Диаграммы UML. UML: от теории к практике Как соотносятся понятия модели и диаграммы

В настоящее время язык UML - это стандартная нотация визуального моделирования программных систем, принятая консорциумом Object Managing Group (OMG) осенью 1997 г., которая поддерживается многими объектно-ориентированными CASE-продуктами.

Стандарт UML предлагает следующий набор диаграмм для моделирования:

· диаграмма вариантов использования (use case diagram) – для моделирования бизнес-процессов организации или предприятия и определения требований к создаваемой информационной системе;

· диаграмма классов (class diagram) – для моделирования статической структуры классов системы и связей между ними;

· диаграмма поведения системы (behavior diagrams);

· диаграмма взаимодействия (interaction diagrams);

· диаграмма последовательности (sequence diagrams) – для моделирования процесса обмена сообщениями между объектами в рамках одного варианта использования;

· диаграмма кооперации (collaboration diagram) – для моделирования процесса обмена сообщениями между объектами в рамках одного варианта использования;

· диаграмма состояний (statechart diagram) – для моделирования поведения объектов системы при переходе из одного состояния в другое;

· диаграмма видов деятельности (activity diagram) – для моделирования поведения системы в рамках различных вариантов использования, или моделирования деятельностей;

· диаграмма реализации (implementation diagrams):

· диаграмма компонентов (component diagrams) – для моделирования иерархии компонентов (подсистем) информационной системы;

· диаграмма развертывания (deployment diagram) – для моделирования физической архитектуры спроектированной информационной системы.

На рис. 1.1 представлена интегрированная модель информационной системы, включающая основные диаграммы, которые должны быть разработаны в данном курсовом проекте.

Рис. 1. Интегрированная модель информационной системы в нотации языка UML

4.2. Диаграмма вариантов использования

Вариант использования представляет собой последовательность действий, выполняемых системой в ответ на событие, инициируемое некоторым внешним объектом (актером). Вариант использования описывает типичное взаимодействие между пользователем и системой. В простейшем случае вариант использования определяется в процессе обсуждения с пользователем тех функций, которые он хотел бы реализоватьв данной информационной системе. На языке UML вариант использования изображают следующим образом:

Рис.2. Вариант использования

Актер (actor) – это роль, которую пользователь играет по отношению к системе. Актеры представляют собой роли, а не конкретных людей или наименования работ. Несмотря на то, что на диаграммах вариантов использования они изображаются в виде стилизованных человеческих фигурок, актер может также быть внешней информационной системой, которой необходима некоторая информация от данной системы. Показывать на диаграмме актеров следует только в том случае, когда им действительно необходимы некоторые варианты использования. На языке UML актеры представляют в виде фигур:



Рис.3. Действующее лицо (актер)

Актеры делятся на три основных типа:

· пользователи;

· системы;

· другие системы, взаимодействующие с данной;

Время становится актером, если от него зависит запуск каких-либо событий в системе.

4.2.1. Связи между вариантами использования и актерами

В языке UML на диаграммах вариантов использования поддерживается несколько типов связей между элементами диаграммы:

· коммуникация (communication),

· включение (include),

· расширение (extend),

· обобщение (generalization).

Связь коммуникации – это связь между вариантом использования и актером. На языке UML связи коммуникации показывают с помощью однонаправленной ассоциации (сплошной линии).

Рис.4. Пример связи коммуникации

Связь включения применяется в тех ситуациях, когда имеется какой-либо фрагмент поведения системы, который повторяется более чем в одном варианте использования. С помощью таких связей обычно моделируют многократно используемую функцию.

Связь расширения применяется при описании изменений в нормальном поведении системы. Она позволяет одному варианту использования при необходимости использовать функциональные возможности другого варианта использования.

Рис.5. Пример связи включения и расширения

Связь обобщения показывает, что у нескольких актеров или классов имеются общие свойства.

Рис.6. Пример связи обобщения

4.3.



Диаграммы взаимодействия (interaction diagrams) описывают поведение взаимодействующих групп объектов. Как правило, диаграмма взаимодействия охватывает поведение объектов в рамках только одного варианта использования. На такой диаграмме отображается ряд объектов и те сообщения, которыми они обмениваются между собой.

Сообщение (message) – это средство, с помощью которого объект-отправитель запрашивает у объекта получателя выполнение одной из его операций.

Информационное (informative) сообщение – это сообщение, снабжающее объект-получатель некоторой информацией для обновления его состояния.

Сообщение-запрос (interrogative) – это сообщение, запрашивающее выдачу некоторой информации об объекте-получателе.

Императивное (imperative) сообщение – это сообщение, запрашивающее у объекта-получателя выполнение некоторых действий.

Существует два вида диаграмм взаимодействия: диаграммы последовательности (sequence diagrams) и диаграммы кооперац (collaboration diagrams).

4.3.1. Диаграмма последовательности (sequence diagrams)

Диаграмма последовательности отражает поток событий, происходящих в рамках одного варианта использования.

Все действующие лица (актеры, классы или объекты), участвующие в данном сценарии (варианте использования), показываются в верхней части диаграммы. Стрелки соответствуют сообщениям, передаваемым между актером и объектом или между объектами для выполнения требуемых функций.

На диаграмме последовательности объект изображается в виде прямоугольника, от которого вниз проведена пунктирная вертикальная линия. Эта линия называется линией жизни (lifeline) объекта . Она представляет собой фрагмент жизненного цикла объекта в процессе взаимодействия.

Каждое сообщение представляется в виде стрелки между линиями жизни двух объектов. Сообщения появляются в том порядке, как они показаны на странице сверху вниз. Каждое сообщение помечается как минимум именем сообщения. При желании можно добавить также аргументы и некоторую управляющую информацию. Можно показать самоделегирование (self-delegation) – сообщение, которое объект посылает самому себе, при этом стрелка сообщения указывает на ту же самую линию жизни.

Рис. 7. Пример диаграммы последовательности

4.3.2. Диаграмма кооперации (collaboration diagram)

Диаграммы кооперации отображают поток событий в рамках конкретного сценария (варианта использования). Сообщения упорядочены по времени, хотя диаграммы кооперации больше внимания заостряют на связях между объектами. На диаграмме кооперации представлена вся та информация, которая есть и на диаграмме последовательности, но диаграмма кооперации по-другому описывает поток событий. Из нее легче понять связи, существующие между объектами.

На диаграмме кооперации так же, как и на диаграмме последовательности, стрелки обозначают сообщения, обмен которыми осуществляется в рамках данного варианта использования. Их временная последовательность указывается путем нумерации сообщений.

Рис. 8. Пример диаграммы кооперации

4.4. Диаграмма классов

4.4.1. Общие сведения

Диаграмма классов определяет типы классов системы и различного рода статические связи, которые существуют между ними. На диаграммах классов изображаются также атрибуты классов, операции классов и ограничения, которые накладываются на связи между классами.

Диаграмма классов в языке UML - это граф, узлами которого являются элементы статической структуры проекта (классы, интерфейсы), а дугами - отношения между узлами (ассоциации, наследование, зависимости).

На диаграмме классов изображаются следующие элементы:

· Пакет (package) - набор элементов модели, логически связанных между собой;

· Класс (class) - описание общих свойств группы сходных объектов;

· Интерфейс (interface) - абстрактный класс, задающий набор операций, которые объект произвольного класса, связанного с данным интерфейсом, предоставляет другим объектам.

4.4.2. Класс

Класс - это группа сущностей (объектов), обладающих сходными свойствами, а именно, данными и поведением. Отдельный представитель некоторого класса называется объектом класса или просто объектом.

Под поведением объекта в UML понимаются любые правила взаимодействия объекта с внешним миром и с данными самого объекта.

На диаграммах класс изображается в виде прямоугольника со сплошной границей, разделенного горизонтальными линиями на 3 секции:

Верхняя секция (секция имени) содержит имя класса и другие общие свойства (в частности, стереотип).

В средней секции содержится список атрибутов

В нижней - список операций класса, отражающих его поведение (действия, выполняемые классом).

Любая из секций атрибутов и операций может не изображаться (а также обе сразу). Для отсутствующей секции не нужно рисовать разделительную линию и как-либо указывать на наличие или отсутствие элементов в ней.

На усмотрение конкретной реализации могут быть введены дополнительные секции, например, исключения (Exceptions).

Рис. 9. Пример диаграммы классов

4.4.2.1.Стереотипы классов

Стереотипы классов – это механизм, позволяющий разделять классы на категории.

В языке UML определены три основных стереотипа классов:

Boundary (граница);

Entity (сущность);

Control (управление).

4.4.2.2.Граничные классы

Граничными классами (boundary classes) называются такие классы, которые расположены на границе системы и всей окружающей среды. Это экранные формы, отчеты, интерфейсы с аппаратурой (такой как принтеры или сканеры) и интерфейсы с другими системами.

Чтобы найти граничные классы, надо исследовать диаграммы вариантов использования. Каждому взаимодействию между действующим лицом и вариантом использования должен соответствовать, по крайней мере, один граничный класс. Именно такой класс позволяет действующему лицу взаимодействовать с системой.

4.4.2.3.Классы-сущности

Классы-сущности (entity classes) содержат хранимую информацию. Они имеют наибольшее значение для пользователя, и потому в их названиях часто используют термины из предметной области. Обычно для каждого класса-сущности создают таблицу в базе данных.

4.4.2.4.Управляющие классы

Управляющие классы (control classes) отвечают за координацию действий других классов. Обычно у каждого варианта использования имеется один управляющий класс, контролирующий последовательность событий этого варианта использования. Управляющий класс отвечает за координацию, но сам не несет в себе никакой функциональности, так как остальные классы не посылают ему большого количества сообщений. Вместо этого он сам посылает множество сообщений. Управляющий класс просто делегирует ответственность другим классам, по этой причине его часто называют классом-менеджером.

В системе могут быть и другие управляющие классы, общие для нескольких вариантов использования. Например, может быть класс SecurityManager (менеджер безопасности), отвечающий за контроль событий, связанных с безопасностью. Класс TransactionManager (менеджер транзакций) занимается координацией сообщений, относящихся к транзакциям с базой данных. Могут быть и другие менеджеры для работы с другими элементами функционирования системы, такими как разделение ресурсов, распределенная обработка данных или обработка ошибок.

Помимо упомянутых выше стереотипов можно создавать и свои собственные.

4.4.2.5.Атрибуты

Атрибут – это элемент информации, связанный с классом. Атрибуты хранят инкапсулированные данные класса.

Так как атрибуты содержатся внутри класса, они скрыты от других классов. В связи с этим может понадобиться указать, какие классы имеют право читать и изменять атрибуты. Это свойство называется видимостью атрибута (attribute visibility).

