Днк вирусы и рнк. Рнк-вирусы как причина развития рака - вирусный канцерогенез

ЛЕКЦИЯ

От лат. «virus» - яд

Вирусы — это внеклеточная форма жизни, обладающая собственным геномом и способная к воспроизведению только в клетках живых организмов.

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид), иногда содержащую также липидные и углеводные компоненты

Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т.е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых ам.к. находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

Говорят «Вирус - это промежуточная форма жизни, или нежизни», т.к. вне клетки хозяина он превращается в кристалл.

Говорят: в. это переход от химии к живому

Жизненный цикл вируса начинается

1. с проникновения внутрь клетки.

2. Для этого он связывается со специфическими рецепторами на ее поверхности и

а) либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности,

б) либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его «раздевание» — освобождение геномных нуклеиновых кислот от белков оболочки.

3. В результате этой процедуры вирусный геном становится доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса.

4. Именно после проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная в ней генетическая информация расшифровывается генетическими системами хозяина и используется для синтеза компонентов вирусных частиц.

По сравнению с геномами других организмов вирусный геном относительно мал и кодирует лишь ограниченное число белков, в основном белки капсида и один или несколько белков, участвующих в репликации и экспрессии вирусного генома. Необходимые метаболиты и энергия поставляются хозяйской клеткой.

ДНК-содержащие вирусы несут в качестве генетического материала либо одно-, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы классифицируют в зависимости от того, одно или двухцепочечная у них ДНК, и про- или эукариотической является клетка-хозяин. Вирусы заражающие бактерии называются бактериофагами.

1 — вирусы оспы; 2 — вирусы герпеса; 3 - аденовирусы; 4 — паповавирусы; 5 — гепаднавирусы; 6 — парвовирусы;

Первая группа — вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме: ДНК —»РНК -> ДНК.

- они получили название ретроидные вирусы.

- п редставителями этой группы вирусов являются вирус гепатита В и вирус мозаики цветной капусты.

1. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК:

2. Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой.

3. Транскрибируется только одна из нитей вирусной ДНК.

4. Синтез ДНК на РНК-матрице происходит в результате реакции, катализируемой обратной транскриптазой; сначала синтезируется (-) нить ДНК,

5. а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

В целом общая схема репликации генома ретроидных вирусов поразительно похожа на схему репликации генома ретровирусов. По-видимому, данное сходство имеет под собой и эволюционную основу, так как первичная структура обратных транскриптаз этих вирусов выявляет определенное сходство между собой.

Вторая группа — вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме ДНК -> ДНК.

- с генома этих вирусов в зараженной клетке ДНК-зависимая РНК-полимераза транскрибирует молекулы мРНК (т.е. (+) РНК),

МРНК (т.е. (+) РНК) принимает участие в синтезе вирусных белков,

Размножение вирусного генома осуществляет фермент ДНК-зависимая ДНК-полимераза: (±) днк → (+)РНК

В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

Схема вируса гриппа

Вирус гриппа - это пример вируса с «-»-одноцепочечной РНК. У него есть оболочка и спиральная сердцевина. Сердцевина состоит из восьми сегментов «-» РНК, которые в комплексе с белками образуют спиралевидные структуры. Каждый сегмент кодирует один из белков вируса. В наибольшем количестве вирус содержит белок матрикса, располагающийся на внутренней стороне оболочки и придающий ей стабильность. Все белки оболочки кодируются вирусной РНК, тогда как липиды являются по своему происхождению клеточными (см. ДНК-содержащие вирусы, сборка). Основные белки оболочки - гемагглютинин и нейраминидаза.

Инфекционный процесс протекает по схеме (прозрачка 2 внизу) начинается с прикрепления вируса к поверхности клетки-хозяина через гемагглютинин. Затем происходит слияние оболочки с клеточной мембраной, нуклеопротеиновая сердцевина (нуклеокапсид) входит в клетку, и кодируемая вирусом РНК-зависимая РНК-полимераза синтезирует + цепи мРНК на вирусных «-» цепях, после чего на рибосомах клетки-хозяина продуцируются вирусные белки. Некоторые из этих белков играют важную роль в репликации вирусного генома.

Репликация происходит в ядре, где с помощью той же, но вероятно, модифицированной РНК-полимеразы образуются «-» цепи РНК. После того как в ядро проступают нуклеокапсидные белки, происходит сборка нуклеокапсида. Затем нуклеокапсид проходит цитоплазму, присоединяя по пути белки оболочки, и покидает клетку, отпочковываясь от ее плазматической мембраны. Считается, что в процессе отпочковывания принимает участие нейраминидаза.

Третью группу составляют двунитевые геномы, (±) РНК-геномы.

Известные двунитевые геномы всегда сегментированы (т.е. состоят из нескольких разных молекул).

Сюда относятся реовирусы. Их размножение проходит по варианту, близкому к предыдущему. Вместе с вирусной РНК в клетку попадает и вирусная РНК-зависимая РНК-полимераза, которая обеспечивает синтез молекул (+) РНК. В свою очередь (+) РНК обеспечивает производство вирусных белков на рибосомах хозяйской клетки и служит матрицей для синтеза новых (-) РНК-цепочек вирусной РНК-полимеразой

Цепочки (+) и (-) РНК, комплексируясь друг с другом, образуют двунитевый (±) РНК-геном, который упаковывается в белковую оболочку.

- Реовирусы птиц (от англ. respiratory респираторный, enteric кишечный, orphan сиротский) - это икосаэдрические вирусы без оболочки, белковый капсид которых состоит из двух слоев - наружнего и внутреннего. Внутри капсида находятся 10 или 11 сегментов двухцепочечной РНК.

Реовирусы поражают респираторные и кишечные пути теплокровных животных (человека, обезьян, крупного и мелкого рогатого скота, летучих мышей,

Инфекционный процесс начинается с проникновения в клетку РНК и затем протекает в соответствии со схемой (прозрачка 2 - внизу). После частичного разрушения наружнего капсида ферментами лизосом РНК в образовавшейся таким образом субвирусной частице транскрибируется, ее копии покидают частицу и соединяются с рибосомами. Затем в клетке-хозяине продуцируются белки, необходимые для формирования новых вирусных цастиц.

Репликация РНК вирусов происходит по консервативному механизму. Одна из цепей каждого сегмента РНК служит матрицей для синтеза большого числа новых + цепей. На этих + цепях образуются затем как на матрице - цепи, + и - цепи при этом не расходятся, а остаются вместе в виде двухцепочечных молекул. сборка новых вирусных частиц из новообразованных + и --сегментови капсидных белков связана каким-то образом с миотическим веретеном клетки-хозяина.

Сюда относятся вирусы, у которых цикл репликации генома можно разбить на две главные реакции: синтез РНК на матрице ДНК и синтез ДНК на матрице РНК.

При этом в состав вирусной частицы в качестве генома может входить либо РНК (ретровирусы (Retroviridae - от REversed TRanscription)), либо ДНК (ретроидные вирусы).

Вирусная частица содержит две молекулы геномной одноцепочечной (+) РНК.

В вирусном геноме закодирован необычный фермент (обратная транскриптаза, или ревертаза), который обладает свойствами как РНК-зависимой, так и ДНК-зависимой ДНК-полимеразы.

Только в 1970 г. американские ученые Г. Темин и Мицутани и независимо от них Д.Балтимор разрешили эту загадку. Они доказали возможность передачи генетической информации от РНК к ДНК. Это открытие перевернуло центральную догму молекулярной биологии о том, что генетическая информация может переноситься только в направлении ДНК-РНК-белок. Пять лет понадобилось Г. Темину для обнаружения фермента, осуществляющего перенос информации от РНК к ДНК, - РНК-зависимой ДНК-полимеразы. Этот фермент получил название обратной транскриптазы. Г. Темину удалось не только получить фрагменты ДНК, комплементарные заданной цепи РНК, но и доказать что ДНК-копии могут встраиваться в ДНК клеток и передаваться потомству.

