Цифровая схемотехника.

Изучение базовых элементов цифровой электроники мы начнем с наиболее простых, а затем будем рассматривать все более сложные. Примеры применения каждого следующего элемента будут опираться на все элементы, рассмотренные ранее. Таким образом, будут постепенно даны главные принципы построения довольно сложных цифровых устройств.

Логические элементы (или, как их еще называют, вентили, "gates") - это наиболее простые цифровые микросхемы. Именно в этой простоте и состоит их отличие от других микросхем. Как правило, в одном корпусе микросхемы может располагаться от одного до шести одинаковых логических элементов. Иногда в одном корпусе могут располагаться и разные логические элементы.

Обычно каждый логический элемент имеет несколько входов (от одного до двенадцати) и один выход. При этом связь между выходным сигналом и входными сигналами (таблица истинности) предельно проста. Каждой комбинации входных сигналов элемента соответствует уровень нуля или единицы на его выходе. Никакой внутренней памяти у логических элементов нет, поэтому они относятся к группе так называемых комбинационных микросхем. Но в отличие от более сложных комбинационных микросхем, рассматриваемых в следующей лекции, логические элементы имеют входы, которые не могут быть разделены на группы, различающиеся по выполняемым ими функциям.

Главные достоинства логических элементов, по сравнению с другими цифровыми микросхемами, - это их высокое быстродействие (малые времена задержек), а также малая потребляемая мощность (малый ток потребления). Поэтому в тех случаях, когда требуемую функцию можно реализовать исключительно на логических элементах, всегда имеет смысл проанализировать этот вариант. Недостаток же их состоит в том, что на их основе довольно трудно реализовать сколько-нибудь сложные функции. Поэтому чаще всего логические элементы используются только в качестве дополнения к более сложным, к более "умным" микросхемам. И любой разработчик обычно стремится использовать их как можно меньше и как можно реже. Существует даже мнение, что мастерство разработчика обратно пропорционально количеству используемых им логических элементов. Однако это верно далеко не всегда.

Инверторы

Самый простой логический элемент - это инвертор (логический элемент НЕ, "inverter"), уже упоминавшийся в первой лекции . Инвертор выполняет простейшую логическую функцию - инвертирование, то есть изменение уровня входного сигнала на противоположный. Он имеет всего один вход и один выход. Выход инвертора может быть типа 2С или типа ОК. На рис. 3.1 показаны условные обозначения инвертора, принятые у нас и за рубежом, а в табл. 3.1 представлена таблица истинности инвертора.

Рис. 3.1. Условные обозначения инверторов: зарубежные (слева) и отечественные (справа)

В одном корпусе микросхемы обычно бывает шесть инверторов. Отечественное обозначение микросхем инверторов - "ЛН". Примеры: КР1533ЛН1 (SN74ALS04) - шесть инверторов с выходом 2С, КР1533ЛН2 (SN74ALS05) - шесть инверторов с выходом ОК. Существуют также инверторы с выходом ОК и с повышенным выходным током (ЛН4), а также с повышенным выходным напряжением (ЛН3, ЛН5). Для инверторов с выходом ОК необходимо включение выходного нагрузочного резистора pull-up. Его минимальную величину можно рассчитать очень просто: R < U/I OL , где U - напряжение питания, к которому подключается резистор. Обычно величина резистора выбирается порядка сотен Ом - единиц кОм.

Две основные области применения инверторов - это изменение полярности сигнала и изменение полярности фронта сигнала (рис. 3.2) . То есть из положительного входного сигнала инвертор делает отрицательный выходной сигнал и наоборот, а из положительного фронта входного сигнала - отрицательный фронт выходного сигнала и наоборот. Еще одно важное применение инвертора - буферирование сигнала (с инверсией), то есть увеличение нагрузочной способности сигнала. Это бывает нужно в том случае, когда какой-то сигнал надо подать на много входов, а выходной ток источника сигнала недостаточен.

Рис. 3.2. Инверсия полярности сигнала и инверсия полярности фронта сигнала

Именно инвертор, как наиболее простой элемент, чаще других элементов используется в нестандартных включениях. Например, инверторы обычно применяются в схемах генераторов прямоугольных импульсов (рис. 3.3) , выходной сигнал которых периодически меняется с нулевого уровня на единичный и обратно. Все приведенные схемы, кроме схемы д, выполнены на элементах К155ЛН1, но могут быть реализованы и на инверторах других серий при соответствующем изменении номиналов резисторов. Например, для серии К555 номиналы резисторов увеличиваются примерно втрое. Схема д выполнена на элементах КР531ЛН1, так как она требует высокого быстродействия инверторов.

Рис. 3.3. Схемы генераторов импульсов на инверторах

Схемы а, б и в представляют собой обычные RC-генераторы, характеристики которых (выходную частоту, длительность импульса) можно рассчитать только приблизительно. Для схем а и б при указанных номиналах резистора и конденсатора частота генерации составит порядка 100 кГц, для схемы в - около 1 МГц. Эти схемы рекомендуется использовать только в тех случаях, когда частота не слишком важна, а важен сам факт генерации. Если же точное значение частоты принципиально, то рекомендуется применять схемы г и д, в которых частота выходного сигнала определяется только характеристиками кварцевого резонатора. Схема г используется для кварцевого резонатора, работающего на первой (основной) гармонике. Величину емкости можно оценить по формуле:

где F - частота генерации. Схема д применяется для гармониковых кварцевых резонаторов, которые работают на частоте, большей основной в 3, 5, 7 раз (это бывает нужно для частот генерации выше 20 МГц).

Рис. 3.4. Использование инверторов для задержки сигнала

Инверторы также применяются в тех случаях, когда необходимо получить задержку сигнала, правда, незначительную (от 5 до 100 нс). Для получения такой задержки последовательно включается нужное количество инверторов (рис. 3.4 , вверху). Суммарное время задержки, например, для четырех инверторов, можно оценить по формуле

tЗ = 2t PHL + 2t PLH

Правда, надо учитывать, что обычно реальные задержки элементов оказываются существенно ниже (иногда даже вдвое), чем табличные параметры t PHL и t PLH . То есть о точном значении получаемой задержки говорить не приходится, ее можно оценить только примерно.

Для задержки сигнала используются также конденсаторы (рис. 3.4, внизу) . При этом задержка возникает из-за медленного заряда и разряда конденсатора (напряжение на конденсаторе ­- UC). Схема без резистора (слева на рисунке) дает задержку около 100 нс. В схеме с резистором (справа на рисунке) номинал резистора должен быть порядка сотен Ом. Но при выборе таких схем с конденсаторами надо учитывать, что некоторые серии микросхем (например, КР1533) плохо работают с затянутыми фронтами входных сигналов. Кроме того, надо учитывать, что количество времязадающих конденсаторов в схеме обратно пропорционально уровню мастерства разработчика схемы.

Наконец, еще одно применение инверторов, но только с выходом ОК, состоит в построении на их основе так называемых элементов "Проводного ИЛИ". Для этого выходы нескольких инверторов с выходами ОК объединяются, и через резистор присоединяются к источнику питания (рис. 3.5) . Выходом схемы является объединенный выход всех элементов. Такая конструкция выполняет логическую функцию ИЛИ-НЕ, то есть на выходе будет сигнал логической единицы только при нулях на всех входах. Но о логических функциях подробнее будет рассказано далее.

Рис. 3.5. Объединение выходов инверторов с ОК для функции ИЛИ-НЕ

В заключение раздела надо отметить, что инверсия сигнала применяется и внутри более сложных логических элементов, а также внутри цифровых микросхем, выполняющих сложные функции.