У атрибута можно определить четыре возможных значения этого параметра:

Public (общий, открытый). Это значение видимости предполагает, что атрибут будет виден всеми остальными классами. Любой класс может просмотреть или изменить значение атрибута. В соответствии с нотацией UML общему атрибуту предшествует знак « + ».

Private (закрытый, секретный). Соответствующий атрибут не виден никаким другим классом. Закрытый атрибут обозначается знаком « – » в соответствии с нотацией UML.

Protected (защищенный). Такой атрибут доступен только самому классу и его потомкам. Нотация UML для защищенного атрибута – это знак « # ».

Package or Implementation (пакетный). Предполагает, что данный атрибут является общим, но только в пределах его пакета. Этот тип видимости не обозначается никаким специальным значком.

С помощью закрытости или защищенности удается избежать ситуации, когда значение атрибута изменяется всеми классами системы. Вместо этого логика изменения атрибута будет заключена в том же классе, что и сам этот атрибут. Задаваемые параметры видимости повлияют на генерируемый код.

4.4.2.6.Операции

Операции реализуют связанное с классом поведение. Операция включает три части – имя, параметры и тип возвращаемого значения.

Параметры – это аргументы, получаемые операцией «на входе». Тип возвращаемого значения относится к результату действия операции.

На диаграмме классов можно показывать как имена операций, так и имена операций вместе с их параметрами и типом возвращаемого значения. Чтобы уменьшить загруженность диаграммы, полезно бывает на некоторых из них показывать только имена операций, а на других их полную сигнатуру.

В языке UML операции имеют следующую нотацию:

Имя Операции (аргумент: тип данных аргумента, аргумент2:тип данных аргумента2,...): тип возвращаемого значения

Следует рассмотреть четыре различных типа операций:

Операции реализации;

Операции управления;

Операции доступа;

Вспомогательные операции.

Операции реализации

Операции реализации (implementor operations) реализуют некоторые бизнес-функции. Такие операции можно найти, исследуя диаграммы взаимодействия. Диаграммы этого типа фокусируются на бизнес-функциях, и каждое сообщение диаграммы, скорее всего, можно соотнести с операцией реализации.

Каждая операция реализации должна быть легко прослеживаема до соответствующего требования. Это достигается на различных этапах моделирования. Операция выводится из сообщения на диаграмме взаимодействия, сообщения исходят из подробного описания потока событий, который создается на основе варианта использования, а последний – на основе требований. Возможность проследить всю эту цепочку позволяет гарантировать, что каждое требование будет реализовано в коде, а каждый фрагмент кода реализует какое-то требование.

Операции управления

Операции управления (manager operations) управляют созданием и уничтожением объектов. В эту категорию попадают конструкторы и деструкторы классов.

Операции доступа

Атрибуты обычно бывают закрытыми или защищенными. Тем не менее, другие классы иногда должны просматривать или изменять их значения. Для этого существуют операции доступа (access operations). Такой подход дает возможность безопасно инкапсулировать атрибуты внутри класса, защитив их от других классов, но все же позволяет осуществить к ним контролируемый доступ. Создание операций Get и Set (получения и изменения значения) для каждого атрибута класса является стандартом.

Вспомогательные операции

Вспомогательными (helper operations) называются такие операции класса, которые необходимы ему для выполнения его ответственностей, но о которых другие классы не должны ничего знать. Это закрытые и защищенные операции класса.

Чтобы идентифицировать операции, выполните следующие действия:

1. Изучите диаграммы последовательности и кооперативные диаграммы. Большая часть сообщений на этих диаграммах является операциями реализации. Рефлексивные сообщения будут вспомогательными операциями.

2. Рассмотрите управляющие операции. Может потребоваться добавить конструкторы и деструкторы.

3. Рассмотрите операции доступа. Для каждого атрибута класса, с которым должны будут работать другие классы, надо создать операции Get и Set.

4.4.2.7.Связи

Связь представляет собой семантическую взаимосвязь между классами. Она дает классу возможность узнавать об атрибутах, операциях и связях другого класса. Иными словами, чтобы один класс мог послать сообщение другому на диаграмме последовательности или кооперативной диаграмме, между ними должна существовать связь.

Существуют четыре типа связей, которые могут быть установлены между классами: ассоциации, зависимости, агрегации и обобщения.

Связь ассоциация

Ассоциация (association) – это семантическая связь между классами. Их рисуют на диаграмме классов в виде обыкновенной линии.

Рис. 10. Связь ассоциация

Ассоциации могут быть двунаправленными, как в примере, или однонаправленными. На языке UML двунаправленные ассоциации рисуют в виде простой линии без стрелок или со стрелками с обеих ее сторон. На однонаправленной ассоциации изображают только одну стрелку, показывающую ее направление.

Направление ассоциации можно определить, изучая диаграммы последовательности и кооперативные диаграммы. Если все сообщения на них отправляются только одним классом и принимаются только другим классом, но не наоборот, между этими классами имеет место однонаправленная связь. Если хотя бы одно сообщение отправляется в обратную сторону, ассоциация должна быть двунаправленной.

Ассоциации могут быть рефлексивными. Рефлексивная ассоциация предполагает, что один экземпляр класса взаимодействует с другими экземплярами этого же класса.

Связь зависимость

Связи зависимости (dependency) также отражают связь между классами, но они всегда однонаправлены и показывают, что один класс зависит от определений, сделанных в другом. Например, класс A использует методы класса B. Тогда при изменении класса B необходимо произвести соответствующие изменения в классе A.

Зависимость изображается пунктирной линией, проведенной между двумя элементами диаграммы, и считается, что элемент, привязанный к концу стрелки, зависит от элемента, привязанного к началу этой стрелки.

Рис. 11. Связь зависимость

При генерации кода для этих классов к ним не будут добавляться новые атрибуты. Однако, будут созданы специфические для языка операторы, необходимые для поддержки связи.

Связь агрегация

Агрегации (aggregations) представляют собой более тесную форму ассоциации. Агрегация – это связь между целым и его частью. Например, у вас может быть класс Автомобиль, а также классы Двигатель, Покрышки и классы для других частей автомобиля. В результате объект класса Автомобиль будет состоять из объекта класса Двигатель, четырех объектов Покрышек и т. д. Агрегации визуализируют в виде линии с ромбиком у класса, являющегося целым:

Рис. 11. Связь агрегация

В дополнение к простой агрегации UML вводит более сильную разновидность агрегации, называемую композицией. Согласно композиции, объект-часть может принадлежать только единственному целому, и, кроме того, как правило, жизненный цикл частей совпадает с циклом целого: они живут и умирают вместе с ним. Любое удаление целого распространяется на его части.

Такое каскадное удаление нередко рассматривается как часть определения агрегации, однако оно всегда подразумевается в том случае, когда множественность роли составляет 1..1; например, если необходимо удалить Клиента, то это удаление должно распространиться и на Заказы (и, в свою очередь, на Строки заказа).

        Унифицированный язык моделирования (Unified Modeling Language - UML) это язык для специфицирования, визуализации, конструирования и документирования программных систем, а так же бизнес моделей и прочих не программных систем. UML представляет собой объединение инженерных приемов, которые ранее успешно использовались при моделировании больших и сложных систем

        Создатели UML представляют его как язык для определения, представления, проектирования и документирования программных систем, бизнес-систем и других систем различной природы. UML определяет нотацию и метамодель. Нотация представляет собой совокупность графических объектов, которые используются в моделях; она является синтаксисом языка моделирования.

        UML предоставляет выразительные средства для создания визуальных моделей, которые:

  • единообразно понимаются всеми разработчиками, вовлеченными в проект;
  • являются средством коммуникации в рамках проекта.

        Унифицированный Язык Моделирования (UML):

  • не зависит от объектно-ориентированных (ОО) языков программирования;
  • не зависит от используемой методологии разработки проекта;
  • может поддерживать любой ОО язык программирования.

        UML является открытым и обладает средствами расширения базового ядра. На UML можно содержательно описывать классы, объекты и компоненты в различных предметных областях, часто сильно отличающихся друг от друга.

Диаграммы UML

        В распоряжение проектировщика системы Rational Rose предоставляет следующие типы диаграмм, последовательное создание которых позволяет получить полное представление о всей проектируемой системе и об отдельных ее компонентах:

  • Use case diagram (диаграммы прецедентов);
  • Deployment diagram (диаграммы топологии);
  • Statechart diagram (диаграммы состояний);
  • Interaction diagram (диаграммы взаимодействия); Activity diagram (диаграммы активности);
  • Sequence diagram (диаграммы последовательностей действий);
  • Collaboration diagram (диаграммы сотрудничества);
  • Class diagram (диаграммы классов);
  • Component diagram (диаграммы компонент);
  • Behavior diagrams (диаграммы поведения);
  • Activity diagram (диаграмма деятельности);
  • Implementation diagrams(диаграммы реализации);

        Каждая из этих диаграмм конкретизирует различные представления о модели системы. При этом, диаграмма вариантов использования представляет концептуальную модель системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов является логической моделью, отражающей статические аспекты структурного построения системы, а диаграммы поведения, также являющиеся разновидностями логической модели, отражают динамические аспекты её функционирования. Диаграммы реализации служат для представления компонентов системы и относятся к ее физической модели.

        Из перечисленных выше диаграмм некоторые служат для обозначения двух и более подвидов. В качестве же самостоятельных представлений используются следующие диаграммы: вариантов использования, классов, состояний, деятельности, последовательности, кооперации, компонентов и развертывания.

        Для диаграмм языка UML существуют три типа визуальных обозначений, которые важны с точки зрения заключенной в них информации:

  • связи , которые представляются различными линиями на плоскости;
  • текст , содержащийся внутри границ отдельных геометрических фигур;
  • графические символы , изображаемые вблизи визуальных элементов диаграмм.

        При графическом изображении диаграмм рекомендуется придерживаться следующих правил:

  • каждая диаграмма должна быть законченным представлением некоторого фрагмента моделируемой предметной области;
  • представленные на диаграмме сущности модели должны быть одного концептуального уровня;
  • вся информация о сущностях должна быть явно представлена на диаграмме;
  • диаграммы не должны содержать противоречивой информации;
  • диаграммы не следует перегружать текстовой информацией;
  • каждая диаграмма должна быть самодостаточной для правильной интерпретации всех ее элементов;
  • количество типов диаграмм, необходимых для описания конкретной системы, не является строго фиксированным и определяется разработчиком;
  • модели системы должны содержать только те элементы, которые определены в нотации языка UML.