Этот фермент попадает в заражаемую клетку вместе с вирусной РНК и обеспечивает синтез ее ДНК-копии сначала в одноцепочечной форме [(-) ДНК], а затем в двуцепочечной [(±) ДНК]:

Вирусный геном в форме нормального дуплекса ДНК (так называемая провирусная ДНК) встраивается в хромосому клетки хозяина.

В результате двуцепочечная ДНК вируса представляет собой в сущности дополнительный набор генов клетки, который реплицируется вместе с ДНК хозяина при делении.

Для образования новых ретровирусных частиц провирусные гены (гены вируса в хромосомах хозяина) транскрибируются в ядре клетки транскрипционным аппаратом хозяина в (+) РНК-транскрипты.

Одни из них становятся геномом нового «потомства» ретровирусов, а другие подвергаются процессингу в мРНК и используются для трансляции белков, необходимых для сборки вирусных частиц

В эту группу входят

а) вирус иммунодефицита человека (ВИЧ)

Информация о СПИДе есть в Ветхом Завете

В нашем ганоме есть генетические метки прежних пандемий СПИДа

1 - парамиксовирусы; 2 - вирусы гриппа; 3 - коронавирусы; 4 - аренавирусы; 5 - ретровирусы; 6 - реовирусы; 7 - пикорнавирусы; 8 - капицивирусы; 9 - рабдовирусы; 10 - тогавирусы, флавивирусы; 11 - буньявирусы

Геномы почти всех известных РНК-содержащих вирусов - это линейные молекулы, их удобно разделить на 3 группы.

Первая группа - это однонитевые геномы положительной полярности, т.е. с нуклеотидной последовательностью, соответствующей таковой у мРНК.

Такие геномы обозначают как (+) РНК.

Вирусные (+) РНК-геномы кодируют несколько белков, среди которых РНК-зависимая РНК-полимераза (репликаза), способная синтезировать молекулы РНК без участия ДНК.

С помощью этого фермента синтезируются сначала (-) нити РНК фага,

Затем при наличии особого белка, называемого «хозяйским фактором», репликаза осуществляет синтез (+) нити РНК.

На заключительной стадии из накопившихся вирусных белков и (+) РНК формируются вирионы.

Упрощенная схема этого процесса такова:

(+) РНК (-) РНК

Однонитевый (+) РНК-геном характерен для

а) фага Qβ,

б) вирусов табачной мозаики,

Вирус табачной мозаики – пример + одноцепочечного вируса растенийвирус не имеет оболочки, спиральный, содержит 2130 идентичных молекул белка капрсида и одну цепь РНК. РНК располагается в спиральном желобке, обрапзованном белковыми субъединицами, и удерживается многочисленными слабыми связями.

Инфекционный процесс, протекающий по схеме (прозрачка 2 внизу), состоит в проникновении вируса в растительную клетку с последующей быстрой утратой им капсида. Затем в результате трансляции непосредственно +одноцепочечной вирусной РНК рибосомами клетки-хозяина образуются несколько белков, часть которых необходима для репликации вирусного генома.

Репликация осуществляется РНК-репликазой, продуцирующей копии РНК для новых вирионов. Синтез белка капсида происходит только после того как инфицировавшая клетку РНК подвергается некоторой модификации, делающей возможным присоединение рибосом клетки к тому участку РНК, которым кодируется этот белок. Сборка вириона начинается с образования дисков из белка капсида. Два таких белковых диска, располагаясь концентрически, образую похожую на бисквит структуру, которая после связывания с ней РНК приобретает форму спирали. Последующее присоединение молекул белка продолжается до тех пор, пока РНК не будет покрыта полностью. В своей окончательной форме вирион представляет собой цилиндр длиной 300 нм.

3) полиомиелита,

4) клещевого энцефалита.

Вторая группа - это однонитевые геномы с негативной полярностью, т.е. (-) РНК-геномы.

Поскольку (-) РНК не может выполнять функции мРНК, для образования «своих» мРНК вирус внедряет в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии по схеме:

(-) РНК (+) РНК

Этот вирусный фермент (РНК-зависимая РНК-полимераза, синтезированная в предыдущем цикле размножения) упакован в вирионе в удобной для доставки в клетку форме.

Инфекционный процесс начинается с того, что вирусный фермент копирует вирусный геном, образуя (+) РНК, которая выступает в качестве матрицы для синтеза вирусных белков, в том числе РНК-зависимой РНК-полимеразы, которая входит в состав образующихся вирионов


Интересное на сайте:

Основные группы прокариот. Бактерии – фототрофы
Многие бактерии используют свет, как источник энергии. Все они окрашены в красный, оранжевый, зеленый или сине-зеленый цвет; ведь для того, чтобы свет произвел какую-либо работу, он должен быть поглощен красителем – пигментом. У бактерий...

Основные понятия и термины
В работе дано определение используемых специфических или допускающих неоднозначную трактовку терминов и понятий. ...

Стадии развития естествознания (синкретическая, аналитическая, синтетическая, интегрально-дифференциальная)
1. Синкретическая стадия. На этой стадии сформировались общие, нерасчленённые, недетализированные представления об окружающем мире как о чём-то целом, появилась так называемая натурфилософия (философия Природы), превратившаяся во всеобще...

Строение и классификация вирусов

Вирусы относятся к царству Vira . Это

    мель­чайшие микробы («фильтрующиеся агенты»),

    не имеющие клеточного строения, белоксинтезирующей системы,

    Они являются автономными генетическими структурами и отличаются осо­бым, разобщенным (дизъюнктивным), спо­собом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кисло­ты вирусов и их белки, затем происходит их сборка в вирусные частицы.

    Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различ­ ной (рис.):

    палочковидной (вирус табач­ной мозаики),

    пулевидной (вирус бешенства),

    сферической (вирусы полиомиелита, ВИЧ),

    ни­тевидной (филовирусы),

    в виде сперматозои­да (многие бактериофаги).

Размеры вирусов определяют:

    с помощью электронной микроскопии,

    методом улырафильтрации через фильтры с известным диаметром пор,

    методом ультрацентрифугирования.

Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее круп­ным - вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие виру­ сы. Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких со­тен генов и представлен различными видами нуклеиновых кислот:

    двунитевыми,

    однонитевыми,

    линейными,

    кольцевыми,

    фрагментированными.

Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) гено­ мом. Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

Различают:

    просто устроенные вирусы (на­пример, вирусы полиомиелита, гепатита А) и

    сложно устроенные вирусы (например, виру­сы кори, гриппа, герпеса, коронавирусы).

У просто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболоч­кой, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц- капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.

У сложноустроенных вирусов (рис.) капсид окружен липопротеиновой оболоч­ кой - суперкапсидом, или пеплосом. Оболочка вируса является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопроте иновые «шипы», или «шипики» (пепломеры, или суперкапсидные белки). Под оболочкой некоторых вирусов находится М-белок.

Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусы состоят из нукле­иновой кислоты, капсида и липопротеино­вой оболочки.

Вирионы имеют :

    спиральный,

    икосаэдрический (кубический) или сложный тип симметрии кап­сида (нуклеокапсида).

Спиральный тип сим­метрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеи­новую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защи­щают вирионы от воздействия окружающей среды, обусловливают избирательное взаимо­действие (адсорбцию) с определенными клет­ками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сер­ дцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннего капсида.

В вирусологии используют следующие так­ сономические категории :

    семейство (название оканчивается на viridae ),

    подсемейство (на­звание оканчивается на virinae ),

    род (название оканчивается на virus ).

Однако названия родов и особенно подсемейств даны не для всех ви­русов. Вид вируса не получил биноминального названия, как у бактерий.

В основу классификации вирусов поло­ жены следующие категории:

    тип нуклеино­ вой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особен­ ности воспроизводства вирусного генома (табл. 2.3),

    размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (супер капсида).