Повторители и буферы

Повторители и буферы отличаются от инверторов прежде всего тем, что они не инвертируют сигнал (правда, существуют и инвертирующие буферы). Зачем же тогда они нужны? Во-первых, они выполняют функцию увеличения нагрузочной способности сигнала, то есть позволяют подавать один сигнал на много входов. Для этого имеются буферы с повышенным выходным током и выходом 2С, например, ЛП16 (шесть буферных повторителей). Во-вторых, большинство буферов имеют выход ОК или 3С, что позволяет использовать их для получения двунаправленных линий или для мультиплексирования сигналов. Поясним подробнее эти термины.

Рис. 3.6. Двунаправленная линия

Под двунаправленными линиями понимаются такие линии (провода), сигналы по которым могут распространяться в двух противоположных направлениях. В отличие от однонаправленных линий, которые идут от одного выхода к одному или нескольким входам, к двунаправленной линии могут одновременно подключаться несколько выходов и несколько входов (рис. 3.6) . Понятно, что двунаправленные линии могут организовываться только на основе выходов ОК или 3С. Поэтому почти все буферы имеют именно такие выходы.

Рис. 3.7. Однонаправленная мультиплексированная линия на основе буферов

Мультиплексированием называется передача разных сигналов по одним и тем же линиям в разные моменты времени. Основная цель мультиплексирования состоит в сокращении общего количества соединительных линий. Двунаправленная линия обязательно является мультиплексированной, а мультиплексированная линия может быть как однонаправленной, так и двунаправленной. Но в любом случае к ней присоединяется несколько выходов, только один из которых в каждый момент времени находится в активном состоянии. Остальные выходы в это время отключаются (переводятся в пассивное состояние). В отличие от двунаправленной линии, к мультиплексированной линии, построенной на основе буферов, может быть подключен всего лишь один вход, но обязательно несколько выходов с ОК или 3С (рис. 3.7) . Мультиплексированные линии могут строиться не только на буферах, но и на микросхемах мультиплексоров, которые будут рассмотрены в лекциях 5, 6.

Рис. 3.8. Объединение выходов буферов с ОК

Примером буферов с выходом ОК является микросхема ЛП17 (шесть буферов о ОК). Точно так же, как и в случае инверторов с ОК (см. рис. 3.5) , выходы нескольких буферов с ОК могут объединяться для получения функции "Монтажное И", то есть на выходе будет сигнал логической единицы только при единицах на всех входах (рис. 3.8) . То есть реализуется многовходовой элемент И.

Буферы с выходом 3С представлены гораздо большим количеством микросхем, например, ЛП8, ЛП11, АП5, АП6, АП14. Эти буферы обязательно имеют управляющий вход EZ (или OE), переводящий выходы в третье, пассивное состояние. Как правило, третьему состоянию соответствует единица на этом входе, а активному состоянию выходов - нуль, то есть сигнал EZ имеет отрицательную полярность.

Буферы бывают однонаправленные или двунаправленные, с инверсией или без инверсии сигналов, с управлением всеми выходами одновременно или с управлением группами выходов. Всем этим и определяется большое разнообразие микросхем буферов.

Таблица 3.2. Таблица истинности буфера без инверсии

Вход

Выход

Простейшим однонаправленным буфером без инверсии является микросхема ЛП8 (четыре буфера с выходами типа 3С и раздельным управлением). Каждый из четырех буферов имеет свой вход разрешения EZ. Таблица истинности буфера очень проста (табл. 3.2) : при нулевом сигнале на входе управления выход повторяет вход, а при единичном - выход отключен. Эту микросхему удобно применять для обработки одиночных сигналов, то есть для повторения входного сигнала с возможностью отключения выхода.

Рис. 3.9. Применение буфера с 3С в качестве буфера с ОК

Эти же буферы иногда удобно использовать для замещения буферов с выходом ОК (рис. 3.9) . В этом случае вход управления служит информационным входом. При нуле на входе мы получаем нуль на выходе, а при единице на входе - третье состояние на выходе.

Рис. 3.10. Мультиплексирование двух входных кодов с помощью буферов с 3С

Очень часто надо обрабатывать не одиночные сигналы, а группы сигналов, например, сигналы, передающие многоразрядные коды. В этом случае удобно применять буферы с групповым управлением, То есть имеющие один вход разрешения EZ для нескольких выходов. Примерами могут служить микросхемы ЛП11 (шесть буферов, разделенные на две группы: четыре и два буфера, для каждой из которых имеется свой вход управления) и АП5 (восемь буферов, разделенные на две группы по четыре буфера, каждая из которых имеет свой вход управления).

На рис. 3.10 показан пример мультиплексирования двух восьмиразрядных кодов с помощью двух микросхем АП5. Одноименные выходы обеих микросхем объединены между собой. Пропускание на выход каждого из двух входных кодов разрешается своим управляющим сигналом (Упр. 1 и Упр. 2), причем должен быть исключен одновременный приход этих двух сигналов, чтобы не было конфликтов на выходах.

Рис. 3.11. Включение двунаправленного буфера

Двунаправленные буферы, в отличие от однонаправленных, позволяют передавать сигналы в обоих направлениях. В зависимости от специального управляющего сигнала T (другое обозначение - BD), входы могут становиться выходами и наоборот: выходы - входами. Обязательно имеется и вход управления третьим состоянием EZ, который может отключить как входы, так и выходы.

На рис. 3.11 для примера показан двунаправленный буфер АП6, который может передавать данные между двумя двунаправленными шинами А и B в обоих направлениях. При единичном уровне на управляющем входе Т (сигнал Напр.) данные передаются из шины A в шину B, а при нулевом уровне - из шины B в шину A (табл. 3.3) . Единичный уровень на управляющем входе EZ (сигнал Откл.) отключает микросхему от обеих шин.

Таблица 3.3. Таблица истинности двунаправленного буфера

Вход Т

Вход-EZ

Операция

Двунаправленную передачу можно организовать и на основе однонаправленных буферов. На рис. 3.12 показано, как это можно сделать на двух микросхемах АП5. Здесь при нулевом сигнале Упр. 1 информация будет передаваться с шины А на шину В, а при нулевом сигнале на входе Упр. 2 - с шины В на шину А. Если оба входа Упр. 1 и Упр. 2 находятся в единичном состоянии, то шины A и В отключены друг от друга, а подача нулей на оба входа Упр. 1 и Упр. 2 должна быть исключена, иначе состояние обеих шин А и В будет не определено.

Рис. 3.12. Организация двунаправленной передачи с помощью однонаправленных буферов

Микросхемы буферов в отечественных сериях имеют разнообразные обозначения: ЛН, ЛП, АП, ИП, что порой затрудняет их выбор. Например, ЛН6, ЛП8, ЛП11, АП5, АП6, ИП5, ИП6. Буферы с буквами ЛН имеют инверсию, буферы АП и ИП могут быть с инверсией и без инверсии. Все параметры у буферов довольно близки, отличие - в инверсии, в количестве разрядов и в управляющих сигналах.

Временные параметры буферов включают помимо задержки сигнала от информационного входа до информационного выхода, также задержки перехода выхода в третье состояние и из третьего состояния в активное состояние (t PHZ , t PLZ и t PZH , t PZL). Величины этих задержек обычно примерно вдвое больше, чем величины задержек между информационным входом и выходом.