Сущности в UML

        В UML определены четыре типа сущностей: структурные, поведенческие, группирующие и аннотационные . Сущности являются основными объектно-ориентированными элементами языка, с помощью которых создаются модели.

       Структурные сущности - это имена существительные в моделях на языке UML. Как правило, они представляют статические части модели, соответствующие концептуальным или физическим элементам системы. Примерами структурных сущностей являются "класс", "интерфейс", "кооперация", "прецедент", "компонент", "узел", "актер".

        Поведенческие сущности являются динамическими составляющими модели UML. Это глаголы, которые описывают поведение модели во времени и в пространстве. Существует два основных типа поведенческих сущностей:

  • взаимодействие - это поведение, суть которого заключается в обмене сообщениями между объектами в рамках конкретного контекста для достижения определенной цели;
  • автомат - алгоритм поведения, определяющий последовательность состояний, через которые объект или взаимодействие проходят в ответ на различные события.

        Группирующие сущности являются организующими частями модели UML. Это блоки, на которые можно разложить модель. Такая первичная сущность имеется в единственном экземпляре - это пакет.

        Пакеты представляют собой универсальный механизм организации элементов в группы. В пакет можно поместить структурные, поведенческие и другие группирующие сущности. В отличие от компонентов, которые реально существуют во время работы программы, пакеты носят чисто концептуальный характер, то есть существуют только в процессе разработки.

        Аннотационные сущности - это пояснительные части модели UML: комментарии для дополнительного описания, разъяснения или замечания к любому элементу модели. Имеется только один базовый тип аннотационных элементов - примечание. Примечание используют, чтобы снабдить диаграммы комментариями или ограничениями, выраженными в виде неформального или формального текста.

Отношения в UML

        В языке UML определены следующие типы отношений: зависимость, ассоциация, обобщение и реализация . Эти отношения являются основными связующими конструкциями UML и также как сущности применяются для построения моделей.

        Зависимость (dependency) - это семантическое отношение между двумя сущностями, при котором изменение одной из них, независимой, может повлиять на семантику другой, зависимой.

        Ассоциация (association) - структурное отношение, описывающее совокупность смысловых или логических связей между объектами.

        Обобщение (generalization) - это отношение, при котором объект специализированного элемента (потомок) может быть подставлен вместо объекта обобщенного элемента (предка). При этом, в соответствии с принципами объектно-ориентированного программирования, потомок (child) наследует структуру и поведение своего предка (parent).

        Реализация (realization) является семантическим отношением между классификаторами, при котором один классификатор определяет обязательство, а другой гарантирует его выполнение. Отношение реализации встречаются в двух случаях:

  • между интерфейсами и реализующими их классами или компонентами;
  • между прецедентами и реализующими их кооперациями.

Общие механизмы UML

        Для точного описания системы в UML используются, так называемые, общие механизмы:

  • спецификации (specifications);
  • дополнения (adornments);
  • деления (common divisions);
  • расширения (extensibility mechanisms).

        UML является не только графическим языком. За каждым графическим элементом его нотации стоит спецификация , содержащая текстовое представление соответствующей конструкции языка. Например, пиктограмме класса соответствует спецификация, которая описывает его атрибуты, операции и поведение, хотя визуально, на диаграмме, пиктограмма часто отражает только малую часть этой информации. Более того, в модели может присутствовать другое представление этого класса, отражающее совершенно иные его аспекты, но, тем не менее, соответствующее спецификации. Таким образом, графическая нотация UML используются для визуализации системы, а с помощью спецификаций описывают ее детали.

        Практически каждый элемент UML имеет уникальное графическое изображение, которое дает визуальное представление самых важных его характеристик. Нотация сущности "класс" содержит его имя, атрибуты и операции. Спецификация класса может содержать и другие детали, например, видимость атрибутов и операций, комментарии или указание на то, что класс является абстрактным. Многие из этих деталей можно визуализировать в виде графических или текстовых дополнений к стандартному прямоугольнику, который изображает класс.

        При моделировании объектно-ориентированных систем существует определенное деление представляемых сущностей.

        Во-первых, существует деление на классы и объекты. Класс - это абстракция, а объект - конкретное воплощение этой абстракции. В связи с этим, практически все конструкции языка характеризуются двойственностью "класс/объект". Так, имеются прецеденты и экземпляры прецедентов, компоненты и экземпляры компонентов, узлы и экземпляры узлов. В графическом представлении для объекта принято использовать тот же символ, что и для класса, а название подчеркивать.

        Во-вторых, существует деление на интерфейс и его реализацию. Интерфейс декларирует обязательства, а реализация представляет конкретное воплощение этих обязательств и обеспечивает точное следование объявленной семантике. В связи с этим, почти все конструкции UML характеризуются двойственностью "интерфейс/реализация". Например, прецеденты реализуются кооперациями, а операции - методами.

        UML является открытым языком, то есть допускает контролируемые расширения, чтобы отразить особенности моделей предметных областей.

        Механизмы расширения UML включают:

  • стереотипы (stereotype) - расширяют словарь UML, позволяя на основе существующих элементов языка создавать новые, ориентированные для решения конкретной проблемы;
  • помеченные значения (tagged value) - расширяют свойства основных конструкций UML, позволяя включать дополнительную информацию в спецификацию элемента;
  • ограничения (constraints) - расширяют семантику конструкций UML, позволяя создавать новые и отменять существующие правила.

        Совместно эти три механизма расширения языка позволяют модифицировать его в соответствии с потребностями проекта или особенностями технологии разработки.

Диаграмма вариантов использования (use case diagram)

        Этот вид диаграмм позволяет создать список операций, которые выполняет система. Часто этот вид диаграмм называют диаграммой функций, потому что на основе набора таких диаграмм создается список требований к системе и определяется множество выполняемых системой функций.


Рисунок - 1. Диаграмма вариантов использования

        Диаграммы вариантов использования описывают функциональное назначение системы или то, что система должна делать. Разработка диаграммы преследует следующие цели:

  • определить общие границы и контекст моделируемой предметной области;
  • сформулировать общие требования к функциональному поведению проектируемой системы;
  • разработать исходную концептуальную модель системы для ее последующей детализации в форме логических и физических моделей;
  • подготовить исходную документацию для взаимодействия разработчиков системы с ее заказчиками и пользователями.

        Суть диаграммы вариантов использования состоит в следующем. Проектируемая система представляется в виде множества сущностей или актеров, взаимодействующих с системой с помощью вариантов использования. При этом актером (actor) или действующим лицом называется любая сущность, взаимодействующая с системой извне. Это может быть человек, техническое устройство, программа или любая другая система, которая может служить источником воздействия на моделируемую систему так, как определит сам разработчик. Вариант использования служит для описания сервисов, которые система предоставляет актеру.

        Цель варианта использования заключается в том, чтобы определить законченный аспект или фрагмент поведения некоторой сущности без раскрытия её внутренней структуры. В качестве такой сущности может выступать система или любой элемент модели, который обладает собственным поведением.

        Каждый вариант использования соответствует отдельному сервису, который предоставляет моделируемая сущность по запросу актера, то есть определяет способ применения этой сущности. Сервис, который инициализируется по запросу актера, представляет собой законченную неделимую последовательность действий. Это означает, что после того как система закончит обработку запроса, она должна возвратиться в исходное состояние, чтобы быть готовой к выполнению следующих запросов

        Варианты использования могут применяться как для спецификации внешних требований к проектируемой системе, так и для спецификации функционального поведения уже существующей системы. Множество вариантов использования в целом должно определять все возможные стороны ожидаемого поведения системы. Кроме этого, варианты использования неявно устанавливают требования, определяющие, как актеры должны взаимодействовать с системой, чтобы иметь возможность корректно работать с предоставляемыми сервисами. Для удобства множество вариантов использования может рассматриваться как отдельный пакет.

        Примерами вариантов использования могут являться следующие действия: проверка состояния текущего счета клиента, оформление заказа на покупку товара, получение дополнительной информации о кредитоспособности клиента, отображение графической формы на экране монитора и другие действия.

Диаграмма классов (class diagram)

        Центральное место в объектно-ориентированном программировании занимает разработка логической модели системы в виде диаграммы классов. Диаграмма классов (class diagram) служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. Диаграмма классов может отражать, в частности, различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывать их внутреннюю структуру и типы отношений.


Рисунок - 2. Диаграмма классов

        Значки диаграммы позволяют отображать сложную иерархию систем, взаимосвязи классов (Classes) и интерфейсов (Interfaces). Данный тип диаграмм противоположен по содержанию диаграмме Collaboration, на котором отображаются объекты системы. Rational Rose позволяет создавать классы при помощи данного типа диаграмм в различных нотациях. похожего на облако. Таким образом класс - это лишь шаблон, по которому в дальнейшем будет создан конкретный объект.

        Диаграмма классов представляет собой граф, вершинами которого являются элементы типа "классификатор", связанные различными типами структурных отношений. Диаграмма классов может также содержать интерфейсы, пакеты, отношения и даже отдельные экземпляры, такие как объекты и связи.

        Класс (class) в языке UML служит для обозначения множества объектов, которые обладают одинаковой структурой, поведением и отношениями с объектами других классов. Графически класс изображается в виде прямоугольника, который дополнительно может быть разделен горизонтальными линиями на разделы или секции. В этих разделах могут указываться имя класса, атрибуты (переменные) и операции (методы).

Диаграмма состояний (statechart diagram)

        Каждая диаграмма состояний в UML описывает все возможные состояния одного экземпляра определенного класса и возможные последовательности его переходов из одного состояния в другое, то есть моделирует все изменения состояний объекта как его реакцию на внешние воздействия.

        Диаграммы состояний чаще всего используются для описания поведения отдельных объектов, но также могут быть применены для спецификации функциональности других компонентов моделей, таких как варианты использования, актеры, подсистемы, операции и методы.



Рисунок - 2. Диаграмма состояний

        Диаграмма состояний является графом специального вида, который представляет некоторый автомат. Вершинами графа являются возможные состояния автомата, изображаемые соответствующими графическими символами, а дуги обозначают его переходы из состояния в состояние. Диаграммы состояний могут быть вложены друг в друга для более детального представления отдельных элементов модели.

        В метамодели UML автомат является пакетом, в котором определено множество понятий, необходимых для представления поведения моделируемой сущности в виде дискретного пространства с конечным числом состояний и переходов.

        Длительность нахождения системы в любом из возможных состояний существенно превышает время, которое затрачивается на переход из одного состояния в другое. Предполагается, что в пределе время перехода может быть равно нулю (если дополнительно не оговорено другое), то есть смена состояний объекта может происходить мгновенно.