    чувствительность к эфиру и дезоксихолату,

    место размножения в клетке,

    антигенные свойства и др.

Вирусы поражают позвоночных и беспозво­ночных животных, а также бактерии и расте­ния. Являясь основными возбудителями ин­фекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложне­ниям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных (канонических) вирусов известны инфекционные молекулы, кото­рые не являются вирусами и называются прионами. Прионы- термин, предложенный С. Прузинером, представляет собой анаграм­му английских слов «инфекционная белковая частица.» Клеточная форма нормального прионового протеина (РгРС) имеется в организме млекопитающих, в том числе человека, и выпол­няет ряд регуляторных функций. Его кодирует PrP-ген, расположенный в коротком плече 20-й хромосомы человека. При прионных болезнях в виде трансмиссивных губкообразных энцефа­лопатии (болезнь Крейтцфельда-Якоба, куру и др.) прионный протеин приобретает другую, инфекционную форму, обозначаемую как РгР & (Sc - от scrapie - скрепи, прионной инфекции овец и коз). Этот инфекционный прионовый протеин имеет вид фибрилл и отличается от нор­мального прионного протеина третичной или четвертичной структурой.

Другими необычными агентами, близкими к вирусам, являются вироиды - небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие

3.3. Физиология вирусов

Вирусы - облигатные внутриклеточные па­разиты, способные только к внутриклеточно­му размножению. В вирусинфицированной клетке возможно пребывание вирусов в раз­личных состояниях:

    воспроизводство многочисленных новых вирионов;

    пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки (в виде провируса);

    существование в цитоплазме клетки в ви­де кольцевых нуклеиновых кислот, напоми­нающих плазмиды бактерий.

Поэтому диапазон нарушений, вызывае­мых вирусом, весьма широк: от выраженной продуктивной инфекции, завершающейся ги­белью клетки, до продолжительного взаимо­действия вируса с клеткой в виде латентной инфекции или злокачественной трансформа­ции клетки.

Различают три типа взаимодействия вируса с клеткой : продуктивный, абортивный и интегративный.

1. Продуктивный тип - завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

    Абортивный тип - не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

    Интегративный тип, или вирогения -характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

    Репродукция вирусов (продуктивный)

Продуктивный тип взаимодействия виру­ са с клеткой, т. е. репродукция вируса (лат. re - повторение, productio - производство), проходит в 6 стадий:

1) адсорбция вирионов на клетке;

2) проникновение вируса в клетку;

3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса);

4) синтез вирусных компонентов ;

5) формирование ви­рионов;

6) выход вирионов из клетки.

У раз­личных вирусов эти стадии отличаются

Адсорбция вирусов. Первая стадия репродук­ции вирусов - адсорбция, т. е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза - неспецифическая, обусловленная ионным притяжением между вирусом и клеткой, включая и другие механиз­мы. Вторая фаза адсорбции - высокоспецифи­ ческая, обусловленная гомологией, комплемен-тарностью рецепторов чувствительных клеток и «узнающих» их белковых лигандов вирусов. Белки на поверхности вирусов, узнающие спе­цифические клеточные рецепторы и взаимо­действующие с ними, называются прикрепи­ тельными белками (в основном это гликопроте ины) в составе липопротеиновой оболочки.

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков, липидов и др. Так, рецепторами для вируса грип­па является сиаловая кислота в составе гли-копротеинов и гликолипидов (ганглиозидов) клеток дыхательных путей. Вирусы бешенства адсорбируются на ацетилхолиновых рецепто­рах нервной ткани, а вирусы иммунодефицита человека - на СО4-рецепторах Т-хелперов, моноцитов и дендритных клеток. На одной клетке находится от десяти до ста тысяч спе­цифических рецепторов, поэтому на ней могут адсорбироваться десятки и сотни вирионов.

Наличие специфических рецепторов лежит в основе избирательности поражения вируса­ми определенных клеток, тканей и органов. Это так называемый тропизм (греч. tropos - поворот, направление). Например, вирусы, репродуцирующиеся преимущественно в клетках печени, называются гепатотропными, в нервных клетках - нейротропными, в иммунокомпетентных клетках - иммунотропными и т. д.

Проникновение вирусов в клетку. Вирусы проникают в клетку путем рецептор-зависи­мого эндоцитоза (виропексиса), или слияния оболочки вируса с клеточной мембраной, или же в результате сочетания этих механизмов.

1 . Рецептор-зависимый эндоцитоз происхо­дит в результате захватывания и поглоще­ния вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эн­досомы), содержащей вирус. За счет АТФ-зависимого «протонного» насоса содержимое эндосомы закисляется, что приводит к слия­нию липопротеиновой оболочки сложно ор­ганизованного вируса с мембраной эндосомы и выходу вирусного нуклеокапсида в цитозоль клетки. Эндосомы объединяются с лизосомами, которые разрушают оставшиеся вирусные компоненты. Процесс выхода безоболочечных (просто организованных) вирусов из эн­досомы в цитозоль остается малоизученным.

2. Слияние обточки вириона с клеточной мемб­ раной характерно только для некоторых оболочечных вирусов (парамиксовирусов, ретровиру-сов, герпесвирусов), в составе которых имеются белки слияния. Происходит точечное взаимо­действие вирусного белка слияния с липидами клеточной мембраны, в результате чего вирус­ная липопротеиновая оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса попадает в цитозоль.

А) «Раздевание» (депротеинизация) вирусов. В результате высвобождается его внутренний компонент, способный вызы­вать инфекционный процесс. Первые этапы «раздевания» вируса начинаются в процессе его проникновения в клетку путем слияния вирус­ных и клеточных мембран или же при выходе вируса из эндосомы в цитозоль. Последующие этапы «раздевания» вируса тесно взаимосвя­заны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные учас­тки «раздевания» в клетке: для пикорнавирусов- в цитоплазме с участием лизосом, аппарата Гольджи; для герпесвирусов - около­ядерное пространство или поры ядерной мем­браны; для аденовирусов - сначала структуры цитоплазмы, а затем ядро клетки. Конечными продуктами «раздевания» могут быть нуклеи­новая кислота, нуклеопротеин (нуклеокапсид) или сердцевина вириона. Так, конечным продуктом раздевания пикарновирусов является нуклеиновая кислота, ковалентно связанная с одним из внутренних белков. А у многих оболочечных РНК-содержащих вирусов ко­нечными продуктами «раздевания» могут быть нуклеокапсиды или сердцевины, которые не только не препятствуют экспрессии вирусного генома, а, более того, защищают его от кле­точных протеаз и регулируют последующие биосинтетические процессы.

В) Синтез вирусных компонентов. Синтез белков и нуклеиновых кислот вируса, который разобщен во времени и пространстве. Синтез осущест­вляется в разных частях клетки, поэтому такой способ размножения вирусов называется дизъ­ юнктивным (от лат. disjunctus - разобщенный).

С) Синтез вирусных белков . В зараженной клет­ке вирусный геном кодирует синтез двух групп белков:

1. неструктурных белков, обслуживаю­щих внутриклеточную репродукцию вируса на разных его этапах;

2. структурных белков, которые входят в состав вириона (геномные, связанные с геномом вируса, капсидные и су-перкапсидные белки).

К неструктурным бел­ кам относятся: 1) ферменты синтеза РНК или ДНК (РНК- или ДНК-полимеразы), обеспе­чивающие транскрипцию и репликацию ви­русного генома; 2) белки-регуляторы; 3) пред­шественники вирусных белков, отличающиеся своей нестабильностью в результате быстрого нарезания на структурные белки; 4) фермен­ты, модифицирующие вирусные белки, на­пример, протеиназы и протеинкиназы.