Отключаемый выход буферов (как ОК, так и 3С) требует применения нагрузочных резисторов. В противном случае вход, подключенный к отключенному выходу, оказывается подвешенным, в результате чего схема может работать неустойчиво, давать сбои. Подключение резистора в случае выхода ОК (pull-up) производится стандартным способом (см. рис. 3.8) . Точно так же может быть включен резистор между выходом 3С и напряжением питания (рис. 3.13) , тогда при отключенном выходе на вход будет поступать уровень логической единицы. Однако можно включить и резистор между выходом и землей, тогда при отключенном выходе на вход будет поступать сигнал логического нуля. Применяется также и включение двух резисторов (резистивного делителя), при этом величина верхнего резистора (присоединенного к шине питания) обычно выбирается в 2–3 раза меньше, чем нижнего резистора (присоединенного к "земле"), а величина параллельного соединенных двух резисторов выбирается равной примерно 100 Ом. Например, резисторы могут иметь номиналы 240 Ом и 120 Ом, 360 Ом и 130 Ом. Отключенный выход воспринимается в данном случае присоединенным к нему входом как единица.

Рис. 3.13. Включение резисторов на выходе буферов 3С

Иногда к выходам 3С резисторы не присоединяют вообще, но в этом случае надо обеспечить, чтобы последующий вход воспринимал сигнал с выхода 3С (то есть реагировал на него) только тогда, когда выход находится в активном состоянии. Иначе возможны сбои и отказы в работе устройства.

Рис. 3.14. Применение буферов для индикации

Еще одно типичное применение буферов, связанное с их большими выходными токами, - это светодиодная индикация. Светодиоды могут подключаться к выходу буферов двумя основными способами (рис. 3.14) . При первом из них (слева на рисунке) светодиод горит, когда на выходе 3С или 2С-сигнал логической единицы, а при втором (справа на рисунке) - когда на выходе ОК сигнал логического нуля. Величина резистора выбирается исходя из характеристик светодиода, но обычно составляет порядка 1 кОм.

Элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ

Следующий шаг на пути усложнения компонентов цифровой электроники - это элементы, выполняющие простейшие логические функции. Объединяет все эти элементы то, что у них есть несколько равноправных входов (от 2 до 12) и один выход, сигнал на котором определяется комбинацией входных сигналов.

Самые распространенные логические функции - это И (в отечественной системе обозначений - ЛИ), И-НЕ (обозначается ЛА), ИЛИ (обозначается ЛЛ) и ИЛИ-НЕ (обозначается ЛЛ). Присутствие слова НЕ в названии элемента обозначает только одно - встроенную инверсию сигнала. В международной системе обозначений используются следующие сокращения: AND - функция И, NAND - функция И-НЕ, OR - функция ИЛИ, NOR - функция ИЛИ-НЕ.

Название самих функций И и ИЛИ говорит о том, при каком условии на входах появляется сигнал на выходе. При этом важно помнить, что речь в данном случае идет о положительной логике, о положительных, единичных сигналах на входах и на выходе.

Элемент И формирует на выходе единицу тогда и только тогда, если на всех его входах (и на первом, и на втором, и на третьем и т.д.) присутствуют единицы. Если речь идет об элементе И-НЕ, то на выходе формируется нуль, когда на всех входах - единицы (табл. 3.4) . Цифра перед названием функции говорит о количестве входов элемента. Например, 8И-НЕ - это восьмивходовой элемент И с инверсией на выходе.

Таблица 3.4. Таблица истинности двухвходовых элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ

Вход 1

Вход 2

Выход И

Выход И-НЕ

Выход ИЛИ

Выход ИЛИ-НЕ

Элемент ИЛИ формирует на выходе нуль тогда и только тогда, если на всех входах нуль. Элемент ИЛИ-НЕ дает на выходе нуль при наличии хотя бы на одном из входов единицы (табл. 3.4 ). Пример обозначения: 4ИЛИ-НЕ - четырехвходовой элемент ИЛИ с инверсией на выходе.

Рис. 3.15. Обозначения элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ: зарубежные (слева) и отечественные (справа)

Отечественные и зарубежные обозначения на схемах двухвходовых элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ показаны на рис. 3.15 . Все эти элементы бывают с выходами типа 2С, ОК и 3С. В последнем случае обязательно имеется вход разрешения –EZ.

Нетрудно заметить (см. табл. 3.4) , что в случае отрицательной логики, при нулевых входных и выходных сигналах, элемент И выполняет функцию ИЛИ, то есть на выходе будет нуль в случае, когда хотя бы на одном из входов нуль. А элемент ИЛИ при отрицательной логике выполняет функцию И, то есть на выходе будет нуль только тогда, когда на всех входах присутствуют нули. И так как в реальных электронных устройствах сигналы могут быть любой полярности (как положительные, так и отрицательные), то надо всегда очень аккуратно выбирать требуемый в каждом конкретном случае элемент. Особенно об этом важно помнить тогда, когда последовательно соединяются несколько разноименных логических элементов с инверсией и без нее для получения сложной функции.

Поэтому элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ разработчику далеко не всегда удобно применять именно как выполняющие указанные в их названии логические функции. Иногда их удобнее использовать как элементы разрешения/запрещения или смешивания/совпадения. Но сначала мы рассмотрим случаи реализации именно логических функций на этих элементах.

На рис. 3.16 приведены примеры формирования элементами выходных сигналов на основании требуемых временных диаграмм входных и выходных сигналов. В случае а выходной сигнал должен быть равен единице при двух единичных входных сигналах, следовательно, достаточно элемента 2И. В случае б выходной сигнал должен быть равен нулю, когда хотя бы один из входных сигналов равен единице, следовательно, требуется элемент 2ИЛИ-НЕ. Наконец, в случае в выходной сигнал должен быть равен нулю при одновременном приходе единичного сигнала Вх. 1, нулевого сигнала Вх. 2 и единичного сигнала Вх. 3. Следовательно, требуется элемент 3И-НЕ, причем сигнал Вх. 2 надо предварительно проинвертировать.

Рис. 3.16. Примеры применения элементов И и ИЛИ

Любой из логических элементов рассматриваемой группы можно рассматривать как управляемый пропускатель входного сигнала (с инверсией или без нее).

Например, в случае элемента 2И-НЕ один из входов можно считать информационным, а другой - управляющим. В этом случае при единице на управляющем входе выходной сигнал будет равен проинвертированному входному сигналу, а при нуле на управляющем входе выходной сигнал будет постоянно равен единице, то есть прохождение входного сигнала будет запрещено. Элементы 2И-НЕ с выходом ОК часто используют именно в качестве управляемых буферов для работы на мультиплексированную или двунаправленную линию.

Точно так же в качестве элемента разрешения/запрещения могут применяться элементы И, ИЛИ, ИЛИ-НЕ (рис. 3.17) . Разница между элементами состоит только в полярности управляющего сигнала, в инверсии (или ее отсутствии) входного сигнала, а также в уровне выходного сигнала (нуль или единица) при запрещении прохождения входного сигнала.

Рис. 3.17. Разрешение/запрещение прохождения сигналов на элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ

Рис. 3.18. Появление лишнего фронта при запрещении входного сигнала

При использовании элементов разрешения/запрещения могут возникнуть дополнительные проблемы в случае, когда сигнал с выхода элемента идет на вход, реагирующий на фронт сигнала. В момент перехода из состояния разрешения в состояние запрещения и из состояния запрещения в состояние разрешения в выходном сигнале может появиться дополнительный фронт, никак не связанный с входным сигналом (рис. 3.18). Чтобы этого не произошло, надо придерживаться следующего простого правила: если вход реагирует на положительный фронт, то в состоянии запрещения на выходе элемента должен быть нуль, и наоборот.