        Поведение автомата моделируется как последовательное перемещение по графу от вершины к вершине с учетом ориентации связывающих их дуг.

        Для автомата должны выполняться следующие обязательные условия:

  • состояние, в которое может перейти объект, определяется только его текущим состоянием и не зависит от предыстории;
  • в каждый момент времени автомат может находиться только в одном из своих состояний. При этом, автомат может находиться в отдельном состоянии как угодно долго, если не происходит никаких событий;
  • время нахождения автомата в том или ином состоянии, а также время достижения того или иного состояния никак не специфицируются;
  • количество состояний автомата должно быть конечным и все они должны быть специфицированы явным образом. Отдельные псевдосостояния могут не иметь спецификаций (начальное и конечное состояния). В этом случае их назначение и семантика полностью определяются из контекста модели и рассматриваемой диаграммы состояний;
  • граф автомата не должен содержать изолированных состояний и переходов. Для каждого состояния, кроме начального, должно быть определено предшествующее состояние, а каждый переход должен соединять два состояния автомата;
  • автомат не должен содержать конфликтующих переходов, когда объект одновременно может перейти в два и более последующих состояния (кроме случая параллельных подавтоматов). В языке UML исключение конфликтов возможно на основе введения сторожевых условий.

состояния (state) является фундаментальным не только в метамодели языка UML, но и в прикладном системном анализе. Вся концепция динамической системы основывается на понятии состояния. Семантика же состояния в языке UML имеет ряд специфических особенностей.

        В языке UML под состоянием понимается абстрактный метакласс, используемый для моделирования отдельной ситуации, в течение которой выполняются некоторые условия. Состояние может быть задано в виде набора конкретных значений атрибутов класса или объекта. Изменение отдельных значений атрибутов будет отражать изменение состояния моделируемого класса или объекта.

Диаграмма деятельности (activity diagram)

        При моделировании поведения проектируемой или анализируемой системы возникает необходимость не только представить процесс изменения ее состояний, но и детализировать особенности алгоритмической и логической реализации выполняемых системой операций.

        Фактически данный тип диаграмм может использоваться и для отражения состояний моделируемого объекта, однако, основное назначение Activity diagram в том, чтобы отражать бизнес-процессы объекта. Этот тип диаграмм позволяет показать не только последовательность процессов, но и ветвление и даже синхронизацию процессов.

        Этот тип диаграмм позволяет проектировать алгоритмы поведения объектов любой сложности, в том числе может использоваться для составления блок-схем.

        Для моделирования процесса выполнения операций в языке UML используются диаграммы деятельности. Применяемая в них графическая нотация во многом похожа на нотацию диаграммы состояний, поскольку на этих диаграммах также присутствуют обозначения состояний и переходов. Каждое состояние на диаграмме деятельности соответствует выполнению некоторой элементарной операции, а переход в следующее состояние выполняется только при завершении этой операции.

        Таким образом, диаграммы деятельности можно считать частным случаем диаграмм состояний. Они позволяют реализовать в языке UML особенности процедурного и синхронного управления, обусловленного завершением внутренних деятельностей и действий. Основным направлением использования диаграмм деятельности является визуализация особенностей реализации операций классов, когда необходимо представить алгоритмы их выполнения.

        В контексте языка UML деятельность (activity) представляет собой совокупность отдельных вычислений, выполняемых автоматом, приводящих к некоторому результату или действию (action). На диаграмме деятельности отображается логика и последовательность переходов от одной деятельности к другой, а внимание аналитика фокусируется на результатах. Результат деятельности может привести к изменению состояния системы или возвращению некоторого значения.

        Состояние действия (action state) является специальным случаем состояния с некоторым входным действием и, по крайней мере, одним выходящим из состояния переходом. Этот переход неявно предполагает, что входное действие уже завершилось. Состояние действия не может иметь внутренних переходов, поскольку оно является элементарным. Обычное использование состояния действия заключается в моделировании одного шага выполнения алгоритма (процедуры) или потока управления.

Диаграмма последовательности (sequence diagram)

        При рассмотрении диаграмм состояния и деятельности, было отмечено, что хотя эти диаграммы и используются для спецификации динамики поведения систем, время в явном виде в них не присутствует. Временной же аспект поведения может иметь существенное значение при моделировании синхронных процессов, описывающих взаимодействия объектов. Для моделирования взаимодействия объектов во времени в языке UML используются диаграммы последовательности.

        На диаграмме последовательности изображаются только те объекты , которые непосредственно участвуют во взаимодействии. Ключевым моментом для диаграмм последовательности является динамика взаимодействия объектов во времени.

        В UML диаграмма последовательности имеет как бы два измерения. Первое слева направо в виде вертикальных линий, каждая из которых изображает линию жизни отдельного объекта, участвующего во взаимодействии. Крайним слева на диаграмме изображается объект, который является инициатором взаимодействия. Правее изображается другой объект, который непосредственно взаимодействует с первым. Таким образом, все объекты на диаграмме последовательности образуют некоторый порядок, определяемый очередностью или степенью активности объектов при взаимодействии друг с другом.

        Графически каждый объект изображается прямоугольником и располагается в верхней части своей линии жизни. Внутри прямоугольника записываются имя объекта и имя класса разделенные двоеточием. При этом вся запись подчеркивается, что является признаком объекта.

        Вторым измерением диаграммы последовательности является вертикальная временная ось, направленная сверху вниз. Начальному моменту времени соответствует самая верхняя часть диаграммы. Взаимодействия объектов реализуются посредством сообщений, которые посылаются одними объектами другим. Сообщения изображаются в виде горизонтальных стрелок с именем сообщения, а их порядок определяется временем возникновения. То есть, сообщения, расположенные на диаграмме последовательности выше, инициируются раньше тех, которые расположены ниже. Масштаб на оси времени не указывается, поскольку диаграмма последовательности моделирует лишь временную упорядоченность взаимодействий типа "раньше-позже".

Диаграмма кооперации (collaboration diagram)

        Главная особенность диаграммы кооперации заключается в возможности графически представить не только последовательность взаимодействия, но и все структурные отношения между объектами, участвующими в этом взаимодействии.


Рисунок - 3. Диаграмма кооперации

        Этот тип диаграмм позволяет описать взаимодействия объектов, абстрагируясь от последовательности передачи сообщений. На этом типе диаграмм в компактном виде отражаются все принимаемые и передаваемые сообщения конкретного объекта и типы этих сообщений.

        Прежде всего, на диаграмме кооперации в виде прямоугольников изображаются участвующие во взаимодействии объекты, содержащие имя объекта, его класс и, возможно, значения атрибутов. Далее, как и на диаграмме классов, указываются ассоциации между объектами в виде различных соединительных линий. При этом можно явно указать имена ассоциации и ролей, которые играют объекты в данной ассоциации. Дополнительно могут быть изображены динамические связи - потоки сообщений. Они представляются также в виде соединительных линий между объектами, над которыми располагается стрелка с указанием направления, имени сообщения и порядкового номера в общей последовательности инициализации сообщений.

        В отличие от диаграммы последовательности, на диаграмме кооперации изображаются только отношения между объектами, играющими определенные роли во взаимодействии. На этой диаграмме не указывается время в виде отдельного измерения. Поэтому последовательность взаимодействий и параллельных потоков может быть определена с помощью порядковых номеров. Следовательно, если необходимо явно специфицировать взаимосвязи между объектами в реальном времени, лучше это делать на диаграмме последовательности.

        Понятие кооперации (collaboration) является одним из фундаментальных понятий в языке UML. Оно служит для обозначения множества взаимодействующих с определенной целью объектов в общем контексте моделируемой системы. Цель самой кооперации состоит в том, чтобы специфицировать особенности реализации отдельных наиболее значимых операций в системе. Кооперация определяет структуру поведения системы в терминах взаимодействия участников этой кооперации.

        Кооперация может быть представлена на двух уровнях:

  • уровне спецификации - показывает роли классификаторов и роли ассоциаций в рассматриваемом взаимодействии;
  • уровне примеров - указывает экземпляры и связи, образующие отдельные роли в кооперации.

        Диаграмма кооперации уровня спецификации показывает роли, которые играют участвующие во взаимодействии элементы. Элементами кооперации на этом уровне являются классы и ассоциации, которые обозначают отдельные роли классификаторов и ассоциации между участниками кооперации.

        Диаграмма кооперации уровня примеров представляется совокупностью объектов (экземпляры классов) и связей (экземпляры ассоциаций). При этом связи дополняются стрелками сообщений. На данном уровне показываются только объекты, имеющие непосредственное отношение к реализации операции или классификатора. При этом вовсе не обязательно изображать все свойства или все ассоциации, поскольку на диаграмме кооперации присутствуют только роли классификаторов, но не сами классификаторы. Таким образом, в то время как классификатор требует полного описания всех своих экземпляров, роль классификатора требует описания только тех свойств и ассоциаций, которые необходимы для участия в отдельной кооперации.

        Отсюда вытекает важное следствие. Одна и та же совокупность объектов может участвовать в различных кооперациях. В зависимости от рассматриваемой кооперации, могут изменяться как свойства отдельных объектов, так и связи между ними. Именно это отличает диаграмму кооперации от диаграммы классов, на которой должны быть указаны все свойства и ассоциации между элементами диаграммы.

Диаграмма компонентов (component diagram)

        Этот тип диаграмм предназначен для распределения классов и объектов по компонентам при физическом проектировании системы. Часто данный тип диаграмм называют диаграммами модулей.



Рисунок - 4. Диаграмма компонентов

        Полный проект программной системы представляет собой совокупность моделей логического и физического уровней, которые должны быть согласованы между собой. В языке UML для физического представления моделей систем используются диаграммы реализации (implementation diagrams), которые включают в себя диаграмму компонентов и диаграмму развертывания .

        Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Она позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами, в роли которых может выступать исходный и исполняемый код. Основными графическими элементами диаграммы компонентов являются компоненты, интерфейсы и зависимости между ними.

        Диаграмма компонентов разрабатывается для следующих целей:

  • визуализации общей структуры исходного кода программной системы;
  • спецификации исполняемого варианта программной системы;
  • обеспечения многократного использования отдельных фрагментов программного кода;
  • представления концептуальной и физической схем баз данных.

        В разработке диаграмм компонентов участвуют как системные аналитики и архитекторы, так и программисты. Диаграмма компонентов обеспечивает согласованный переход от логического представления к конкретной реализации проекта в форме программного кода. Одни компоненты могут существовать только на этапе компиляции программного кода, другие на этапе его исполнения. Диаграмма компонентов отражает общие зависимости между компонентами, рассматривая последние в качестве классификаторов.