Синтез белков в клетке осуществляется в со­ответствии с хорошо известными процессами транскрипции (от лат. transcriptio - переписы­вание) путем «переписывания» генетической информации с нуклеиновой кислоты в нуклео-тидную последовательность информационной РНК (иРНК) и трансляции (от лат. translatio - передача) - считывания иРНК на рибосомах с образованием белков. Передача наследствен­ной информации в отношении синтеза иРНК у разных групп вирусов неодинакова.

I . ДНК-содержашие вирусы реализуют ге­нетическую информацию так же, как и кле­точный геном, по схеме:

геномная ДНК вируса -» транскрипция иРНК -» трансляция белка вируса.

Причем ДНК-содержашие вирусы исполь­зуют для этого процесса клеточную полимеразу (вирусы, геномы которых транскри­бируются в ядре клетки - аденовирусы, па-повавирусы, герпесвирусы) или собственную РНК-полимеразу (вирусы, геномы которых транскрибируются в цитоплазме, например поксвирусы).

II . Плюс-нитевые РНК-содержашие вирусы (например, пикорнавирусы, флавивирусы, тогавирусы) имеют геном, выполняющий функ­цию иРНК; он распознается и транслируется рибосомами. Синтез белков у этих вирусов осу­ществляется без акта транскрипции по схеме:

геномная РНК вируса -> трансляция белка вируса.

III . Геном минус-однонитевых РНК-содержаших вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов) и двунитевых (реовирусов) служит матрицей, с которой транскрибируется иРНК, при участии РНК-полимеразы, связанной с нуклеино­вой кислотой вируса. Синтез белка у них происхо­дит по схеме:

геномная РНК вируса -» транскрипция и-РНК - трансляция белка вируса.

IV . Ретровирусы (вирусы иммунодефицита человека, онкогенные ретровирусы) имеют уникальный путь передачи генетической ин­формации. Геном ретровирусов состоит из двух идентичных молекул РНК, т. е. является диплоидным. В составе ретровирусов есть осо­бый вирусоспецифический фермент - обрат­ная транскриптаза, или ревертаза, с помощью которой осуществляется процесс обратной транскрипции, т. е. на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Комплементарная нить ДНК копируется с образованием двунитевой ком­плементарной ДНК, которая интегрирует в клеточный геном и в его составе транскриби­руется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков для этих вирусов осуществляется по схеме:

геномная РНК вируса -> комплементарная ДНК -» транскрипция иРНК

-»трансляция белка вируса.

Репликация вирусных геномов, т. е. синтез ви­русных нуклеиновых кислот, приводит к на­коплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации генома зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических или клеточных полимераз, а также от способности вирусов индуцировать образование полимераз в клетке.

Механизм репликации отличается у вирусов, имеющих:

1) двунитевую ДНК;

2) однонитевую ДНК;

3) плюс-однонитевую РНК;

4) минус-одноните-вую РНК;

5) двунитевую РНК;

6) идентичные плюс-нитевые РНК (ретровирусы).

1. Двунитевые ЛНК-вирусы . Репликация двунитевых вирусных ДНК происходит обычным полуконсервативным механизмом: после рас- плетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь син­тезированная молекула ДНК состоит из одной родительской и одной вновь синтезирован­ной нити. К этим вирусам относится большая группа вирусов, которые содержат двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме, как папилломавирусы. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.

Уникальный механизм репликации харак­терен для гепаднавирусов (вируса гепатита В). Геном гепаднавирусов представлен дву-нитевой кольцевой ДНК, одна нить которой короче (неполная плюс-нить) другой нити. Первоначально достраивается (рис. 3.7). Затем полная двунитевая ДНК с помощью клеточ­ной ДНК-зависимой РНК-полимеразы транс­крибируется с образованием небольших моле­кул иРНК и полной однонитевой плюс-РНК. Последняя называется прегеномной РНК; она является матрицей для репликации генома ви­руса. Синтезированные иРНК участвуют в про­цессе трансляции белков, в том числе вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). С помощью этого фермента мигрирующая в цитоплазму прегеномная РНК обратно транскрибируется в минус-нить ДНК, которая, в свою очередь, служит матрицей для синтеза плюс-нити ДНК. Этот процесс за­канчивается образованием двунитевой ДНК, содержащей неполную плюс-нить ДНК.

    Однонитевые ДНК-вирусы . Единствен­ными представителями однонитевых ДНК-вирусов являются парвовирусы. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы послед­ него. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей для синтеза плюс-нити ДНК нового вириона. Параллельно синтезируется иРНК, происхо­дит трансляция вирусных пептидов.

    Плюс-однонитевые РНК-вирусы . Эти виру­сы включают большую группу вирусов - пикорнавирусы, флавивирусы, тогавирусы (рис.3.8), у которых геномная плюс-нить РНК вы­полняет функцию иРНК. Например, РНК полиовирусов после проникновения в клетку связывается с рибосомами, работая как иРНК, и на ее основе синтезируется большой поли­пептид, который расщепляется на фрагменты: РНК-зависимую РНК-полимеразу, вирусные протеазы и капсидные белки. Полимераза на основе геномной плюс-нити РНК синтези­рует минус-нить РНК; формируется времен­но двойная РНК, названная промежуточным репликативным звеном. Это промежуточное репликативное звено состоит из полной плюс-нити РНК и многочисленных частично завер­шенных минус-нитей. Когда образованы все минус-нити, они используются как шаблоны для синтеза новых плюс-нитей РНК. Этот механизм используется как для размножения геномной РНК вируса, так и для синтеза боль­шого количества вирусных белков.

    Минус-однонитевые РНК-вирусы. Минус -однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полиме­разу. Проникшая в клетку геномная минус- нить РНК трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются матрицей (промежуточная стадия) для синтеза минус-нитей геномной РНК потомства

    Двунитевые РНК-вирусы. Механизм реп­ликации этих вирусов (реовирусов и ротави-русов) сходен с репликацией минус-однонитевых РНК-вирусов. Отличие состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они яв­ляются матрицами для синтеза минус-нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоп­лазме клеток.

6 . Ретровирусы (плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матри­це РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегриру­ет с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Формирование вирусов. Вирионы формиру­ются путем самосборки: составные части вириона транспортируются в места сборки ви­руса - участки ядра или цитоплазмы клетки. Соединение компонентов вириона обуслов­ лено наличием гидрофобных, ионных, водо­родных связей и стерического соответствия.

Существуют следующие общие принципы сборки вирусов :

Формирование вирусов- многоступенча­тый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов.

    Сборка просто устроенных вирусов за­ключается во взаимодействии вирусных нук­леиновых кислот с капсидными белками и в образовании нуклеокапсидов.

    У сложноустроенных вирусов сначала фор­мируются нуклеокапсиды, которые взаимо­действуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса).

Причем сборка вирусов, реплициру­ющихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.

    У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, парамиксовирусов) в сборку вовлекается так назы­ваемый матриксный белок (М-белок), который расположен под модифицированной клеточной ембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокапсидом и вирусной липопротеиновой оболочкой.

Сложноустроенные вирусы в процессе формирования включают в свой состав неко­торые компоненты клетки хозяина, например липиды и углеводы.

Выход вирусов из клетки. Полный цикл реп­родукции вирусов завершается через 5-6 ч (вирус гриппа и др.) или через несколько су­ток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.

    Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имею­щие липопротеиновой оболочки.

    Почкование, экзоцшпт присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к кле­точным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины ви­риона с клеточной мембраной начинается вы­пячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и про­дуцировать вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, парамиксовирусы, тогавирусы), либо через мембраны эндоплазматической сети с последующим их выходом на поверх­ность клетки (например, буньявирусы).

Вирусы, формирующиеся в ядре клетки (например, герпесвирусы), почкуются в перинуклеарное пространство через модифициро­ванную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.

Введение 2 стр.

Глава 1. Строение вирусов. 4 стр.

Глава 2. Разнообразие вирусов. 8 стр.

Глава 3. Биологическая роль вирусов. 11 стр.

Заключение. 14 стр.