Иногда необходимо реализовать функцию смешивания двух сигналов той или иной полярности. То есть выходной сигнал должен вырабатываться как при приходе одного входного сигнала, так и при приходе другого входного сигнала. Если оба входных сигнала положительные и выходной сигнал положительный, то мы имеем в чистом виде функцию ИЛИ, и требуется элемент 2ИЛИ. Однако при отрицательных входных сигналах и отрицательном выходном сигнале для такого же смешивания понадобится уже элемент 2И. А если полярность входных сигналов не совпадает с нужной полярностью выходного сигнала, то нужны уже элементы с инверсией (И-НЕ при положительных выходных сигналах и ИЛИ-НЕ при отрицательных выходных сигналах). На рис. 3.19 показаны варианты смешивания на разных элементах.

Рис. 3.19. Реализация смешивания двух сигналов

Наконец, рассматриваемые элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ иногда бывает удобно применять в качестве схем совпадения различных сигналов. То есть выходной сигнал должен вырабатываться тогда, когда сигналы на входах совпадают (приходят одновременно). Если же совпадения нет, то выходной сигнал должен отсутствовать. На рис. 3.20 показаны варианты таких схем совпадения на четырех разных элементах. Различаются они полярностями входных сигналов, а также наличием или отсутствием инверсии выходного сигнала.

Рис. 3.20. Схемы совпадения двух сигналов

Рассмотрим два примера совместного использования элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ (рис. 3.21 ).

Рис. 3.21. Примеры совместного использования элементов

Пусть необходимо смешать два сигнала, каждый из которых может быть разрешен или запрещен. Пусть полярность входных сигналов и сигналов разрешения - положительная, а выходной сигнал должен быть отрицательным. В этом случае надо взять два двухвходовых элемента И и смешать их выходные сигналы с помощью двухвходового элемента ИЛИ-НЕ (а).

Пусть необходимо смешать два отрицательных сигнала и один положительный сигнал, причем результирующий сигнал может быть разрешен или запрещен. Полярность сигнала разрешения - отрицательная, полярность выходного сигнала - отрицательная. Для этого нужно взять трехвходовой элемент И, инвертор для отрицательного входного сигнала и двухвходовой элемент ИЛИ (б).

Элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ могут использоваться также в качестве инверторов или повторителей (рис. 3.22) , для чего необходимо объединить входы или на неиспользуемые входы подать сигнал нужного уровня. Второе предпочтительнее, так как объединение входов не только увеличивает входной ток, но и несколько снижает быстродействие элементов.

Рис. 3.22. Инверторы и повторители

Рис. 3.23. Объединение по И входов микросхем

По функции И часто объединяются входы более сложных микросхем. Иначе говоря, какая-то функция выполняется только тогда, когда на все объединенные по И входы поступают сигналы нужной полярности. Чаще всего по И объединяются входы выбора микросхемы CS и входы управления третьим состоянием выхода микросхемы EZ. На рис. 3.23 показано три примера такого объединения по И. При этом надо учитывать, что на инверсные входы для выполнения функции должны поступать нулевые сигналы, а на прямые входы - единичные сигналы. Примерами могут служить микросхемы КР556РТ4, КР556РТ5, КР1533АП14, КР1533АП15.

До сих пор, рассматривая элементы И, И-НЕ, ИЛИ, ИЛИ-НЕ, мы не выходили за рамки первого уровня представления (логической модели). Это вполне допустимо в том случае, когда входные сигналы элементов не меняются одновременно или почти одновременно, когда их фронты разнесены во времени существенно (больше, чем на время задержки элемента). При одновременном изменении входных сигналов все будет гораздо сложнее необходимо привлекать второй и порой третий уровень представления. В момент изменения входных сигналов выходной сигнал становится неопределенным, нестабильным, непредсказуемым. В результате при неправильном проектировании может не работать вся сложная схема, целый прибор или даже большая система.

Например, возьмем логический элемент 2И-НЕ. Пусть на его входы приходят сигналы, изменяющиеся одновременно, причем в противофазе, то есть один переключается из нуля в единицу, а другой - из единицы в нуль. Пусть по тем или иным причинам (вследствие передачи по проводам, вследствие разных задержек элементов и т.д.) один из сигналов чуть-чуть сдвинулся во времени относительно другого (рис. 3.24) . При этом на двух входах в течение кратковременного периода будет присутствовать два единичных сигнала. В результате выход начнет переключаться из единицы в нуль. Он может успеть переключиться, и тогда сформируется короткий импульс. Он может не успеть переключиться, и тогда импульса не будет. Он может иногда успевать переключиться, а иногда не успевать, и тогда выходной импульс то будет появляться, то не будет. Здесь все зависит от быстродействия элемента и величины задержки. Последняя ситуация наиболее неприятна, так как может вызвать нестабильную неисправность, выявить которую крайне сложно.

Рис. 3.24. Короткий импульс на выходе элемента 2И-НЕ

В качестве примера возьмем одно из самых распространенных применений рассматриваемых элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ - селектирование кодов. Суть селектирования сводится к следующему. Пусть имеется некоторая шина, по которой передаются коды. Необходимо выявить появление на этой шине какого-то определенного кода, то есть сформировать выходной сигнал, соответствующий требуемому входному коду.

Рис. 3.25. Селектирование кодов со стробированием

Схема, выполняющая такую функцию, довольно проста (рис. 3.25) . В ее основе - многовходовые элементы И-НЕ. При этом сигналы, соответствующие разрядам кода, на которых должны быть единицы, подаются непосредственно на входы элементов И-НЕ. А сигналы, соответствующие разрядам кода, на которых должны быть нули, подаются на входы элементов И-НЕ через инверторы. Выходные сигналы элементов И-НЕ объединяются с помощью элемента ИЛИ-НЕ. В результате на выходе элемента ИЛИ-НЕ формируется сигнал Вых. 1 в тот момент, когда на входе присутствует нужный код.

Подробнее о синхронизации будет рассказано в следующих лекциях.

Однако бывают случаи, когда указанная особенность элементов И, И-НЕ, ИЛИ, ИЛИ-НЕ формировать короткие импульсы при изменении входных сигналов оказывается очень полезной. Например, нам необходимо сформировать короткий импульс по положительному или отрицательному фронту имеющегося сигнала. Тогда этот сигнал инвертируют, специально задерживают с помощью цепочки элементов или емкости и подают исходный сигнал и задержанный сигнал на входы элемента (рис. 3.26) .

Рис. 3.26. Формирователи коротких импульсов по фронту входного сигнала

Импульс по положительному фронту входного сигнала формируется на элементе 2И или 2И-НЕ (а), а импульс по отрицательному фронту входного сигнала - на элементе 2ИЛИ или 2ИЛИ-НЕ (б). Если элемент с инверсией, то выходной импульс будет отрицательным, если без инверсии, то положительным. При указанной на схемах величине емкости длительность импульса получается около 50 нс. Для увеличения длительности импульса надо увеличивать величину емкости или же количество инверторов в цепи задержки (при этом коли­чество инверторов обязательно должно быть нечетным).

25 апреля 2010 в 16:16

Самостоятельное изучение схемотехники. Основные понятия. Часть 1

  • Электроника для начинающих

Изучение цифровой схемотехники нужно начинать с теории автоматов. В этой статье можно найти некоторые элементарные вещи, которые помогут не потеряться в дальнейших статьях. Я постарался сделать статью легкочитабельной и уверен, что неподготовленный читатель сможет в ней легко разобраться.