        Для представления физических сущностей в языке UML применяется специальный термин - компонент (component) . Компонент реализует некоторый набор интерфейсов и служит для общего обозначения элементов физического представления модели. Для графического представления компонента используется специальный символ - прямоугольник со вставленными слева двумя более мелкими прямоугольниками. Внутри большого прямоугольника записывается имя компонента и, при необходимости, некоторая дополнительная информация. Изображение этого символа может незначительно варьироваться в зависимости от характера ассоциируемой с компонентом информации.

Диаграмма развертывания (deployment diagram)

        Этот вид диаграмм предназначен для анализа аппаратной части системы, то есть "железа", а не программ. В прямом переводе с английского Deployment означает "развертывание", но термин "топология" точнее отражает сущность этого типа диаграмм.


Рисунок - 5. Диаграмма развертывания

        Физическое представление программной системы не может быть полным, если отсутствует информация о том, на какой платформе и на каких вычислительных средствах она реализована. Если разрабатывается программа, выполняющаяся локально на компьютере пользователя и не использующая периферийных устройств и ресурсов, то в разработке дополнительных диаграмм нет необходимости. При разработке же корпоративных приложений наличие таких диаграмм может быть крайне полезным для решения задач рационального размещения компонентов в целях эффективного использования распределенных вычислительных и коммуникационных ресурсов сети, обеспечения безопасности и других.

        Для представления общей конфигурации и топологии распределенной программной системы в UML предназначены диаграммы развертывания.

        Диаграмма развертывания предназначена для визуализации элементов и компонентов программы, существующих лишь на этапе ее исполнения (runtime). При этом представляются только компоненты-экземпляры программы, являющиеся исполняемыми файлами или динамическими библиотеками. Те компоненты, которые не используются на этапе исполнения, на диаграмме развертывания не показываются. Так, компоненты с исходными текстами программ могут присутствовать только на диаграмме компонентов. На диаграмме развертывания они не указываются.

        Диаграмма развертывания содержит графические изображения процессоров, устройств, процессов и связей между ними. В отличие от диаграмм логического представления, диаграмма развертывания является единой для системы в целом, поскольку должна всецело отражать особенности ее реализации. Разработка диаграммы развертывания, как правило, является последним этапом спецификации модели программной системы.

        При разработке диаграммы развертывания преследуют следующие цели:

  • определить распределение компонентов системы по ее физическим узлам;
  • показать физические связи между всеми узлами реализации системы на этапе ее исполнения;
  • выявить узкие места системы и реконфигурировать ее топологию для достижения требуемой производительности.

        Диаграммы развертывания разрабатываются совместно системными аналитиками, сетевыми инженерами и системотехниками.

Особенности рабочего интерфейса Rational Rose

        В CASE-средстве Rational Rose реализованы общепринятые стандарты на рабочий интерфейс программы, подобно известным средам визуального программирования. После установки Rational Rose на компьютер пользователя, что практически не вызывает трудностей даже у начинающих, запуск этой программы в среде MS Windows 95/98 приводит к появлению на экране рабочего интерфейса (рис. 6).


Рисунок - 6. Общий вид рабочего интерфейса программы Rational Rose

        Рабочий интерфейс Rational Rose состоит из различных элементов, основными из которых являются:

  • Главное меню программы
  • Окно диаграммы
  • Окно документации
  • Окно браузера
  • Окно журнала

Рассмотрим кратко назначение и основные функции каждого из этих элементов.

Главное меню программы

Главное меню программы выполнено в общепринятом стандарте и имеет следующий вид (рис. 7).

Отдельные пункты меню, назначение которых понятно из их названий, объединяют сходные операции, относящиеся ко всему проекту в целом. Некоторые из пунктов меню содержат хорошо знакомые функции (открытие проекта, вывод печать диаграмм, копирование в буфер и вставка из буфера различных элементов диаграмм). Другие настолько специфичны, что могут потребовать дополнительных усилий на изучение (опции генерации программного кода, проверка согласованности моделей, подключение дополнительных модулей).

Рисунок - 7. Внешний вид главного меню программы

Стандартная панель инструментов

Стандартная панель инструментов располагается ниже главного меню программы и имеет следующий вид (рис. 8). Некоторые из инструментов недоступны (новый проект не имеет никаких элементов). Стандартная панель инструментов обеспечивает быстрый доступ к тем командам меню, которые выполняются разработчиками наиболее часто.

Рисунок - 8. Внешний вид стандартной панели инструментов

Пользователь может настроить внешний вид этой панели по своему усмотрению. Для этого необходимо выбрать пункт меню Tools -> Options (Инструменты -> Параметры) и открыть вкладку Toolbars (Панели инструментов). Этим способом можно показать или скрыть различные кнопки инструментов, а также изменить их размер.

Окно браузера

Окно браузера по умолчанию располагается в левой части рабочего интерфейса под стандартной панелью инструментов (рис. 9).

Браузер организует представления модели в виде иерархической структуры, которая упрощает навигацию и позволяет отыскать любой элемент модели в проекте. При этом любой элемент, который разработчик добавляет в модель, сразу отображается в окне браузера. Соответственно, выбрав элемент в окне браузера, мы можем его визуализировать в окне диаграммы или изменить его спецификацию. Браузер позволяет также организовывать элементы модели в пакеты и перемещать элементы между различными представлениями модели. При желании окно браузера можно расположить в другом месте рабочего интерфейса либо скрыть вовсе, используя для этого пункт меню View (Вид). Можно также изменить размеры браузера, переместив мышью границу его внешней рамки.

Рисунок - 9. Внешний вид браузера

Специальная панель инструментов

Специальная панель инструментов располагается между окном браузера и окном диаграммы в средней части рабочего интерфейса. По умолчанию предлагается панель инструментов для построения диаграммы классов модели (рис. 10).

Рисунок - 10. Внешний вид специальной панели инструментов для диаграммы классов

Расположение специальной панели инструментов можно изменять, переместив рамку панели в нужное место. Можно настраивать и состав панели, добавляя или удаляя отдельные кнопки, соответствующие тем или иным инструментам. Назначения кнопок можно узнать из всплывающих подсказок, появляющихся после задержки указателя мыши над соответствующей кнопкой.

Окно диаграммы

Окно диаграммы является основной рабочей областью ее интерфейса, в которой визуализируются различные представления модели проекта. По умолчанию окно диаграммы располагается в правой части рабочего интерфейса, однако его расположение и размеры также можно изменить. При разработке нового проекта, если не был использован мастер проектов, окно диаграммы представляет собой чистую область, не содержащую никаких элементов модели (рис. 11).

Название диаграммы, которая располагается в данном окне, указывается в строке заголовка программы (самая верхняя строка программы) или, если окно не развернуто во весь экран, в строке заголовка окна диаграммы. Одновременно в окне диаграммы могут присутствовать несколько диаграмм, однако активной может быть только одна из них. Например, на рис. 11 активной является диаграмма развертывания, хотя имеются и другие диаграммы. Переключение между диаграммами можно осуществить выбором нужного представления на стандартной панели инструментов либо через пункт меню Window (Окно). При активизации отдельного вида диаграммы изменяется внешний вид специальной панели инструментов, которая настраивается под конкретный вид диаграммы.


Рисунок - 11. Внешний вид окна диаграмм с различными видами представлений модели

Окно документации

Окно документации по умолчанию может не присутствовать на экране. В этом случае оно может быть активизировано через пункт меню View -> Documentation (Вид->Документация), после чего появится ниже браузера (рис. 12).

Окно документации, как следует из его названия, предназначено для документирования элементов представления модели. В него можно записывать самую различную информацию, и что важно - на русском языке. Эта информация в последующем преобразуется в комментарии и никак не влияет на логику выполнения программного кода.

В окне документации активизируется та информация, которая относится к отдельному выделенному элементу диаграммы. При этом выделить элемент можно либо в окне браузера, либо в окне диаграммы. При добавлении нового элемента на диаграмму (например, класса) автоматически генерируется документация к нему, которая является пустой (No documentation). В последующем разработчик самостоятельно вносит необходимую пояснительную информацию, которая запоминается и может быть изменена в ходе работы над проектом.

Так же, как и для других окон рабочего интерфейса, можно изменять размеры и положение окна документации.

Рисунок - 12. Внешний вид окна документации

Окно журнала

Окно журнала (Log) предназначено для автоматической записи различной служебной информации, образующейся в ходе работы с программой. В журнале фиксируется время и характер выполняемых разработчиком действий, таких как обновление модели, настройка меню и панелей инструментов, а также сообщений об ошибках, возникающих при генерации программного кода.

Окно журнала всегда присутствует на рабочем интерфейсе в области окна диаграммы (рис. 13). Однако оно может быть закрыто другими окнами с диаграммами или быть свернутым. Активизировать окно журнала можно через меню Window->Log (Окно->Журнал). В этом случае оно изображается поверх других окон в правой области рабочего интерфейса. Полностью удалить это окно нельзя, его можно только минимизировать.

Рисунок - 13. Внешний вид окна журнала

Заключение

        Со временем язык UML станет тем "эсперанто", на котором смогут общаться математики, системные аналитики, физики, программисты, менеджеры, экономисты и специалисты других профессий, представляя свои профессиональные знания в унифицированном виде. Ведь, по существу, каждый из специалистов оперирует модельными представлениями в своей области знаний. И именно этот модельный аспект может быть специфицирован средствами языка UML.

        В связи с этим значение языка UML существенно возрастает, поскольку он все более приобретает черты языка представления знаний. При этом наличие в языке UML изобразительных средств для представления структуры и поведения модели позволяет достичь адекватного представления декларативных и процедурных знаний и, что не менее важно, установить между этими формами знаний семантическое соответствие. Все эти особенности языка UML позволяют сделать вывод о том, что он имеет самые серьезные перспективы уже в ближайшем будущем.

В этой статье рассказывается о новой эпохе разработки ПО, о ее влиянии на новые требования, выдвигаемые к языку UML, и об оптимальных методах их выполнения.
  7. "Моделирование данных в Rational Rose" Сергей Трофимов Описывается моделирование физического представления данных с использованием Rational Rose
  8. Язык UML . Общее представление о языке UML: структуры, графические элементы и диаграммы языка.
  9. Практический UML . Этот документ является переводом документа "Practical UML. A Hands-On Introduction for Developers". Практическое введение для разработчиков
  10. "Стандартный язык объектно-ориентированного моделирования UML" Вендров Александр Михайлович . История создания UML
  11. UML – унифицированный язык моделирования . Данный материал содержит начальные сведения о методах описания программных систем и нотациях, используемых в UML
  12. Язык UML. Руководство пользователя. Авторы: Грейди Буч, Джеймс Рамбо, Айвар Джекобсон
  13. "UML диаграммы в Rational Rose" Сергей Трофимов
  14. "Анализ и проектирование. Визуальное моделирование (UML) Rational Rose" Константин Домолего
  15. Библиотека Геннадия Верникова. Полные описания стандартов проектирования и моделирования.
  16. "Пример описания предметной области с использованием UML при разработке программных систем" Е.Б. Золотухина, Р.В. Алфимов. В статье на конкретном примере демонстрируется возможный подход к моделированию предметной области, основанный на применении Унифицированного Языка Моделирования (Unified Modeling Language) (UML)

       

Показать поведение одного объекта в течение его жизни, начиная от создания объекта и заканчивая его уничтожением. Каждая диаграмма состояний представляет некоторый автомат.