Список литературы. 15 стр.

Приложение. 16 стр.

Введение.

"Вирус - это, по существу, часть клетки. Мы считаем вирусами те компоненты клетки, которые достаточно независимы для того, чтобы передаваться другим клеткам, и сравниваем их с другими клеточными компонентами, более прочно связанными со всей системой."
Г. Руска

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово "вирус" (от латинского слова, означающего "яд"), чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей. Хотя удалось достичь значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (нуклеиновые кислоты, связанные с белками), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа. Поэтому-то вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в 30-е годы прошлого столетия.

Вирусы отличаются от микроорганизмов следующими особенностями: 1) они содержат нуклеиновую кислоту только одного типа – или ДНК, или РНК; 2) для их репродукции необходима только нуклеиновая кислота; 3) они не способны размножаться вне живой клетки. Вирусы, таким образом, не являются самостоятельными организмами, а используют для своего размножения живые клетки: их репродукция происходит в клетке-хозяине. Клеточные механизмы нужны как для репликации нуклеиновой кислоты, так и для синтеза белковой оболочки вируса. Развитие вируса приводит к гибели клетки-хозяина. Вне клетки вирус существует в виде вирусной частицы (вириона), которая состоит из нуклеиновой кислоты и белковой оболочки – капсида. Поэтому вирусную частицу называют также нуклеокапсидом. [Шлегель, 1987] В то же время внутриклеточный вирус есть самореплицирующаяся форма, не способная к бинарному делению. Тем самым в определение вируса закладывается принципиальное различие между клеточной формой, воспроизводящейся только из вирусной нуклеиновой кислоты. Однако качественное отличие вирусов от про- и эукариот не ограничивается только одной этой стороной, а включает ряд других: 1) наличие одного типа нуклеиновой кислоты (ДНК или РНК); 2) отсутствие клеточного строения и белоксинтезирующих систем; 3) возможность интеграции в клеточный геном и синхронной с ним репликации.

Вместе с тем вирусы отличаются от обычных репликонов, какими являются молекулы ДНК всех микроорганизмов и любых других клеток, а также плазмид и транспозонов, поскольку упомянутые репликоны являются биомолекулами, которые нельзя отнести к живой материи. [Борисов и др., 1994]

Вирусы распознаются по последствиям своего развития в клетках хозяина. Они разрушают целые комплексы клеток и вызывают поражения тканей, что ведет к появлению некротических пятен или зон лизиса. Обычные хозяева вирусов – это растения, животные и микроорганизмы. [Шлегель, 1987]

Глава 1. Строение вирусов.

Вирусная частица, называемая также вирионом, состоит из нуклеиновой кислоты (ДНК или РНК), окруженной белковой оболочкой. Эту оболочку называют капсидом. Такая единица (капсид + нуклеиновая кислота = нуклеокапсид) может быть «голой», а в других случаях окружена оболочкой. Голым нуклеокапсидами являются, например, частицы вируса табачной мозаики, вируса, вызывающего бородавки, и аденовируса. Дополнительная оболочка окружает вирусы гриппа и герпеса.

Капсид в свою очередь состоит из субъединиц – капсомеров. Он чаще всего имеет симметричное строение. Различают два вида симметрии – спиральную и кубическую. В таблице 1 различные вирусы сгруппированы по их структуре.

Таблица 1. Морфологические классы вирусов.

Спиральная структура

Полиэдрическая структура (икосаэды)

Сложные вирусы (икосаэдрическая головка + спиральный хвост)

Рассмотрим четыре вируса, которые известны как возбудители болезней: два вируса со спиральной симметрией, из них один с голыми частицами (вирус табачной мозаики) и один с дополнительной оболочкой (вирус гриппа), и два типа вирусов с кубической симметрией – с голыми частицами (вирус полиомиелита и другие полиэдрические вирусы) и с оболочкой (вирус герпеса).

Вирус табачной мозаики. Это типичный пример вируса со спиральной симметрией. Его легко выделить из выжатого сока зараженных растений. Частицы представляют собой палочки толщиной 18 нм. Этот палочковидный нуклеокапсид состоит примерно из 2100 капсомеров. Они расположены по винтовой линии и образуют полый цилиндр. Каждый капсомер состоит из одной полипептидной цепи (158 аминокислот, последовательность которых определена). В стенке полого цилиндра между капсомерами помещается цепь РНК, которая тоже идет по винтовой линии.

Вирус гриппа. Частицы вируса гриппа имеют диаметр 110 нм. Нуклеокапсид, как и у вируса табачной мозаики, имеет спиральное строение, но он не палочковидный, а многократно закрученный. Нуклеокапсид окружен оболочкой – фрагментом мембраны клетки-хозяина, из которой вышел вирион. Оболочка имеет на своей наружной стороне шипы, которые служат для адсорбции вириона на поверхности новой клетки-хозяина и содержат мукопротеины и фермент нейраминидиазу. Этот фермент отщепляет от мукопротеинов инфицируемой клетки один компонент – N-ацетилнейраминовую кислоту – и, по-видимому, играет роль в разжижении слизи, покрывающей эпителиальные клетки носоглотки. Размножение вируса происходит внутри клеток. Освобождение вириона напоминает процесс почкования; при этом наружная оболочка вирусной частицы образуется из мембраны клетки-хозяина, которая может быть модифицирована добавлением белков вирусного происхождения (например, нейраминидазы).

Существует много различных разновидностей вируса гриппа. Какую именно ткань будет поражать вирус, зависит от специфичности вируса по отношению к клеткам-хозяевам и от рецепторных свойств клеток. Вирус может вызывать нарушение клеточного метаболизма или даже гибель клетки. Кроме того, он действует как антиген и стимулирует образование антител в организме хозяина. Вирусы, ответственные за большие эпидемии гриппа, отличаются друг от друга по своей вирулентности и патогенности.

Полиэдрические вирусы без наружной оболочки. Многие вирусы, кажущиеся сферическими, на самом деле имеют форму многогранника. Чаще всего это икосаэдр (двадцатигранник) – тело, ограниченное 20 равносторонними треугольниками и имеющее 12 вершин. Капсид икосаэдрического вируса состоит из капсомеров двух типов: в вершинах располагаются пентоны, состоящие из пяти белковых мономеров (протомеров); остальную поверхность граней и ребра образуют гексоны, состоящие из шести протомеров. Построение капсида из капсомеров следует законам кристаллографии; в соответствии с этим наименьший икосаэдрический капсид должен состоять из 12 пентонов, следующий по величине – из 12 пентонов и 20 гексонов. Существуют вирусы из 252 и даже 812 капсомеров.

По принципу икосаэдра построено очень много вирусов: вирусы полиомиелита, ящура, аденовирусы.

Полиэдрические вирусы с наружной оболочкой. Икосаэдр, окруженный оболочкой, - такова форма возбудителей ветряной оспы, опоясывающего лишая и простого герпеса.

Икосаэдрический капсид вируса герпеса состоит из 162 капсомеров. Наружная оболочка, несомненно, образуется из внутренней ядерной мембраны клетки-хозяина. Вирусы герпеса размножаются в ядрах клеток; капсиды новых вирусных частиц одеваются оболочкой из ядерной мембраны, «отпочковываются» от ядра и выводятся наружу по системе эндоплазматического ретикулума.

Ветряная оспа – относительно легкая детская болезнь. Вирус инфицирует верхние дыхательные пути, разносится кровью по всему телу и, закрепляясь в коже, в конечном счете вызывает здесь образование пузырьков. Опоясывающий лишай возникает у частично иммунных лиц; он появляется в результате реактивации вируса ветряной оспы. Таким образом, оба заболевания вызываются одним и тем же вирусом.