Сигнал - материальный носитель информации, используемый для передачи сообщений по системе связи. Сигнал, в отличие от сообщения, может генерироваться, но его приём не обязателен (сообщение должно быть принято принимающей стороной, иначе оно не является сообщением, а всего лишь сигналом).

В статье рассматривается цифровой дискретный сигнал. Это такой сигнал, который имеет несколько уровней. Очевидно, что двоичный сигнал имеет два уровня - и их принимают за 0 и 1. Когда высокий уровень обозначается единицей, а низкий нулем - такая логика называется позитивной, иначе негативной.

Цифровой сигнал можно представить в виде временной диаграммы.

В природе дискретных сигналов не существует, по этому их заменяют аналоговыми. Аналоговый сигнал не может перейти из 0 в 1 мгновенно, по этому такой сигнал обладает фронтом и срезом .
Если рисовать упрощенно то это выглядит так:

1 - низкий уровень сигнала, 2 - высокий уровень сигнала, 3 - нарастание сигнала (фронт), 4 - спад сигнала (срез)

Сигналы можно преобразовывать. Для этого на практике используются логические элементы, а чтобы это записать формально используются логические функции. Вот основные:

Отрицание - инвертирует сигнал.
На схемах обозначается так:

Логическое ИЛИ (логическое сложение, дизъюнкция)

На схеме:

Логическое И (логическое умножение, конъюнкция)

На схеме:

Последние два могут иметь отрицание на выходе (И-НЕ, ИЛИ-НЕ). Значения их логических функций инвертируются, а на схеме выход рисуется кружочком.

Сводная таблица логических функций двух аргументов выглядит так:

Работа с логическими функциями основывается на законах алгебры логики , основы которых изложены в прикрепленном файле. Так же там есть задания для самоконтроля и контрольные вопросы по теме.

Проектирование логических схем с помощью функций алгебры логики

Логической схемой называется совокупность логических электронных элементов, соединенных между собой таким образом, чтобы выполнялся заданный закон функционирования схемы, иначе говоря, - выполнялась заданная логическая функция.
По зависимости выходного сигнала от входного все электронные логические схемы можно условно разбить на:

Схемы первого рода , т.е. комбинационные схемы , выходной сигнал которых зависит только от состояния входных сигналов в каждый момент времени;

Схемы второго рода или накапливающие схемы (схемы последовательностные ), содержащие накапливающие схемы (элементы с памятью ), выходной сигнал которых зависит как от входных сигналов, так и от состояния схемы в предыдущие моменты времени.

По количеству входов и выходов схемы бывают: с одним входом и одним выходом, с несколькими входами и одним выходом, с одним входом и несколькими выходами, с несколькими входами и выходами.

По способу осуществления синхронизации схемы бывают с внешней синхронизацией (синхронные автоматы), с внутренней синхронизацией (асинхронные автоматы являются их частным случаем).

Практически любой компьютер состоит из комбинации схем первого и второго рода разной сложности. Таким образом, основой любого цифрового автомата, обрабатывающего цифровую информацию, являются электронные элементы двух типов: логические или комбинационные и запоминающие . Логические элементы выполняют простейшие логические операции над цифровой информацией, а запоминающие служат для ее хранения. Как известно, логическая операция состоит в преобразовании по определенным правилам входной цифровой информации в выходную.

Можно считать, что элементарные логические функции являются логическими операторами упомянутых электронных элементов, т.е. схем. Каждая такая схема обозначается определенным графическим символом. (Они были представлены выше - Элементы И, ИЛИ, НЕ, ИЛИ-НЕ, И-НЕ)

В качестве примера ниже представлена схема электрическая функциональная логического преобразователя (комбинационного автомата), реализующего логическую функцию в элементном базисе из логических элементов И, ИЛИ, НЕ.

Для закрепления предлагаю, самостоятельно синтезировать логическую схему, реализующую следующие логические функции:

Сделать это можно к примеру в Electronic workbench.

Вот для примера первое выполненное задание:

PAGE 173

Курс лекций Техническая электроника

Лекция 26

ОСновы цифровой схемотехники

26.1 логические элементы

В цифровых вычислительных машинах, устройствах автоматики и обработки информации используют устройства, осуществляющие логические операции.

Логическая операция - это преобразование по правилам алгебры логики (или булевой алгебры) входной цифровой информации в выходную.

Простейшее в функциональном отношении логическое устройство, выполняющее одну определенную логическую операцию над входными сигналами, называют логическим элементом .

В алгебре логики истинность суждения или высказывания о результатах той или иной логической операции обозначают символом 1, ложность - 0. Таким образом, логические переменные в алгебре логики принимают лишь два значения: единицу и нуль . Их называют двоичными переменными. Чтобы реализовать алгебру логики на электронных элементах, необходимо значение параметров этих элементов перевести на язык алгебры логики (0 или 1). Задавать значения параметров можно уровнем напряжения или полярностью импульсов.

Если сигналы подают в виде высокого (положительной или отрицательной полярности) и низкого (близкого к нулю) уровня напряжения, то такой способ подачи сигнала называют потенциальным. Если высокому уровню напряжения U 1 приписывают значение "единица", а низкому U ° - "нуль", то логику называют положительной (позитивной) , в противном случае - отрицательной (негативной). Разность уровней единицы и нуля называют логическим перепадом U л = U 1 - U 0 . Он должен быть значительным, иначе нельзя будет четко отделить один уровень от другого.

Если сигналы подают в импульсной форме, то такой способ подачи сигнала называют импульсным. При этом логической единице соответствует наличие импульса, логическому нулю - отсутствие импульса (положительная логика). Сигналы, соответствующие 1 (или 0), могут быть на входе и выходе разными. Наибольшее распространение получили потенциальные логические элементы, так как их можно изготовлять по технологии интегральных микросхем.

Элементарные логические операции и типы логических элементов .

Система логических элементов, на базе которой можно строить логическую схему любой сложности, называется функционально полной . Основными и наиболее простыми логическими элементами являются элементы, выполняющие операции отрицания (НЕ), конъюнкции (И), дизъюнкции (ИЛИ). Они составляют функционально полную систему и являются системой минимального базиса. Каждая из этих операций и логических элементов имеет и другое название (табл. 26.1).

Таблица 26.1 Таблица истинности четырёх логических элементов

В этой таблице даны названия логических элементов, обозначение данной операции, показано, как читается запись операции, обозначаются логические элементы в функциональных схемах, а также таблица истинности для случая, когда имеется два входа и один выход. Таблица истинности содержит правила и результат выполнения операций. В каждой ее строке записывают состояние сигналов на входах (х 1 , х 2 ) и результат логической операции на выходе (у). В общем случае логический элемент может иметь n входов и n выходов.

Функционально полную систему могут обеспечить составные (комбинированные) логические элементы, выполняющие логические операции И - НЕ, ИЛИ - НЕ . Их названия, обозначения также даны в табл. 26.1.

Логические элементы выполняют как на дискретных приборах, так и методами интегральной технологии. Для большинства серий интегральных микросхем базисной системой являются составные логические элементы И - НЕ или ИЛИ - НЕ. Их выпускают в виде отдельных микроминиатюрных устройств в герметичном корпусе.

Рассмотрим логические элементы на полупроводниковых приборах. Логические элементы И и ИЛИ могут выполняться на резисторах, диодах, биполярных и полевых транзисторах и туннельных диодах. Элемент НЕ выполняется на транзисторах.