План действий

В разделе «Описание» изучите основной набор символов диаграммы состояний, необходимый для того, чтобы уметь читать диаграммы.

После ознакомления с другими разделами («Пример», «Применение») вы можете попробовать свои силы в самостоятельном составлении диаграмм состояний.

Замечания (описание)

Здесь представлен основной набор символов диаграммы состояний , необходимый для того, чтобы суметь прочитать диаграмму. После ознакомления с другими разделами («Пример», «Применение») вы сможете составлять диаграммы состояний самостоятельно!

Термин Изображение Описание
Начальное псевдосостояние (initial pseudostate) Начальное состояние системы
Переход Переход (transition) означает перемещение из одного состояния в другое.
Состояние Обозначает выполняемые системой действия (могут включать возможные варианты), приводящие к наблюдаемым актёрами результатам.
Состояние
активности (activity state)
Сложный шаг в прецеденте можно представить другим прецедентом.
В терминах языка UML мы говорим, что первый прецедент включает (includes) второй.
Конечное состояние Позволяет обозначить границы систем или подсистем.
Внутренние активности (internal activities) Случай когда состояния могут реагировать на события без совершения перехода, и в этом случае событие, защита и активность размещаются внутри прямоугольника состояния.
Входная активность Входная активность выполняется всякий раз, когда вы входите в состояние
Выходная активность Выходная активность – выполняется всякий раз, когда вы покидаете состояние.
Суперсостояние
Часто бывает, что несколько состояний имеют общие переходы и внутренние активности. В таких случаях можно их превратить в подсостояния (substates), а общее поведение перенести в суперсостояние (superstate).
Параллельные состояния
Состояния могут быть разбиты на несколько параллельных состояний, запускаемых одновременно.

Как применять технику креативности

Диаграммы состояний UML хороши для описания поведения одного объекта в нескольких прецедентах. Но они не очень подходят для описания поведения, характеризующегося взаимодействием множества объектов. Поэтому имеет смысл совместно с диаграммами состояний применять другие технологии. Например, диаграммы взаимодействия (глава 4) прекрасно описывают поведение нескольких объектов в одном прецеденте, а диаграммы деятельности UML хороши для показа основной последовательности действий нескольких объектов в нескольких прецедентах.

Не все считают диаграммы состояний естественными. Понаблюдайте, как специалисты работают с ними. Вполне возможно, что члены вашей команды не думают, что диаграммы состояний подходят для их стиля работы. Это не самая большая трудность; вы должны не забывать совместно использовать различные приемы работы.

Если вы применяете диаграммы состояний, то не старайтесь нарисовать их для каждого класса системы. Такой подход часто применяется в целях формально строгой полноты, но почти всегда это напрасная трата сил. Применяйте диаграммы состояний только для тех классов, которые проявляют интересное поведение, когда построение диаграммы состояний помогает понять, как все происходит.

Многие специалисты считают, что редактор UI и управляющие объекты имеют функциональные средства, полезные при отображении с помощью диаграммы состояний .

Как научиться

Здесь мы попытались предоставить как можно более простой способ изучения диаграммы состояний языка UML .

Как и многие другие языки он использует для описания набор знаков. Смысл этих знаков вы найдете в таблице в разделе «Замечания (описание)». Каждый знак имеет свое наименование (термин) и написание. Также каждый термин снабжен кратким пояснением, чтобы быстро уяснить его основную суть.

Далее мы бы рекомендовали перейти в раздел «Примеры» диаграмм состояний , чтобы попробовать свои силы в чтении разных диаграмм. Затем стоит изучить раздел «Применение», так как, хотя и количество типов диаграмм в UML невелико, максимум преимуществ от их использования вы сможете получить только если будете применять соответствующие диаграммы по назначению.

Пример использования

Диаграмма состояний (state machine diagrams) – это известная технология описания поведения системы. В том или ином виде диаграмма состояний существует с 1960 года, и на заре объектно-ориентированного программирования они применялись для представления поведения системы. В объектно-ориентированных подходах вы рисуете диаграмму состояний единственного класса, чтобы показать поведение одного объекта в течение его жизни.

Всякий раз, когда пишут о конечных автоматах, в качестве примеров неизбежно приводят системы круиз-контроля или торговые автоматы.
Мы решили использовать контроллер секретной панели управления в Готическом замке. В этом замке мы хотим так спрятать свои сокровища, чтобы их было трудно найти. Для того чтобы получить доступ к замку сейфа, мы должны вытащить из канделябра стратегическую свечу, но замок появится, только если дверь закрыта. После появления замка мы можем вставить в него ключ и открыть сейф. Для дополнительной безопасности мы сделали так, чтобы сейф можно было открыть только после извлечения свечи. Если вор не обратит внимания на эту предосторожность, то мы спустим с цепи отвратительного монстра, который проглотит вора.

На рис. 10.1 показана диаграмма состояний класса контроллера, который управляет моей необычной системой безопасности. Диаграмма состояния начинается с состояния создаваемого объекта контроллера: состояния Wait (Ожидание) . На диаграмме это обозначено с помощью начального псевдосостояния (initial pseudostate) , которое не является состоянием, но имеет стрелку, указывающую на начальное состояние.
На диаграмме показано, что контроллер может находиться в одном из трех состояний: Wait (Ожидание), Lock (Замок) и Open (Открыт) . На диаграмме также представлены правила, согласно которым контроллер переходит из одного состояния в другое. Эти правила представлены в виде переходов – линий, связывающих состояния.

Переход (transition) означает перемещение из одного состояния в другое. Каждый переход имеет свою метку, которая состоит из трех частей:
триггер-идентификатор [защита]/активность (trigger-signature /activity) . Все они не обязательны. Как правило, триггер-идентификатор – это единственное событие, которое может вызвать изменение состояния.

Защита, если она указана, представляет собой логическое условие, которое должно быть выполнено, чтобы переход имел место. Активность – это некоторое поведение системы во время перехода. Это может быть любое поведенческое выражение. Полная форма триггера-идентификатора может включать несколько событий и параметров. Переход из состояния Wait (рис. 10.1) в другое состояние можно прочесть как «В состоянии Wait , если свеча удалена, вы видите замок и переходите в состояние Lock ».

Все три части описания перехода не обязательны. Пропуск активности означает, что в процессе перехода ничего не происходит. Пропуск за щиты означает, что переход всегда осуществляется, если происходит инициирующее событие. Триггер-идентификатор отсутствует редко, но и так бывает. Это означает, что переход происходит немедленно, что можно наблюдать главным образом в состояниях активности.

Когда в определенном состоянии происходит событие, то из этого состояния можно совершить только один переход, например в состоянии Lock (рис. 10.1) защиты должны быть взаимно исключающими. Если событие происходит, а разрешенных переходов нет – например закрытие сейфа в состоянии Wait или удаление свечи при открытой двери, – событие игнорируется.

Конечное состояние (final state ) означает, что конечный автомат закончил работу, что вызывает удаление объекта контроллера. Так что для тех, кто имел неосторожность попасть в ловушку, сообщаем, что поскольку объект контроллера прекращает свое существование, мы вынуждены посадить кролика обратно в клетку, вымыть пол и перегрузить систему.

Помните, что конечные автоматы могут показывать только те объекты, которые непосредственно наблюдаются или действуют. Поэтому, хотя вы могли ожидать, что мы положим что-нибудь в сейф или что-нибудь возьмем оттуда, когда дверь открыта, мы не отметили это на диаграмме, поскольку контроллер об этом ничего сообщить не может.

Когда разработчики говорят об объектах, они часто ссылаются на состояние объектов, имея в виду комбинацию всех данных, содержащихся в полях объектов. Однако состояние на диаграмме конечного автомата является более абстрактным понятием состояния; суть в том, что различные состояния предполагают различные способы реакции на события.

Внутренние активности в диаграмме состояний

Состояния могут реагировать на события без совершения перехода, используя внутренние активности (internal activities ), и в этом случае событие, защита и активность размещаются внутри прямоугольника состояния.

На рис. 10.2 представлено состояние с внутренними активностями символов и событиями системы помощи, которые вы можете наблюдать в текстовых полях редактора UI . Внутренняя активность подобна самопереходу (self-transition) – переходу, который возвращает в то же самое состояние. Синтаксис внутренних активностей построен по той же логической схеме события, защиты и процедуры.

На рис. 10.2 показаны также специальные активности: входная и выходная активности . Входная активность выполняется всякий раз, когда вы входите в состояние; выходная активность – всякий раз, когда вы покидаете состояние. Однако внутренние активности не инициируют входную и выходную активности ; в этом состоит различие между внутренними активностями и самопереходами .

Состояния активности в диаграмме состояний

В состояниях, которые мы описывали до сих пор, объект молчит и ожидает следующего события, прежде чем что-нибудь сделать. Однако возможны состояния, в которых объект проявляет некоторую активность.

Состояние Searching (Поиск) на рис. 10.3 является таким состоянием активности (activity state) : ведущаяся активность обозначается символом do/ ; отсюда термин do-activity (проявлять активность) . После того как поиск завершен, выполняются переходы без активности, например показ нового оборудования (Display New Hardware) . Если в процессе активности происходит событие отмены (cancel ), то do-активность просто прерывается и мы возвращаемся в состояние Update Hardware Window (Обновление окна оборудования).

И do-активности, и обычные активности представляют проявление некоторого поведения. Решающее различие между ними заключается в том, что обычные активности происходят «мгновенно» и не могут быть прерваны обычными событиями, тогда как do-активности могут выполняться в течение некоторого ограниченного времени и могут прерываться, как показано на рис. 10.3. Мгновенность для разных систем трактуется по-разному; для систем реального времени это может занимать несколько машинных инструкций, а для настольного программного обеспечения может составить несколько секунд.

В UML 1 обычные активности обозначались термином action (действие), а термин activity (активность) применялся только для do-активностей .