Вирус оспы. Вирусы оспы – наиболее крупные из зоопатогенных вирусов. Их частицы устроены совсем не так, как у вирусов четырех представленных выше типов. Они содержат ДНК, белок и несколько липидов, из-за чего их иногда называют комплексными вирионами. Частицы вирусов натуральной оспы и коровьей оспы имеют вид округленных блоков. Они состоят из внутреннего тельца, содержащего двухцепочечную ДНК, двойного слоя, содержащего белок, эллиптических белковых телец и наружной мембраны; частицу обвивают плотно прилегающие к ней нити. Эти вирусные частицы очень устойчивы к высыханию и поэтому чрезвычайно инфекционны. Натуральной оспой могут заболевать только люди и обезьяны. Вирусом коровьей оспы могут заражаться также коровы, кролики и овцы. Оба вируса имеют общие антигены. Поэтому людям профилактически прививают вирус коровьей оспы, который получают от коров и который у человека вызывает весьма слабые симптомы болезни. Такая активная вакцинация приводит к образованию антител, которые обуславливают иммунитет и к натуральной оспе.

Морфология бактериофагов. Строение бактериофагов в основном изучали на примере серии Т Escherichia coli. Колифаг Т 2 состоит из полиэдрической головки длиной 100 нм и отростка, или «хвоста», примерно такой же длины. Поэтому говорят о «составных» вирусах. Головка состоит из капсомеров и содержит внутри ДНК. Количество белка и ДНК примерно одинаково. Отросток фага Т 2 имеет сложное строение. В нем можно различить не менее трех частей: полый стержень, окружающий его сократимый чехол и находящуюся на дистальном конце стержня базальную пластинку с шипами и нитями (от последних зависит специфическая адсорбция на клетке-хозяине). На электронных микрофотографиях, полученных при негативном контрастировании, можно видеть фаговые частицы в двух состояниях: у одних частиц головка очень резко выделяется на электроноплотном фоне и чехол отростка растянут, у других головка мало отличается от фона по плотности и чехол находится в сокращенном состоянии. Первое состояние характерно для активного фага, в головке которого заключена ДНК, второе – для фага, который инъецировал свою ДНК в бактериальную клетку.

Многие бактериофаги имеют более простое строение. В зависимости от формы зрелых фаговых частиц различают ряд типов. Большинство фагов содержит двухцепочечную ДНК. В последние годы, однако, было обнаружено несколько фагов с одноцепочечной ДНК и несколько с одноцепочечной РНК. Содержащие РНК фаги fr, R17, Qβ и другие обладают наименьшими из известных геномов: в них 3500-4500 нуклеотидов. [Шлегель, 1987]

Глава 2. Разнообразие вирусов.

Вирусы составляют царство Vira, которое подразделено по типу нуклеиновой кислоты на два подцарства – рибовирусы и дезоксирибовирусы. Подцарства делятся на семейства, которые в свою очередь подразделяются на роды. Понятие о виде вирусов пока еще четко не сформулировано, так же как и обозначение разных видов.

В качестве таксономических характеристик первостепенное значение придается типу нуклеиновой кислоты и ее молекулярно-биологическим признакам: двунитевая, однонитевая, сегментированная, несегментированная, с повторяющимися и инвертированными последовательностями и др. Однако в практической работе прежде всего используются характеристики вирусов, полученные в результате электронно-микроскопических исследований: морфология, структура и размеры вириона, наличие или отсутствие внешней оболочки (суперкапсида), антигены, внутриядерная или цитоплазматическая локализация и др. Наряду с упомянутыми признаками учитываются и резистентность к температуре, рН, детергентам и т.д.

В настоящее время вирусы человека и животных включены в состав 18 семейств. Принадлежность вирусов к определенным семействам определяется типом нуклеиновой кислоты, структурой, целостностью или фрагментацией генома, а также наличием или отсутствием внешней оболочки. При определении принадлежности к семейству ретровирусов обязательно учитывается наличие обратной транскриптазы. Некоторые таксономические признаки представителей важнейших семейств вирусов человека и животных приведены в таблице 2 (см. приложение 1).

К РНК-содержащим вирусам относится большинство патогенных для человека вирусов. Они отличаются многообразием строения генома, высокими изменчивостью и скоростью эволюции, что приводит к появлению новых возбудителей инфекционных заболеваний. Большинство РНК-геномных вирусов репродуцируется в цитоплазме клетки, хотя некоторые из них на определенных этапах развития локализуются внутри ядра. В настоящее время известно 13 патогенных для человека семейств РНК-геномных вирусов:

1. Семейство Пикорнавирусов.

1.1. Энтеровирусы. Представители: вирусы полиомиелита, Коксаки, ЕСНО, гепатита А и др.

1.2. Риновирусы.

1.3.Афтовирусы. Представители: вирус ящура

2. Семейство Калицивирусов. Представители: вирус Норфолк.

3. Семейство Реовирусов.

3.1. Реовирусы.

3.2. Ротавирусы.

3.3. Орбивирусы.

4. Семейство Ретровирусов.

4.1. Подсемейство Спумавирусов.

4.2. Подсемейство Онковирусов.

4.3. Подсемейство Лентивирусов. Представители: ВИЧ.

5. Семейство Тогавирусов.

5.1. Альфавирусы.

5.2. Вирус краснухи.

6. Семейство Флавивирусов.

6.1. Вирус желтой лихорадки.

6.2. Вирус лихорадки денге.

6.3. Вирус японского энцефалита

6.4. Вирус клещевого энцефалита

6.5. Вирус омской геморрагической лихорадки (ОГЛ).

7. Семейство Буньявирусов.

7.1. Вирус крымской геморрагической лихорадки.

7.2. Вирусы москитных лихорадок.

7.3. Вирус геморрагической лихорадки с почечным синдромом.

8. Семейство Аренавирусов.

8.1. Вирус лимфоцитарного хориоменингита.

8.2. Вирус Ласа.

9. Семейство Филовирусов.

9.1. Вирус Марбург.

9.2. Вирус Эбола.

10. Семейство Рабдовирусов.

10.1. Вирус везикулярного стоматита.

10.2. Вирус бешенства.

11. Семейство Коронавирусов.

12.Семейство Парамиксовирусов.

12.1. Вирусы парагриппа человека (ВПЧГ).

12.2. Вирус паротита.

12.3. Вирус кори.

12.4. Респираторно-синцитиальный (РС) вирус.

13. Семейство Ортомиксовирусов.

13.1. Вирусы гриппа.

Патогенные для человека ДНК-содержащие вирусы входят в состав 6 семейств.

По сравнению с РНК-геномными вирусами они генетически более консервативны, т.е. менее изменчивы, нередко способны к длительной персистенции в организме хозяина. Подавляющее большинство ДНК-содержащих вирусов репродуцируется в ядрах клеток.

1. Семейство Аденовирусов.

2. Семейство Парвовирусов.

3. Семейство Герпесвирусов.

3.1. Альфа-герпесвирусы.

3.2. Бета-герпесвирусы

3.3. Гамма-герпесвирусы

4. Семейство Поксовирусов.

4.1. Вирус натуральной оспы.

4.2. Вирус оспы обезьян.

4.3. Вирус осповакцины (коровьей оспы).

4.4. Вирус контагиозного моллюска.

5.Вирусы гепатита.

5.1. Вирус гепатита А (семейство пикорнавирусов)

5.2. Вирус гепатита В.

5.3. Дельта-вирус.

5.4. Вирус гепатита С.

5.6. Вирус гепатита Е.

6. Онкогенные вирусы.

6.1.Паповавирусы. Представители: Папилломавирусы человека, вирусы полиомы, SV-40.

6.2. Вирусы герпеса.

6.3. Поксивирусы.

6.4. Вирус гепатита В. [Борисов и др., 1994]

Глава 3. Биологическая роль вирусов.

Всем известно, что вирусы играют в основном негативную роль. Но не все знают, что именно вирусы сыграли немаловажную роль в становлении микробиологии и генетики в частности, помогли ученым в изучении свойств и структуры ДНК. Например, при изучении жизненного цикла бактериофагов ученые Лурия и Дельбрюк пришли к предположениям о биологической роли ДНК.