Составные логические элементы на разных ступенях могут выполняться на различных приборах (резисторах, диодах, транзисторах, как биполярных, так и полевых), т. е. могут иметь разные схемные варианты. В соответствии с конструкцией их называют логикой типа резисторно-транзисторной (РТЛ); диодно-транзисторной (ДТЛ); транзисторно-транзисторной (на биполярных транзисторах - ТТЛ; на полевых - р-канальная МОПТЛ, n -канальная МОПТЛ; на комплементарных полевых транзисторах - КМОП или КМОПТЛ; на транзисторах с эмиттерными связями - ТЛЭС или ЭСЛ).

Специфической логикой на транзисторах является инжекционная логика - И2Л, она не имеет аналогов в транзисторных схемах на дискретных элементах. Связь между ступенями логических элементов осуществляется либо непосредственно, либо через резистор, либо через RC -цепочку. Тогда в название логики добавляют соответствующие буквенные обозначения: НСТЛ - транзисторная логика с непосредственной связью; НСТЛМ - транзисторная логика с непосредственной связью на МОП-транзисторе; РЕТЛ - транзисторная логика с резистивно-емкостной связью.

Основные логические элементы в дискретном исполнении .

Логический элемент НЕ (табл. 26.1) имеет один вход и один выход и выполняет операцию НЕ. Он представляет собой усилительный каскад на биполярном или полевом транзисторе, работающий в ключевом режиме. На рис. 26.1 показан элемент НЕ на биполярном npn транзисторе, включенном по схеме с ОЭ.

Элемент предназначен для работы с сигналами положительной полярности в положительной логике. Транзистор T закрыт отрицательным потенциалом на базе, подаваемым от источника ЕБ. При подаче на вход элемента сигнала низкого уровня U вх = U 0 , соответствующего логическому 0, транзистор остается закрытым, коллекторный ток равен нулю, т. е. через резистор R K ток не проходит и на выходе напряжение U вых = +E K , т. е. высокого уровня U 1 , соответствующего логической 1.

При высоком уровне напряжения на входе U вх = U 1 транзистор находится в режиме насыщения, появляется коллекторный ток и на резисторе R K создается падение напряжения, примерно равное E K , а на выходе напряжение примерно равно нулю (U вых = U 0 ), т. е. будет логический нуль. Итак, если х = 0, то y = 1, если x = 1, то y = 0, т. е. элемент является инвертором - выполняет операцию отрицания .

Замечание: Следует отметить, что если элемент выполнен на кремниевом транзисторе n-р-n-структуры, источник смещения E Б можно не включать, так как и при положительных потенциалах на базе (до 0,6 В) транзистор практически закрыт.

Логический элемент И (табл. 26.1)

Может иметь два (или более) входа и один выход и работать как при потенциальных, так и импульсных сигналах. Аналогом его может служить схема из последовательно включенных контактов реле. Рассмотрим работу элемента И, выполненного на диодах.

Элемент, предназначенный для работы с сигналами в виде напряжений (или импульсов) положительной полярности в положительной логике , показан на рис. 26.3, а. Он имеет три входа и один выход. Элемент реализует операцию И, если сигнал 1 появляется на выходе только тогда, когда одновременно на всех входах присутствует сигнал 1 . При этом, если хотя бы на одном входе присутствует сигнал, соответствующий логическому нулю, он должен передаваться через открытый диод на выход и обеспечивать запирание тех диодов, на которые со стороны входа воздействуют сигналы, соответствующие логической 1. Будем считать, что сопротивление открытого диода R доткр << R, а потенциалы сигнала и источника питания E схемы имеют значения, удовлетворяющие соотношению U 0 < Е < U 1 .

Если на одном из входов цепи, например Bх 1 действует сигнал U 0 , то диод Д 1 будет открыт и ток пройдет по цепи +E, резистор R, диод Д 1 , источник U 0 . Все напряжение источника Е приложится к резистору R и на выходе напряжение окажется равным U 0 , т. е. сигнал на выходе - логический нуль. На остальных входах действует высокий потенциал U 1 , поэтому диоды закрыты, так как их анод подсоединен к зажиму на выходе с низким потенциалом U 0 , а катоды - к высокому положительному потенциалу U 1 .

Если на всех входах действует напряжение U 1 , то все диоды будут закрыты, ток в цепи +E K , R, закрытый диод, источник U 1 не проходит и падение напряжения на резисторе R равно нулю. На выходе напряжение E > U 0 , что соответствует логической 1. Таким образом, если хотя бы на один из входов воздействует сигнал, соответствующий логическому нулю, сигнал на выходе также соответствует логическому нулю. Сигнал на выходе соответствует логической 1 только если сигналы на всех входах соответствуют логической единице.

На рис. 26.3,б, г, д показаны элементы, предназначенные соответственно для работы с сигналами отрицательной полярности в положительной логике, положительной (рис. 26.3, г) и отрицательной (рис. 26.3, д) полярности в отрицательной логике. Отметим, что один и тот же элемент может работать как от положительных, так и от отрицательных сигналов, но полярность включения источника питания для положительных сигналов должна быть положительной (+E), для отрицательных сигналов - отрицательной (-E). Работают элементы так же, как и элемент на рис. 26.3, а. Наиболее распространены элементы, показанные на рис. 26.3, а, д.

Элемент И может работать и без источника питания. В этом случае возможны только два варианта включения диода, причем элемент на рис. 26.3, в реализует операцию И только от сигналов отрицательной полярности в положительной логике, а элемент на рис. 26.3, е - только от сигналов положительной полярности в отрицательной логике. Элементы без источника питания менее предпочтительны, чем с источником питания.

Логический элемент ИЛИ (табл. 26.1)

Может иметь два (и более) входа, один выход и работать как при потенциальных, так и при импульсных сигналах. Аналогом его может служить схема из параллельно включенных реле.

Рассмотрим элемент ИЛИ, выполненный на диодах и предназначенный для работы от сигналов в виде напряжений (импульсов) положительной полярности в положительной логике. Для того чтобы элемент реализовал операцию ИЛИ, необходимо, чтобы сигнал на выходе имел значение 1 только тогда, когда хотя бы на одном из входов действует сигнал 1 . При этом сигнал 1 на входе должен обеспечивать запирание всех диодов, на которые со стороны входа воздействует сигнал 0. Соотношение потенциалов источника сигналов низкого U 0 и высокого U 1 уровней и источника питания Е схемы такое же, как и в схеме элемента И: U 0 < E < U 1 (если U 1 < E, то диоды будут всегда закрыты и выходное напряжение не будет изменяться). Сопротивление диода в открытом состоянии R Доткр ≈ 0.

Если на все входы подано низкое напряжение U 0 , все диоды закрыты, так как потенциал их анодов ниже потенциала катодов (φ K = -E); следовательно, напряжение на выходе равно E < U 1 , т. е. на выходе сигнал соответствует логическому 0. При подаче хотя бы на один из входов, например Вх 1 , высокого напряжения U 1 откроется диод Д 1 , который подключен к этому входу, а так как сопротивление открытого диода равно нулю, то потенциал φ K = +U 1 и на выходе имеется сигнал U 1 (логическая 1). Если в это время на какие-то диоды со стороны входа будет подан низкий потенциал U 0 , они окажутся закрытыми, так как их катодам сообщится потенциал φ K = +U 1 . Таким образом, на выходе сигнал будет соответствовать логической 1, если хотя бы на одном из входов (или первом, или втором, или третьем) сигнал соответствует логической 1.