Суперсостояния

Часто бывает, что несколько состояний имеют общие переходы и внутренние активности. В таких случаях можно их превратить в подсостояния (substates), а общее поведение перенести в суперсостояние (superstate), как показано на рис. 10.4. Без суперсостояния пришлось бы рисовать переход cancel (отмена) для всех трех состояний внутри состояния Enter Connection Details (Ввод подробностей соединения) .

Параллельные состояния

Состояния могут быть разбиты на несколько параллельных состояний, запускаемых одновременно. На рис. 10.5 показан простой будильник, который может включать либо CD, либо радио и показывать либо текущее время, либо время сигнала.

Опции CD/радио и текущее время/время сигнала являются параллельными. Если бы вы захотели представить это с помощью диаграммы непараллельных состояний, то получилась бы беспорядочная диаграмма при необходимости добавить состояния. Разделение двух областей поведения на две диаграммы состояний делает ее значительно яснее.

Рис. 10.5 включает также состояние предыстории (history pseudostate). Это означает, что когда включены часы, опция радио/CD переходит в состояние, в котором находились часы, когда они были выключены. Стрелка, выходящая из предыстории, показывает, какое состояние существовало изначально, когда отсутствовала предыстория.

Реализация диаграмм состояний

Диаграмму состояний можно реализовать тремя основными способами: с помощью вложенного оператора switch, паттерна State и таблицы состояний. Самый прямой подход в работе с диаграммами состояний – это вложенный оператор switch, такой как на рис. 10.6.

Хотя этот способ и прямой, но очень длинный даже для этого простого случая. Кроме того, при данном подходе очень легко потерять контроль, поэтому не рекомендуем применять его даже в элементарных ситуациях.
Паттерн «Состояние» (State pattern) представляет иерархию классов состояний для обработки поведения состояний. Каждое состояние на диаграмме состояний имеет свой подкласс состояния. Контроллер имеет методы для каждого события, которые просто перенаправляют к классу состояния. Диаграмма состояний, показанная на рис. 10.1, могла бы быть реализована с помощью классов, представленных на рис. 10.7.

Вершиной иерархии является абстрактный класс, который содержит описание всех методов, обрабатывающих события, но без реализации.
Для каждого конкретного состояния достаточно переписать метод-обработчик определенного события, инициирующего переход из состояния.
Таблица состояний представляет диаграмму состояний в виде данных.

Так, диаграмма на рис. 10.1 может быть представлена в виде табл. 10.1.
Затем мы строим интерпретатор, который использует таблицу состояний во время выполнения программы, или генератор кода, который порождает классы на основе этой таблицы.

Очевидно, большая часть работы над таблицей состояний проводится однажды, но затем ее можно использовать всякий раз, когда надо решить проблему, связанную с состояниями. Таблица состояний времени выполнения может быть модифицирована без перекомпиляции, что в некотором смысле удобно. Шаблон состояний собрать легче, и хотя для каждого состояния требуется отдельный класс, но размер кода, который при этом надо написать, совсем невелик.

Приведенные реализации практически минимальные, но они дают представление о том, как применять диаграммы состояний . В каждом случае реализация моделей состояний приводит к довольно стереотипной программе, поэтому обычно для этого лучше прибегнуть к тому или иному способу генерации кода.

Подписывайтесь на новости сайта, форму подписки вы можете найти в правой колонке сайта.

Если вы хотите научиться работать на фрилансе профессионально, приглашаем на курс « ».

Модель UML (UML model) ‒ это совокупность конечного множества конструкций языка, главные из которых ‒ это сущности и отношения между ними.

Сами сущности и отношения модели являются экземплярами метаклассов метамодели.

Рассматривая модель UML с наиболее общих позиций, можно сказать, что это граф (точнее, нагруженный мульти-псевдо-гипер-орграф), в котором вершины и ребра нагружены дополнительной информацией и могут иметь сложную внутреннюю структуру. Вершины этого графа называются сущностями, а ребра ‒ отношениями . Остальная часть раздела содержит беглый (предварительный), но полный обзор имеющихся типов сущностей и отношений. К счастью, их не слишком много. В последующих главах книги все сущности и отношения рассматриваются еще раз, более детально и с примерами.

1.4.1. Сущности

Для удобства обзора сущности в UML можно подразделить на четыре группы:

  • структурные;
  • поведенческие;
  • группирующие;
  • аннотационные.

Структурные сущности, как нетрудно догадаться, предназначены для описания структуры. Обычно к структурным сущностям относят следующие.

Объект (object) 1 ‒ сущность, обладающая уникальностью и инкапсулирующая в себе состояние и поведение.

Класс (class) 2 ‒ описание множества объектов с общими атрибутами, определяющими состояние, и операциями, определяющими поведение.

Интерфейс (interface) 3 ‒ именованное множество операций, определяющее набор услуг, которые могут быть запрошены потребителем и предоставлены поставщиком услуг.

Кооперация (collaboration) 4 ‒ совокупность объектов, которые взаимодействуют для достижения некоторой цели.

Действующее лицо (actor) 5 ‒ сущность, находящаяся вне моделируемой системы и непосредственно взаимодействующая с ней.

∇ Подобная взаимосвязь безусловно существует, что выражается на рис. Иерархия типов диаграмм для UML 1 в виде отношения зависимости со стереотипом «refine» .

∇∇ В UML 1 возникала невольная ассоциация между диаграммой кооперации и одноименной сущностью, что было не совсем верно и порой вводило в заблуждение.

∇∇∇ В UML 2 синтаксическая и смысловая нагрузка диаграммы состояний настолько изменилась, что название уже не отражало содержания.

Список новых диаграмм и их названий, принятых в этой книге, приведен ниже.

  • Диаграмма внутренней структуры (Composite Structure diagram)
  • Диаграмма пакетов (Package diagram)
  • Диаграмма автомата (State machine diagram)
  • Диаграмма коммуникации (Communication diagram)
  • Обзорная диаграмма взаимодействия (Interaction Overview diagram)
  • Диаграмма синхронизации (Timing diagram)

На рис. Иерархия типов диаграмм для UML 2 (часть 1 и 2) приведена диаграмма классов, отражающая взаимосвязь диаграмм в UML 2.

Далее в этой главе мы очень бегло опишем все тринадцать канонических диаграмм, с тем, чтобы иметь определенный контекст и словарный запас для последующего изложения. Детали изложены в остальных главах книги.

Но прежде чем перейти к следующему разделу, сделаем одно небольшое отступление относительно того, как стандарт требует оформлять диаграммы. Общий шаблон представления диаграммы приведен ниже.

Основных элементов оформления два: наружная рамка и ярлычок с названием диаграммы. Если с рамкой все просто ‒ это прямоугольник, ограничивающий область в котором должны находиться элементы диаграммы, то название диаграммы записывается в специальном формате, приведенном на рис. Нотация для диаграмм .

Указанная сложная форма ярлычка поддерживается не всеми инструментами. Впрочем, это не обязательно, поскольку семантика первична, а нотация вторична. Далее мы везде используем в качестве ярлычка диаграммы прямоугольник, и это не должно вызывать недоразумений.

Возможные теги (типы) для диаграмм приведены в следующей таблице. Теги, предлагаемые стандартом, записаны во второй столбец. Однако, как показала практика, предлагаемые стандартом правила не всегда удобны и логически обоснованы, поэтому третий столбец таблицы содержит разумную на наш взгляд альтернативу.

Табл. Типы и теги диаграмм

Название диаграммы Тег (стандартный) Тег (предлагаемый)
Диаграмма использования use case или uc use case
Диаграмма классов class class
Диаграмма автомата state machine или stm state machine
Диаграмма деятельности activity или act activity
Диаграмма последовательности interaction или sd sd
Диаграмма коммуникации interaction или sd comm
Диаграмма компонентов component или cmp component
Диаграмма размещения не определен deployment
Диаграмма объектов не определен object
Диаграмма внутренней структуры class class или component
Обзорная диаграмма взаимодействия interaction или sd interaction
Диаграмма синхронизации interaction или sd timing
Диаграмма пакетов package или pkg package

UML-диаграмма - это специализированный язык графического описания, предназначенный для объектного моделирования в сфере разработки различного программного обеспечения. Данный язык имеет широкий профиль и представляет собой открытый стандарт, в котором используются различные графические обозначения, чтобы создать абстрактную модель системы. UML создавался для того, чтобы обеспечить определение, визуализацию, документирование, а также проектирование всевозможных программных систем. Стоит отметить, что сама по себе UML-диаграмма не представляет собой язык программирования, но при этом предусматривается возможность генерации на ее основе отдельного кода.

Зачем она нужна?

Применение UML не заканчивается на моделировании всевозможного ПО. Также данный язык активно сегодня используется для моделирования различных бизнес-процессов, ведения системного проектирования, а также отображения организационных структур.

С помощью UML разработчики программного обеспечения могут обеспечить полное соглашение в используемых графических обозначениях, чтобы представить общие понятия, такие как: компонент, обобщение, класс, поведение и агрегация. За счет этого достигается большая степень концентрации на архитектуре и проектировании.

Также стоит отметить, что есть несколько видов таких диаграмм.

Диаграмма классов

Диаграмма классов UML представляет собой статическую структурную диаграмму, предназначенную для описания структуры системы, а также демонстрации атрибутов, методов и зависимостей между несколькими различными классами.

Стоит отметить тот факт, что есть несколько точек зрения на построение таких диаграмм в зависимости от того, каким образом они будут использоваться:

  • Концептуальная. В данном случае диаграмма классов UML осуществляет описание модели определенной предметной области, и в ней предусматриваются только классы прикладных объектов.
  • Специфическая. Диаграмма используется в процессе проектирования различных информационных систем.
  • Реализационная. Диаграмма классов включает в себя всевозможные классы, которые непосредственно используются в программном коде.

Диаграмма компонентов

Диаграмма компонентов UML представляет собой полностью статическую структурную диаграмму. Предназначается она для того, чтобы продемонстрировать разбиение определенной программной системы на разнообразные структурные компоненты, а также связи между ними. Диаграмма компонентов UML в качестве таковых может использовать всевозможные модели, библиотеки, файлы, пакеты, исполняемые файлы и еще множество других элементов.

Диаграмма композитной/составной структуры

UML диаграмма композитной/составной структуры также является статической структурной диаграммой, но используется она для того, чтобы показать внутреннюю структуру классов. По возможности данная диаграмма может продемонстрировать также взаимодействие элементов, находящихся во внутренней структуре класса.

Подвидом их является UML-диаграмма кооперации, которая используется для демонстрации ролей, а также взаимодействия различных классов в границах кооперации. Они являются достаточно удобными в том случае, если нужно моделировать шаблоны проектирования.

Стоит отметить, что одновременно могут использоваться виды диаграмм UML классов и композитной структуры.

Диаграмма развертывания

Данная диаграмма используется для того, чтобы моделировать работающие узлы, а также всевозможные артефакты, которые на них были развернуты. В UML 2 на различных узлах осуществляется разворачивание артефактов, в то время как в первой версии разворачивались исключительно компоненты. Таким образом, диаграмма развертывания UML используется преимущественно ко второй версии.

Между артефактом и тем компонентом, который он реализует, формируется зависимость манифестации.

Диаграмма объектов

Данный вид позволяет увидеть полноценный или же частичный снимок создаваемой системы в определенный момент времени. На ней полностью отображаются все экземпляры классов конкретной системы с указанием текущих значений их параметров, а также связей между ними.

Диаграмма пакетов

Эта диаграмма носит структурный характер, и основным ее содержанием являются всевозможные пакеты, а также отношения между ними. В данном случае нет никакого жесткого разделения между несколькими структурными диаграммами, вследствие чего их использование чаще всего встречается исключительно для удобства, и никакого семантического значения в себе не несет. Стоит отметить, что различные элементы могут предоставлять другие UML диаграммы (примеры: пакеты и сами диаграммы пакетов).

Их использование осуществляется для того, чтобы обеспечить организацию нескольких элементов в группы по определенному признаку, чтобы упростить структуру, а также организовать работу с моделью данной системы.

Диаграмма деятельности

Диаграмма деятельности UML отображает разложение определенной деятельности на несколько составных частей. В данном случае понятием «деятельность» называется спецификация определенного исполняемого поведения в виде параллельного, а также координированного последовательного выполнения различных подчиненных элементов - вложенных типов деятельности и различных действий, объединенных потоками, идущими от выходов определенного узла к входам другого.

Диаграмма деятельности UML достаточно часто используются для того, чтобы моделировать различные бизнес-процессы, параллельные и последовательные вычисления. Помимо всего прочего ими моделируются всевозможные технологические процедуры.

Диаграмма автомата

Этот вид называется и несколько иначе - диаграмма состояний UML. Имеет представленный конечный автомат с простыми и композитными состояниями, а также переходами.

Конечный автомат представляет собой спецификацию последовательности различных состояний, через которые проходит определенный объект, или же взаимодействие в ответ на некоторые события своей жизни, а также ответные действия объекта на такие события. Конечный автомат, который использует диаграмма состояний UML, закрепляется за исходным элементом и используется для того, чтобы определить поведение его экземпляров.

В качестве аналогов таких диаграмм могут использоваться так называемые дракон-схемы.

Диаграммы сценариев использования

Диаграмма вариантов использования UML отображает на себе все отношения, которые возникают между актерами, а также различными вариантами использования. Главная ее задача - осуществлять собой полноценное средство, при помощи которого заказчик, конечный пользователь или же какой-нибудь разработчик сможет совместно обсуждать поведение и функциональность определенной системы.

Если диаграмма вариантов использования UML используется в процессе моделирования системы, то аналитик собирается:

  • Четко отделить моделируемую систему от ее окружения.
  • Выявить действующих лиц, пути их взаимодействия с данной системой, а также ожидаемый ее функционал.
  • Установить в глоссарии в качестве предметной области различные понятия, которые относятся к подробному описанию функционала данной системы.

Если разрабатывается в UML диаграмма использования, процедура начинается с текстового описания, которое получается при работе с заказчиком. При этом стоит отметить тот факт, что различные нефункциональные требования в процессе составления модели прецедентов полностью опускаются, и для них уже будет формироваться отдельный документ.

Коммуникации

Диаграмма коммуникации точно так же, как и диаграмма последовательности UML, является транзитивной, то есть выражает в себе взаимодействие, но при этом демонстрирует его разными способами, и при необходимости с нужной степенью точности можно преобразовать одну в другую.

Диаграмма коммуникации отображает в себе взаимодействия, которые происходят между различными элементами композитной структуры, а также ролями кооперации. Главным отличием ее от диаграммы последовательности является то, что на ней достаточно явно указываются отношения между несколькими элементами, а время не используется в качестве отдельного измерения.

Данный тип отличается абсолютно свободным форматом упорядочивания нескольких объектов и связей точно так же, как это осуществляется в диаграмме объектов. Если есть необходимость в том, чтобы поддерживать порядок сообщений при этом свободном формате, осуществляется их хронологическая нумерация. Чтение данной диаграммы начинается с изначального сообщения 1.0, и впоследствии продолжается по тому направлению, по которому осуществляется передача сообщений от одного объекта к другому.

В большинстве своем такие диаграммы демонстрируют точно такую же информацию, которую предоставляет нам диаграмма последовательности, однако из-за того, что здесь используется другой способ представления информации, определенные вещи на одной диаграмме становится гораздо проще определить, чем на другой. Также стоит отметить, что диаграмма коммуникаций более наглядно показывает, с какими элементами вступает во взаимодействие каждый отдельный элемент, в то время как диаграмма последовательности более ясно показывает, в каком порядке осуществляются взаимодействия.

Диаграмма последовательности

Диаграмма последовательности UML демонстрирует взаимодействия между несколькими объектами, которые упорядочиваются в соответствии с временем их проявления. На такой диаграмме отображается упорядоченное во времени взаимодействие между несколькими объектами. В частности, на ней отображаются все объекты, которые принимают участие во взаимодействии, а также полная последовательность обмениваемых ими сообщений.

Главными элементами в данном случае выступают обозначения различных объектов, а также вертикальные линии, отображающие течение времени и прямоугольники, предоставляющие деятельность определенного объекта или же выполнение им какой-либо функции.

Диаграмма сотрудничества

Данный тип диаграмм позволяет продемонстрировать взаимодействия между несколькими объектами, абстрагируясь от последовательности трансляции сообщений. Данный тип диаграмм в компактном виде отображает в себе абсолютно все передаваемые и принимаемые сообщения определенного объекта, а также форматы этих сообщений.

По причине того, что диаграммы последовательности и коммуникации представляют собой просто-напросто разный взгляд на одни и те же процедуры, Rational Rose предоставляет возможность создавать из диаграммы последовательности коммуникационную или же наоборот, а также осуществляет полностью автоматическую их синхронизацию.

Диаграммы обзора взаимодействия

Это диаграммы языка UML, которые относятся к разновидности диаграмм деятельности и включают в себя одновременно элементы Sequence и конструкции потока управления.

Стоит отметить тот факт, что данный формат объединяет в себе Collaboration и Sequence diagram, которые предоставляют возможность с разных точек зрения рассматривать взаимодействие между несколькими объектами в формируемой системе.

Диаграмма синхронизации

Представляет собой альтернативный вариант диаграммы последовательности, который явным образом демонстрирует изменение состояния на линии жизни с определенной шкалой времени. Может быть достаточно полезной в различных приложениях реального времени.

В чем преимущества?

Стоит отметить несколько преимуществ, которыми отличается UML диаграмма пользования и другие:

  • Язык является объектно-ориентированным, вследствие чего технологии описания результатов проведенного анализа и проектирования являются семантически близкими к методам программирования на всевозможных объектно-ориентированных языках современного типа.
  • При помощи данного языка система может быть описана практически с любых возможных точек зрения, и точно так же описываются различные аспекты ее поведения.
  • Все диаграммы являются сравнительно простыми для чтения даже после относительно быстрого ознакомления с его синтаксисом.
  • UML позволяет расширить, а также вводить собственные графические и текстовые стереотипы, что способствует его использованию не только в программной инженерии.
  • Язык получил достаточно широкое распространение, а также довольно активно развивается.

Недостатки

Несмотря на то что построение UML-диаграмм отличается массой своих плюсов, довольно часто их и критикуют за следующие недостатки:

  • Избыточность. В преимущественном большинстве случаев критики говорят о том, что UML является слишком большим и сложным, и зачастую это неоправданно. В него входит достаточно много избыточных или же практически бесполезных конструкций и диаграмм, причем наиболее часто подобная критика идет в адрес второй версии, а не первой, потому что в более новых ревизиях присутствует большее количество компромиссов «разработанных комитетом».
  • Различные неточности в семантике. По той причине, что UML определяется комбинацией себя, английского и OCL, у него отсутствует скованность, которая является присущей для языков, точно определенных техникой формального описания. В определенных ситуациях абстрактный синтаксис OCL, UML и английский начинают друг другу противоречить, в то время как в других случаях они являются неполными. Неточность описания самого языка одинаково отражается как на пользователях, так и на поставщиках инструментов, что в конечном итоге приводит к несовместимости инструментов из-за уникального способа трактовки различных спецификаций.
  • Проблемы в процессе внедрения и изучения. Все указанные выше проблемы создают определенные сложности в процессе внедрения и изучения UML, и в особенности это касается тех случаев, когда руководство заставляет инженеров насильно его использовать, в то время как у них отсутствуют предварительные навыки.
  • Код отражает код. Еще одним мнением является то, что важность имеют не красивые и привлекательные модели, а непосредственно рабочие системы, то есть код и есть проект. В соответствии с данным мнением есть потребность в том, чтобы разработать более эффективный способ написания программного обеспечения. UML принято ценить при подходах, компилирующих модели для регенерирования выполнимого или же исходного кода. Но на самом деле этого может быть недостаточно, потому что в данном языке отсутствуют свойства полноты по Тьюрингу, и каждый сгенерированный код в конечном итоге будет ограничиваться тем, что может предположить или же определить интерпретирующий UML инструмент.
  • Рассогласование нагрузки. Данный термин происходит из теории системного анализа для определения неспособности входа определенной системы воспринять выход иной. Как в любых стандартных системах обозначений, UML может представлять одни системы в более эффективном и кратком виде по сравнению с другими. Таким образом, разработчик больше склоняется к тем решениям, которые являются более комфортными для переплетения всех сильных сторон UML, а также других языков программирования. Данная проблема является более очевидной в том случае, если язык разработки не соответствует основным принципам объектно-ориентированной ортодоксальной доктрины, то есть не старается работать в соответствии с принципами ООП.
  • Пытается быть универсальным. UML представляет собой язык моделирования общего назначения, который старается обеспечить совместимость с любым существующим на сегодняшний день языком обработки. В контексте определенного проекта, для того, чтобы команда проектировщиков смогла добиться конечной цели, нужно выбирать применимые возможности этого языка. Помимо этого возможные пути ограничения сферы использования UML в какой-то определенной области проходят через формализм, который является не полностью сформулированным, а который сам представляет собой объект критики.

Таким образом, использование данного языка является актуальным далеко не во всех ситуациях.