В 1970 г. не известные широкой научной общественности Г.Темин и Д.Балтимор опубликовали в Nature статьи, посвященные обратной транскриптазе (ОТ) – ферменту РНК-содержащих, в том числе раковых, вирусов, которые синтезируют ДНК на матрице РНК, т.е. осуществляют реакцию, обратную той, которую до тех пор наблюдали в клетках.
Открытие обратной транскриптазы позволило выделить первые гены.

Журнал Time назвал Уотсона «охотником за генами». Сам же ученый сказал следующее: «Это захватывающая перспектива. Тридцать лет назад мы не могли и мечтать о том, чтобы узнать структуру генома даже мельчайшего вируса. А сегодня мы уже расшифровали геном вируса СПИДа и почти полностью прочитали геном кишечной палочки объемом в 4,5 млн букв ген-кода. Точное знание детальной структуры генома человека – это восхитительно!».

В нашем геноме много последовательностей, доставшихся нам в «наследство» от ретровирусов. Эти вирусы, к которым относятся вирусы рака и СПИДа, вместо ДНК в качестве наследственного материала содержат РНК. Особенностью ретровирусов является, как уже говорилось, наличие обратной транскриптазы. После синтеза ДНК по РНК вируса вирусный геном встраивается в ДНК хромосом клетки.
Таких ретровирусных последовательностей у нас много. Время от времени они «вырываются» на волю, в результате чего возникает рак (но рак в полном соответствии с законом Менделя проявляется лишь у рецессивных гомозигот, т.е. не более чем в 25% случаев). Совсем недавно было сделано открытие, которое позволяет понять не только механизм встраивания вирусов, но и назначение некодирующих последовательностей ДНК. Оказалось, что для встраивания вируса необходима специфическая последовательность из 14 букв генетического кода. Таким образом, можно надеяться, что вскоре ученые научатся не только блокировать агрессивные ретровирусы, но и целенаправленно «внедрять» нужные гены, и генотерапия из мечты превратится в реальность.
В организме млекопитающих ретровирусы играют и еще одну немаловажную роль. В отношении млекопитающих, у которых плод развивается внутри организма матери, правомерен вопрос: почему иммунная система матери позволяет развиваться организму, который наполовину генетически ей чужероден, поскольку половина генома плода отцовская?
Все дело в ретровирусах, которые блокируют активность иммунных Т-лимфоцитов, ответственных за отторжение органов и тканей, содержащих чужеродные белки, например, после трансплантации органов. Эти ретровирусы активируются в геноме клеток плаценты, которая образуется тканями плода.
Недавно был обнаружен вирус, который блокирует развитие (экспрессию) ретровируса. Если этим вирусом-блокатором заразить беременную мышь, то мышата рождаются нормальными и в срок. Но если его ввести в клетки плаценты, то происходит выкидыш плода, так как активируются Т-лимфоциты матери.
Не стоит забывать, что ретровирусные последовательности возникают также непосредственно на концах хромосом – теломерах. Как известно, теломеры состоят из одноцепочечной ДНК, которая синтезируется ферментом теломеразой по матрице РНК. Считается, что теломеры являются нашими молекулярными часами, поскольку они укорачиваются с каждым клеточным делением. Раньше считалось, что в теломерах нет генов, однако расшифровка генома показала, что генов там довольно много и они активны в детстве и молодом возрасте, постепенно «угасая» по мере старения организма.

Способы передачи вирусных заболеваний.

Капельная инфекция - самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми вирусами могут вдохнуть другие люди, особенно в местах скопления большого количества народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции правильное пользование носовыми платками и проветривание комнат.

Некоторые микроорганизмы, такие, как вирус оспы, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель. Даже при разговоре изо рта вылетают микроскопические брызги слюны, поэтому подобного рода инфекции очень трудно предотвратить, особенно если микроорганизм очень вирулентен (заразен).

Контагиозная передача (при непосредственном физическом контакте). В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. Сюда прежде всего относятся венерические (т. е. передающиеся половым путем) болезни, такие, как СПИД. К контагиозным вирусным болезням относятся обычные бородавки (папилломавирус) и простой герпес - "лихорадка" на губах.

Переносчик - это любой живой организм, который разносит инфекцию. Он получает инфекционное начало от организма, называемого резервуаром или носителем. Вирус бешенства сохраняется и передается одним и тем же животным, например собакой или летучей мышью. В этих случаях переносчик выступает в качестве второго хозяина, в теле которого может размножаться патогенный микроорганизм. Насекомые могут переносить возбудителей болезней на наружных покровах тела.

Заключение.

Вирусы играют довольно важную роль в биосфере – они выступают как бы одним из факторов естественного отбора, позволяют стабилизировать численность популяций живых организмов. Более сильные организмы вырабатывают антитела и вместе с ними иммунитет, более слабые – погибают. Это позволяет более приспособленным давать потомство с уже сформированным иммунитетом к данному вирусу.

Вирусы помогли ученым изучить роль ДНК в организме. А также было выяснено, что ретровирусы не только являются возбудителями страшных заболеваний: рака и СПИДа, - но и позволяют всем нам появиться на свет, т.к. они блокируют иммунные Т-лимфоциты матери, что не позволяет плоду быть отторгнутым.

Таким образом, вирусы играют не только отрицательную роль, о которой все люди знают не понаслышке, но и исключительно положительную. Дальнейшее исследование этих загадочных «живых – неживых» организмов не только необходимо для человечества, чтобы бороться с неизлечимыми болезнями, вызываемыми вирусами, но и, я думаю, не менее интересно.

Список литературы.

1. Борисов Л.Б., Смирнова А.М., Фрейдлин И.С. и др. «Медицинская микробиология, вирусология, иммунология». – М.: «Медицина», 1994

2. Шлегель Г. «Общая микробиология». – М.: «Мир», 1987

3. www.medicinform.net

4. www. Elite-genetix.ru

Приложение 1.

Таблица 2. Некоторые таксономические признаки представителей важнейших семейств вирусов человека и животных.

Таксономический признак

Семейство

Важнейшие представители

I. ДНК-содержащие вирусы

Двунитевая ДНК

Аденовирусы

Аденовирусы

Отсутствие внешней оболочки

Паповавирусы

Вирусы папилломы, полиомы и бородавок человека

Однонитевая ДНК

Отсутствие внешней оболочки

Парвовирусы

Аденассоциированные вирусы

Двунитевая ДНК. Наличие внешней оболочки

Герпесвирусы

Вирусы простого герпеса, цитомегалии, ветряной оспы

Гепаднавирусы

Вирус гепатита В

Поксовирусы

Вирус натуральной оспы, осповакцины

II. РНК-содержащие вирусы

Плюс-однонитевая РНК. Отсутствие внешней оболочки

Пикорнавирусы

Вирусы полиомиелита, Коксаки, ЕСНО, вирус гепатита А.

Калицивирусы

Вирусы гастроэнтерита детей (Норфолк)

Двунитевая РНК. Отсутствие внешней оболочки

Реовирусы

Реовирусы, ротавирусы, орбвирусы

Наличие обратной транскриптазы

Ретровирусы

ВИЧ, вирусы Т-лейкоза, онковирусы

Плюс-однонитевая РНК. Наличие внешней оболочки

Тогавирусы

Вирусы омской геморрагической лихорадки, краснухи

Плюс-нитевая РНК (позитивный геном)

Флавивирусы

Вирусы клещевого энцефалита, лихорадка денге, желтой лихорадки.

Минус-однонитевая РНК.

Буньявирусы

Вирусы Буньямвера, крымской геморрагической лихорадки

Аренавирусы

Вирусы лимфоцитарного хориоменингита, болезни Лассо

Рабдовирусы

Вирусы бешенства, везикулярного стоматита

Двунитевая РНК. Наличие внешней облочки

Парамиксовирусы

Вирусы парагриппа, паротита, кори, РСВ

Ортомиксовирусы

Вирусы гриппа человека, животных, птиц

От лат. «virus» - яд

Вирусы - это внеклеточная форма жизни, обладающая собственным геномом и способная к воспроизведению только в клетках живых организмов.