Сравним рис. 26.5, а, на котором показан элемент ИЛИ, предназначенный для работы от сигналов положительной полярности в отрицательной логике, с рис. 26.3, г. Они одинаковы. Таким образом, можно отметить, что элемент ИЛИ в положительной логике может выполнить операцию И в отрицательной логике, и наоборот. Все элементы И на рис. 26.3 в другой логике, чем для элемента И, реализуют операцию ИЛИ.

Элемент ИЛИ, как и элемент И, может не содержать источника питания. Элемент на рис. 26.5,б предназначен для работы от сигналов положительной полярности в положительной логике, а на рис. 26.5, в - от сигналов отрицательной полярности в отрицательной логике. Сравнение этих элементов ИЛИ с элементами И на рис. 26.3, в, е подтверждает, что оба элемента могут выполнять обе операции: и И, и ИЛИ; элемент И (ИЛИ) - в положительной логике, в отрицательной логике - ИЛИ (И).

Операции ИЛИ - НЕ и И - НЕ образуются путем инверсии результатов, получаемых при выполнении операции ИЛИ и И соответственно:

ИЛИ - НЕ (26.1)

И - НЕ (26.2)

что видно из таблицы истинности для двух входных элементов (табл. 26.2).

Таблица 26.2 - таблица истинности для двух входных элементов

Элемент, выполняющий операцию И - НЕ в положительной логике (табл. 26.3), в отрицательной логике выполнит операцию ИЛИ - НЕ (табл. 26.4).

Таблица 26.3 Таблица 26.4

Логические элементы в интегральном исполнении предназначают для работы с сигналами в потенциальной форме. Они могут выполняться по логике разных типов. Тип логики влияет на характеристики элемента. В интегральных биполярных микросхемах чаще используют кремниевые транзисторы n-p-n-типа (см. замечание к элементу НЕ). В режиме насыщения напряжение между эмиттером и коллектором таких транзисторов сравнительно велико (0,4 В и выше).

Лекция 27

ОСновы цифровой схемотехники

27.1 логические элементы на транзисторах

Логический элемент И - НЕ диодно-транзисторной логики (ДТЛ). Входные сигналы подаются на элемент И, выходной сигнал снимается с элемента НЕ . Таким образом, на выходе элемента И - НЕ сигналом будет логическая 1, если на входе элемента НЕ присутствует сигнал, соответствующий логическому 0. Чтобы это имело место, хотя бы на один вход элемента И должен быть подан сигнал, соответствующий логическому 0. Логический элемент И - НЕ для сигналов положительной полярности показан на рис. 27.1. Он представляет собой соединение через диоды Д с двух элементов: диодного элемента И и транзисторного элемента НЕ (см. соответственно рис. 26.3, а и рис. 26.1, на которых показаны элементы НЕ и И). При этом элемент "НЕ" не имеет источника смещения E Б , исходя из сделанного ранее замечания о работе кремниевых транзисторов. Кроме того, значения напряжений, соответствующих логическим 0 и 1, необходимо выбрать должным образом, так как при напряжении на базе, несколько меньшем 0,6В, транзистор будет закрыт, а в режиме насыщения напряжение между эмиттером и коллектором равно 0,4 В (и выше).

Рассмотрим работу элемента. Если на все входы подано напряжение U 1 (логическая 1), все диоды (Д 1 Д 2 , Д 3 ) будут закрыты и ток в цепи источник E 1 , резистор R 1 , открытые диоды Дc пройдет в базу транзистора. Вследствие падения напряжения на резисторе R 1 потенциал φ 1 окажется несколько ниже потенциала +E 1 , диод Д 1 будет открыт и потенциал базы φ Б транзистора меньше потенциала φ 1 на значение падения напряжения на диодах Дc (но выше 0,6В, так что транзистор будет находиться в режиме насыщения). На выходе элемента НЕ установится низкое напряжение U 0 , соответствующее логическому 0. Если хотя бы на один вход, например Вх 1 , будет подано напряжение U 0 , то соответствующий диод Д 1 будет открыт и потенциал φ 1 будет ≈ U 0 . Ток от источника E 1 будет проходить через резистор R 1 . Часть тока замкнется через открытый диод Д 1 ; источник U 0 , источник E 1 , часть - через смещающие диоды Дc, резистор R 2 и источник E 1 . Потенциал базы φ Б = U БЭ будет ниже потенциала φ 1 на значение падения напряжения на смещающих диодах Дc. При этом элемент рассчитывают таким образом, чтобы падение напряжения на диодах Дc было таким, чтобы φ Б = U БЭ > 0, но значительно меньше 0,6В. В этом случае транзистор будет закрыт и на выходе элемента НЕ напряжение окажется равным E K > U 0 , т. е. получим логическую 1.

Логический элемент И - НЕ транзисторно-транзисторной логики (ТТЛ) . Простейший элемент И - НЕ показан на рис. 27.2, а. Он состоит из двух частей: элемента И на многоэмиттерном транзисторе Т 1 и элемента НЕ на транзисторе Т 2 . Связь непосредственная: коллектор Т 1 соединен с базой транзистора Т 2 . Смещение в цепи базы транзистора Т 2 выполняет коллекторный переход Т 1 . Три эмиттерных перехода Т 1 подключенных к входу элемента (рис. 27.2,б), выполняют функции входных диодов в схеме И на диодах.

По сравнению с ДТЛ-элементами элементы ТТЛ обладают более высоким быстродействием. Элемент выполнен по технологии интегральных микросхем, поэтому он не содержит реактивных элементов. Он работает от сигналов в виде напряжений положительной полярности.

Рассмотрим принцип работы подобных элементов. Если на все входы подать напряжение U 1 , то все эмиттерные переходы сместятся в обратном направлении. Потенциал коллектора транзистора Т 2 окажется близким нулю, переход база - коллектор смещен в прямом направлении за счет источника +E K . Транзистор T 1 будет в инверсном режиме, транзистор Т 2 - в режиме насыщения. Коллекторный ток транзистора T 1 втекает в базу транзистора Т 2 , оставляя последний в режиме насыщения. Таким образом, на выходе будет напряжение низкого уровня U 0 , т. е. логический 0.

Если на один из входов подано напряжение U 0 , то потенциал базы транзистора T 1 станет выше потенциалов эмиттера и коллектора, поэтому T 1 окажется в режиме насыщения и ток базы замкнется через эмиттерные переходы T 1 и не поступит в его коллектор, а следовательно, и в базу T 2 . Поэтому транзистор T 2 будет закрыт, а на его выходе - напряжение высокого уровня (логическая 1). Таким образом, элемент выполняет операцию И - НЕ, так как сигнал логического нуля на выходе может быть только тогда, когда на все входы будет подан сигнал логической единицы.

27.2.1 Логический элемент ИЛИ - НЕ п-канальной МОП-транзисторной логики (МОПТЛ ). В логических схемах на полевых транзисторах используют только МОП-транзисторы с диэлектриком SiO 2 . Основные преимущества схем на МОП-транзисторах по сравнению с другими схемами - высокая степень интеграции и повышенная помехоустойчивость.

