический дисплей вы не выбрали, стоит обязательно ознакомиться с его возможностями и техническими характеристиками. На сегодняшний день ЖК-дисплеи являются самыми распространенными по ряду причин. Их преимущества вы уже знаете. Благодаря этому они являются прямыми конкурентами плазменным панелям, но при этом они имеют более низкую стоимость, что делает их более доступными для пользователей. Кроме того, они имеют больший ресурс. Другими словами, ЖК-дисплей служит существенно дольше плазменной панели.

Модуль поиска не установлен.

Жидкокристаллические дисплеи(технологии TN, TN+Film и TFT)

Сергей Ярошенко

Непрерывно возрастающее количество пользователей меняют свои ЭЛТ-мониторы на LCD. Если для 19-дюймовых ЭЛТ-мониторов значительный размер корпуса, комфортно не помещавшийся на офисный стол, привел к фатальным последствиям, то снижение цены и минимальные размеры 19-дюймовых LCD-собратьев сегодня повышают их привлекательность.

Принцип работы LCD-мониторов (Liquid Crystal Display - жидкокристаллический дисплей) основан на использовании вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда назвали "жидкими кристаллами".

Происхождение LCD-мониторов

Жидкокристаллические материалы были открыты в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Дальше патента дело не пошло, поскольку в то время технологическая база была еще слишком слаба для создания надежных и функциональных устройств. Первый прорыв совершили ученые Фергесон и Вильямс из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. В результате, в конце 1966 года, корпорация RCA продемонстрировала цифровые часы с LCD-прототипом.

Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Именно этой корпорацией:

В 1964 году был произведен первый в мире калькулятор CS10A;
- в 1975 году по технологии TN LCD были изготовлены первые компактные цифровые часы;
- в 1976 году был выпущен черно-белый телевизор с диагональю экрана 5,5 дюйма на базе LCD-матрицы с разрешением 160х120 пикселей.

Принцип работы LCD-дисплеев

Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию, и вследствие этого, изменять свойства светового луча, проходящего сквозь них.

Экран LCD-монитора представляет собой массив сегментов (пикселей), которыми можно манипулировать для отображения информации. Дисплей имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Между панелями находится тонкий слой жидких кристаллов. На панелях имеются бороздки, которые направляют кристаллы, придавая им нужную ориентацию. На каждой панели бороздки параллельны, а между панелями перпендикулярны. Продольные бороздки образуются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы жидких кристаллов принимают одинаковую ориентацию. Стеклянные панели расположены очень близко друг к другу. Они освещаются источником света (в зависимости от того, где он расположен, LCD-дисплеи работают на отражение или на прохождение света). При прохождении панели плоскость поляризации светового луча поворачивается на 90°. Появление электрического тока заставляет молекулы жидких кристаллов выстраиваться вдоль электрического поля, а угол поворота плоскости поляризации света становится отличным от 90°.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникает необходимость добавить к стеклянным панелям еще два слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному направлению поляризации. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, т.к. первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем.

В присутствии электрического поля поворот вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для света. Если разность потенциалов будет такова, что поворота плоскости поляризации в жидких кристаллах не произойдет, то световой луч будет полностью поглощен вторым поляризатором, а дисплей будет казаться черным.

Расположив большое число электродов, создающих электрические поля в локальных местах дисплея (ячейки), получим возможность (при правильном управлении потенциалами этих электродов) отображать на экране буквы и другие элементы изображения. Технологические новшества позволили ограничить размеры электродов до точки, соответственно, на одной и той же площади панели стало возможным расположить большее число электродов, что увеличивало разрешение LCD-монитора и позволяло отображать сложные изображения в цвете.

Для формирования цветного изображения LCD-дисплей подсвечивали сзади. Цвет получался в результате использования трех фильтров, которые выделяли из белого света три основные компоненты. Комбинируя эти компоненты для каждой точки (пикселя) дисплея, появилась возможность воспроизвести любой цвет.

Пассивная (passive matrix) и активная матрицы (active matrix)

Функциональные возможности LCD-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея.

В случае с пассивной матрицей электроды получают электрический заряд циклическим методом при построчном обновлении дисплея. В результате разряда емкостей ячеек изображение исчезает, т. к. кристаллы возвращаются к своей изначальной конфигурации. Из-за большой электрической емкости ячеек напряжение на них не способно изменяться быстро, поэтому обновление картинки происходит медленно.

В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (0 или 1), и в результате изображение сохраняется только до тех пор, пока не поступит другой сигнал.

Тусклые и "тормозные" жидкокристаллические мониторы с пассивной матрицей давно ушли в прошлое, в магазинах можно встретить лишь модели на основе активной матрицы, обеспечивающей яркое, четкое изображение.

При использовании активных матриц появилась возможность сократить число жидкокристаллических слоев. Запоминающие транзисторы производят из прозрачных материалов, что позволяет световому лучу проходить сквозь них, а значит, транзисторы можно располагать на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Для этих целей используются пластиковые пленки - Thin Film Transistor (TFT).

Технология изготовления TN

Исторически первой технологией изготовления LCD-дисплеев была т.н. технология Twisted Nematic (TN). Название произошло из-за того, что в выключенном состоянии кристаллы в ячейках образовывали спираль. Эффект возникал в результате размещения кристаллов между выравнивающими панелями с бороздками, направленными перпендикулярно друг другу. При приложении электрического поля все кристаллы выстраивались одинаково, т.е. спираль распрямлялась, а при снятии кристаллы вновь стремились ориентироваться вдоль бороздок.

У TN-дисплеев было несколько существенных недостатков:

Во-первых, естественным состоянием дисплея, когда кристаллы образуют спираль, было прозрачное, т.е. она пропускала свет. Благодаря этому, при выходе из строя одного из тонкопленочных транзисторов свет беспрепятственно выходил наружу, образуя весьма заметную постоянно горящую точку;
- во-вторых, развернуть все жидкие кристаллы перпендикулярно фильтру оказалось практически невозможно, поэтому контрастность таких дисплеев оставляла желать лучшего, а уровень черного мог превышать 2 кд/м2 . Такой цвет выглядел как темно-серый, но отнюдь не как черный;
- в-третьих, низкая скорость реакции, первые дисплеи имели время отклика около 50 мс. Впрочем, второй и третий недостатки удалось преодолеть с внедрением технологии Super Twisted Nematic (STN), которая позволила уменьшить время отклика до 30 мс.
- в-четвертых, маленькие углы обзора, всего около 90°. Однако нанесение на поверхность экрана полимерной пленки с большим показателем преломления позволило расширить углы обзора до 120-160° без существенного изменения технологии. Такие дисплеи получили название TN+Film.

Технология изготовления STN

Технология STN позволяла увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивало лучшую контрастность изображения при увеличении размеров панели.

Режим DSTN. Часто STN-ячейки использовались в паре. Такая конструкция называлась Double Super Twisted Nematic (DSTN). В ней одна двухслойная DSTN-ячейка состояла из 2 STN-ячеек, молекулы, которых при работе поворачивались в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, терял большую часть своей энергии. Контрастность и разрешающая способность DSTN-дисплеев повысилась, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходилось три LCD-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не были способны работать от отраженного света, поэтому лампа задней подсветки - их обязательный атрибут.