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид), иногда содержащую также липидные и углеводные компоненты

Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т.е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых ам.к. находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

Говорят «Вирус – это промежуточная форма жизни, или нежизни», т.к. вне клетки хозяина он превращается в кристалл.

Говорят: в. это переход от химии к живому

Жизненный цикл вируса начинается

1. с проникновения внутрь клетки.

2. Для этого он связывается со специфическими рецепторами на ее поверхности и

а) либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности,

б) либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его «раздевание» - освобождение геномных нуклеиновых кислот от белков оболочки.

3. В результате этой процедуры вирусный геном становится доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса.

4. Именно после проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная в ней генетическая информация расшифровывается генетическими системами хозяина и используется для синтеза компонентов вирусных частиц.

По сравнению с геномами других организмов вирусный геном относительно мал и кодирует лишь ограниченное число белков, в основном белки капсида и один или несколько белков, участвующих в репликации и экспрессии вирусного генома. Необходимые метаболиты и энергия поставляются хозяйской клеткой.


ДНК-содержащие вирусы несут в качестве генетического материала либо одно-, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы классифицируют в зависимости от того, одно или двухцепочечная у них ДНК, и про- или эукариотической является клетка-хозяин. Вирусы заражающие бактерии называются бактериофагами.

1 - вирусы оспы; 2 - вирусы герпеса; 3 – аденовирусы; 4 - паповавирусы; 5 - гепаднавирусы; 6 - парвовирусы;

Первая группа - вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме: ДНК -»РНК -> ДНК.

- они получили название ретроидные вирусы.

- п редставителями этой группы вирусов являются вирус гепатита В и вирус мозаики цветной капусты.

1. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК:

2. Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой.

3. Транскрибируется только одна из нитей вирусной ДНК.

4. Синтез ДНК на РНК-матрице происходит в результате реакции, катализируемой обратной транскриптазой; сначала синтезируется (-) нить ДНК,

5. а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

В целом общая схема репликации генома ретроидных вирусов поразительно похожа на схему репликации генома ретровирусов. По-видимому, данное сходство имеет под собой и эволюционную основу, так как первичная структура обратных транскриптаз этих вирусов выявляет определенное сходство между собой.

Вторая группа - вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме ДНК -> ДНК.

- с генома этих вирусов в зараженной клетке ДНК-зависимая РНК-полимераза транскрибирует молекулы мРНК (т.е. (+) РНК),

МРНК (т.е. (+) РНК) принимает участие в синтезе вирусных белков,

Размножение вирусного генома осуществляет фермент ДНК-зависимая ДНК-полимераза:

(±) днк → (+)РНК

В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

- вирус герпеса

Оспа – естественный враг СПИДа (нет оспы – есть СПИД). О СПИДе есть информация в Ветхом завете. В нашем геноме есть генетические метки прежних пандемий СПИДа

Вирусные заболевания периодичны: ОСПА → ПРОКАЗА→ЧУМА → †

Третья группа - вирусы с одноцепочечной ДНК, либо с негативной, либо с позитивной полярностью.

- Попав в клетку, вирусный геном сначала превращается в двуцепочечную форму,

- это превращение обеспечивает клеточная ДНК-зависимая ДНК-полимераза:

или (±) ДНК → (+) РНК

Транскрипция и репликация на последующих этапах происходит так же, как и для вирусов, с (±) ДНК-геномом.

Структура вируса: это молекула ДНК в белковой оболочке, называемой капсидом. Однако есть много разных вариантов строения вирусов: от просто покрытой белком ДНК (например, бактериофаг Pf1) до сложных макромолекулярных комплексов, окруженных мембранными структурами, например, вирус оспы. Если у вируса есть мембрана‚ говорят, что он в оболочке, а если мембраны нет, то вирус называют «раздетым». Различают четыре основных вида капсидов: спиральные, икосаэдрические, сложные без оболочки, сложные с оболочкой.(см. презентация)

Спиральные капсиды

- обычно встречаются у нитевидных вирусов.

Образуются путем самосборки асимметричных белковых субъединиц (капсомеров), объединяющихся в трубчатую структуру со спиральной симметрией (например у Pf1).

Субъединицы в большинстве случаев гомогенны, так, что поверхность вириона состоит из множества копий одного и того же белка, хотя под наружним капсидом могут находиться и другие белки.

ДНК в таких вирусах либо вытянута, либо может быть туго скручена в комплексе со специальными связывающими белками.

Икосаэдрические капсиды

Свойственны большинству сферических ДНК-содержащих вирусов

Икосаэдр – это многогранник с двадцатью треугольными гранями, имеющий кубическую симметрию и приблизительно сферическую форму.

Вершины треугольников соединяясь образуют двенадцать вершин икосаэдра;

В местах соединения располагаются обычно пентамерные белковые структуры – пентоны; там же могут находится участки, на которых формируются белковые нити, нередко ассоциированные с вершинами (например у ф Х174 прозрачка 1).

Грани икосаэдра заполнены другими белковыми субъединицами, сгруппированными обычно в гексамерные структуры – гексоны (апример, у аденовируса прозрачка 1).

Количество субъединиц, необходиимое для заполнения граней, определяется размерами вириона в целом, и разные икосаэдрические вирусы содержат поэтому разное число гексонов – обычно при неизменном числе пентонов.

ДНК обычно плотно свернута внутри капсида;

Иногда она связана с белками или полипептидами, способными стабилизировать ее структуру.

Сложные капсиды без оболочки

Типичны для бактериофагов:

Они состоят из частей с разными типами симметрии.

У бактериофага Т2, например, ДНК находится в икосаэдрической головке, а для «узнавания» бактерии и введения в нее ДНК служат трубчатые и фибриллярные структуры (в узнавании участвует также лизоцим, расположенный на дистальном конце хвостового отростка).

Сложные капсиды с оболочкой

Есть только у вирусов эукариотических клеток.

В них ДНК-белковые комплексы окружены одним или несколькими белковыми слоями и наружней мембраной, почти все белковые компоненты которой являются вирусными по своему происхождению, а липидные структуры – клеточными.

Инфицирование – процесс, посредством которого вирус внедряется в клетку-хозяина и «настраивает» ее метаболический аппарат на воспроизведение вирионов.

Зараженные вирусом клетки либо остаются живыми (тогда говорят, что вирус невирулентен),

Либо подвергаются лизису, приводящему к высвобождению вирусных частиц.

Неизменным итогом заражения клеток ДНК-содержащими бактериофагами является лизис.

- ДНК-содержащие вирусы животных вызывают лизис редко; однако клетки могут погибнуть из-за возникших при заражении хромосомных повреждений, вследствии иммунологической реакцииорганизма или просто в результате нарушения вирусом нормальных клеточных функций.

Размножение вируса – четко очерченный цикл, приводящий в конечном счете, после синтеза новых молекул вирусных белков и большого числа копий вирусной ДНК, к формированию зрелых вирусных частиц. У вирусов бактерий весь цикл может завершаться менее чем за час, тогда как у многих вирусов животных он занимает не один день.

Адсорбция вируса на клетке-хозяине – первый этап инфицирования. Она происходит на специфических рецепторных участках (белковых или липидных) клеточной поверхности, которые узнаются особыми выступающими частями вириона и к которым он прочно прикрепляется. У вирусов без оболочки такими частями могут быть белковые отростки (например, у аденовируса и бактериофага Т2), а у вирусов с оболочкой это, как правило белки, погруженные в вирусную мембрану. В процессе адсорбции осуществляются, в частности, такие белок-белковые взаимодействия, результатом которых является инициация стадии проникновения ДНК в клетку.