Рассмотрим схему ИЛИ - НЕ на МОП-транзисторе с индуцированным n-каналом (рис. 27.3). В отличие от рассмотренных ранее схем в ней вместо нагрузочного резистора R K имеется МОП-транзистор (на схеме рис. 27.3 он обозначен Т K ). Это связано с тем, что нагрузочный резистор сильно увеличил бы площадь схемы. Логические транзисторы Т 1 и Т 2 включены параллельно. Входное напряжение на каждом из них равно напряжению затвора: U ВХ1 = U ЗИ1 , U ВХ2 = U ЗИ2 ; выходное напряжение равно напряжению стока: U ВЫХ = U СИ . Напряжение питания обычно выбирают в три раза большим порогового Uпор (Uпор - напряжение на затворе, при котором образуется канал).

Если Uпор = 2,0В, то логический перепад (разность между входным и пороговым напряжениями) составляет 4 В. Логические уровни соответствуют выходным напряжениям открытого и закрытого транзисторов. Если на оба входа подать напряжение меньше порогового (соответствующее логическому нулю), то транзисторы T 1 и Т 2 окажутся закрытыми, а ток стока - практически равным нулю. При этом ток стока нагрузочного транзистора Т K тоже будет равен нулю. Поэтому на выходе установится напряжение, близкое к напряжению источника питания Е C и соответствующее логической 1.

Если на вход хотя бы одного транзистора подать напряжение, превышающее пороговое (соответствующее логической 1), то этот транзистор откроется и появится ток стока. Тогда на выходе схемы будет остаточное напряжение, значительно меньшее порогового, что соответствует логическому 0.

27.2.2 МОП-транзисторная логика на комплементарных транзисторах (КМОП). Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов (рис. 27.4); как следствие, КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

Для примера рассмотрим схему вентиля 2И-НЕ, построенного по технологии КМОП (рисунок 27.5).

Если на оба входа A и B подан высокий уровень, то оба транзистора снизу на схеме открыты, а оба верхних закрыты, то есть выход соединён с землёй.

Если хотя бы на один из входов подать низкий уровень, соответствующий транзистор сверху будет открыт, а снизу закрыт. Таким образом, выход будет соединён с напряжением питания и отсоединён от земли.

В схеме нет никаких нагрузочных сопротивлений, поэтому в статическом состоянии через КМОП-схему протекают только токи утечки через закрытые транзисторы, и энергопотребление очень низкое. При переключениях электрическая энергия тратится в основном на заряд емкостей затворов и проводников, так что потребляемая (и рассеиваемая) мощность пропорциональна частоте этих переключений (например, тактовой частоте процессора).

Схема 2ИЛИ-НЕ (рисунок 27.6) работает следующим образом: когда на оба входа подан низкий уровень, оба транзистора вверху открыты и на выход подаётся высокий уровень. Если на один из входов подать высокий уровень, тогда один из транзисторов снизу будет открыт и выход будет соединён с землёй.

На рисунке с топологией микросхемы 2И-НЕ можно заметить, что в ней используются два двухзатворных полевых транзистора разных конструкций. Верхний двухзатворный полевой транзистор выполняет логическую функцию 2ИЛИ, а нижний двухзатворный полевой транзистор выполняет логическую функцию 2И.

Ниже приведена схема 2ИЛИ-НЕ, применяемая на ОАО "Интеграл".

Все обозначения на рисунке 27.6 взяты с библиотеки вентильного уровня ОАО "Интеграл". Там же (в библиотеке) приведены временные задержки и рассеиваеме мощности при различных нагрузках вентиля и его топоплогическая реализация.

Подавляющее большинство современных логических микросхем, в том числе, процессоров, используют схемотехнику КМОП.

Изучение цифровой схемотехники нужно начинать с теории автоматов. В этой статье можно найти некоторые элементарные вещи, которые помогут не потеряться в дальнейших статьях. Я постарался сделать статью легкочитабельной и уверен, что неподготовленный читатель сможет в ней легко разобраться.


Сигнал - материальный носитель информации, используемый для передачи сообщений по системе связи. Сигнал, в отличие от сообщения, может генерироваться, но его приём не обязателен (сообщение должно быть принято принимающей стороной, иначе оно не является сообщением, а всего лишь сигналом).

В статье рассматривается цифровой дискретный сигнал. Это такой сигнал, который имеет несколько уровней. Очевидно, что двоичный сигнал имеет два уровня - и их принимают за 0 и 1. Когда высокий уровень обозначается единицей, а низкий нулем - такая логика называется позитивной, иначе негативной.

Цифровой сигнал можно представить в виде временной диаграммы.

В природе дискретных сигналов не существует, по этому их заменяют аналоговыми. Аналоговый сигнал не может перейти из 0 в 1 мгновенно, по этому такой сигнал обладает фронтом и срезом .
Если рисовать упрощенно то это выглядит так:

1 - низкий уровень сигнала, 2 - высокий уровень сигнала, 3 - нарастание сигнала (фронт), 4 - спад сигнала (срез)

Сигналы можно преобразовывать. Для этого на практике используются логические элементы, а чтобы это записать формально используются логические функции. Вот основные:

Отрицание - инвертирует сигнал.
На схемах обозначается так:

Логическое ИЛИ (логическое сложение, дизъюнкция)

На схеме:

Логическое И (логическое умножение, конъюнкция)

На схеме:

Последние два могут иметь отрицание на выходе (И-НЕ, ИЛИ-НЕ). Значения их логических функций инвертируются, а на схеме выход рисуется кружочком.

Сводная таблица логических функций двух аргументов выглядит так:

Работа с логическими функциями основывается на законах алгебры логики , основы которых изложены в прикрепленном файле. Так же там есть задания для самоконтроля и контрольные вопросы по теме.

Проектирование логических схем с помощью функций алгебры логики

Логической схемой называется совокупность логических электронных элементов, соединенных между собой таким образом, чтобы выполнялся заданный закон функционирования схемы, иначе говоря, - выполнялась заданная логическая функция.
По зависимости выходного сигнала от входного все электронные логические схемы можно условно разбить на:

Схемы первого рода , т.е. комбинационные схемы , выходной сигнал которых зависит только от состояния входных сигналов в каждый момент времени;

Схемы второго рода или накапливающие схемы (схемы последовательностные ), содержащие накапливающие схемы (элементы с памятью ), выходной сигнал которых зависит как от входных сигналов, так и от состояния схемы в предыдущие моменты времени.

По количеству входов и выходов схемы бывают: с одним входом и одним выходом, с несколькими входами и одним выходом, с одним входом и несколькими выходами, с несколькими входами и выходами.

По способу осуществления синхронизации схемы бывают с внешней синхронизацией (синхронные автоматы), с внутренней синхронизацией (асинхронные автоматы являются их частным случаем).

Практически любой компьютер состоит из комбинации схем первого и второго рода разной сложности. Таким образом, основой любого цифрового автомата, обрабатывающего цифровую информацию, являются электронные элементы двух типов: логические или комбинационные и запоминающие . Логические элементы выполняют простейшие логические операции над цифровой информацией, а запоминающие служат для ее хранения. Как известно, логическая операция состоит в преобразовании по определенным правилам входной цифровой информации в выходную.

Можно считать, что элементарные логические функции являются логическими операторами упомянутых электронных элементов, т.е. схем. Каждая такая схема обозначается определенным графическим символом. (Они были представлены выше - Элементы И, ИЛИ, НЕ, ИЛИ-НЕ, И-НЕ)

В качестве примера ниже представлена схема электрическая функциональная логического преобразователя (комбинационного автомата), реализующего логическую функцию в элементном базисе из логических элементов И, ИЛИ, НЕ.

Для закрепления предлагаю, самостоятельно синтезировать логическую схему, реализующую следующие логические функции:

Сделать это можно к примеру в Electronic workbench.

Вот для примера первое выполненное задание: