Двоичная система счисления. Перевод из двоичной в десятичную - все просто

Самой короткой системой счисления является двоичная. Она полностью основана на позиционной форме записи числа. Основной характеристикой считается принцип удвоения цифры при выполнении перехода от определённой позиции к последующей. Из одной системы счисления в другую можно осуществить перевод как при помощи специальной программы, так и вручную.

Вконтакте

Историческое признание

Появление двоичной СС в истории связано с учёным математиком В.Г. Лейбницем. Именно он впервые заговорил о правилах выполнения операций с числовыми значениями данного рода. Но первоначально этот принцип остался невостребованным . Мировое признание и применение алгоритм получил на заре возникновения вычислительных машин.

Удобство и несложность выполнения операций привели к необходимости более детального изучения данного подраздела арифметики, который стал незаменимым при развитии компьютерной технологии с программным обеспечением. Впервые такие механизмы появились на немецком и французском рынках.

Внимание! Конкретную точку над превосходством двоичной системы по отношению десятичной, именно в данной отрасли, было поставлено в 1946 году и обосновано в статье А. Бекса, Х. Гольдстайна и Дж.Фон Неймана.

Перевод числа из десятичной системы счисления в двоичную.

Особенности двоичной арифметики

Вся двоичная СС основана на применении только двух символов , которые очень точно совпадают с особенностями цифровой схемы. Каждый из символов отвечает за определённое действие, которое зачастую подразумевает два состояния:

  • наличие отверстия или его отсутствие, к примеру, перфокарты или перфоленты;
  • на магнитных носителях отвечает за состояние намагничивания или размагничивания;
  • по уровню сигнала, высокий или низкий.

В науке, в которой применяется СС, введена определённая терминология, суть ее состоит в следующем:

  • Бит – двоичный разряд , который состоит из двух составляющих, несущих в себе определённый смысл. Размещённый слева, определяется как старший и является приоритетным, а справа – младшим, являющийся менее весомым.
  • Байт – это единица, которая состоит из восьми битов .

Многие модули воспринимают и обрабатывают информацию порциями или словами . Каждое слово имеет разный вес и может состоять из 8-ми, 16-ти или 32-х битов .

Правила переводов из одной системы в другую

Одним из важнейших факторов арифметики машин является перевод из одной СС в другую . Поэтому обратим внимание на основные алгоритмы выполнения процесса, который покажет, как перевести число в двоичную систему.

Переводим десятичную систему в двоичную

Первоначально обратимся к вопросу, как осуществить перевод системы из десятичной в двоичную систему счисления. Для этого существует правило перевода из десятичных чисел в двоичный код, которое подразумевает математические действия .

Необходимо число, записанное в десятичном виде разделить на 2 . Деление выполнять до тех пор, пока в частном не останется единица . Если необходима двоичная система счисления перевод осуществляется так:

186:2=93 (ост. 0)

93:2=46 (ост. 1)

46:2=23 (ост. 0)

23:2=11 (ост. 1)

11:2=5 (ост. 1)

5:2=2 (ост.1)

После того, как процесс деления закончен, то единицу в частном и все остатки записываем последовательно в обратном делению порядке . То есть, 18610=1111010. Правило перевода десятичных чисел в СС надо соблюдать всегда.

Перевод числа из десятичной системы в двоичную.

Перевод из десятичной СС в восьмеричную

Аналогичный процесс проводится при переводе из десятичной СС в восьмеричную. Его ещё называют «правилом замещения ». Если в предыдущем примере деление данных осуществлялось на 2, то здесь необходимо делить на 8. Алгоритм перевода числа X10 в восьмеричную состоит из следующих шагов:

  1. Число X10 начинают делить на 8. Полученное частное берём для следующего деления, а остаток записывается, как бит младшего порядка .
  2. Продолжаем деление до тех пор, пока не получим в результат частного равного нулю или остаток, который по своему значению меньше восьми . При этом все остатки записываем, как младшие порядки бита .

К примеру, необходимо перевести число 160110 в восьмеричное.

1601:8=200 (ост. 1)

200:8=25 (ост. 0)

25:8=3 (ост.1)

Итак, получим: 161010=31018.

Перевод из десятичной системы в восьмеричную.

Записываем десятичное число шестнадцатеричным

Перевод из десятичной в шестнадцатиричную СС осуществляется аналогично с использованием системы замещения. Но кроме цифр применяют ещё и буквы латинского алфавита A, B, C, D, E, F. Где A обозначает остаток 10, а F остаток 15. Десятичное число делят на 16. К примеру, переводим 10710 в шестнадцатеричную:

107:16=6 (ост. 11 – заменяем В)

6 – меньше, чем шестнадцать. Деление прекращаем и записываем 10710=6В16.

Переходим из другой системы в двоичную

Следующий вопрос, как преобразовать из восьмеричной в двоичную запись числа. Перевод чисел из любой системы в двоичную выполняется достаточно просто. Помощником в этом деле выступает таблица для систем счисления .

Фраза о том, что все новое - это не что иное, как хорошо забытое старое, в полной мере относится к Оказывается, что еще в древнем Китае уже применяли нечто, напоминающее наши «единичка-нолик», правда не для арифметики, а для написания текстов книги Перемен. Ближе всех к пониманию разных систем счисления были инки: они использовали и десятичную, и двоичную системы, правда, последнюю только для текстовых и кодированных сообщений. Можно предположить, что уже тогда, 4 тыс. лет назад, инки знали, как делается перевод из двоичной в десятичную систему.

Современный вариант был предложен Лейбницем всего-то около 300 лет назад, а спустя еще полтора века оставил свое имя в памяти потомков работой по алгебре логики. Двоичная арифметика совместно с алгеброй логики стала фундаментом нынешней цифровой техники. А началось все в 1937 году, когда был предложен метод символического анализа релейных и переключательных схем. Эта работа Клода Шенона стала «мамой» для релейного компьютера, выполнявшего двоичное сложение уже в 1937 году. И, конечно же, одной из задач этого «прадедушки» современных компьютеров был перевод из двоичной в десятичную систему.

Прошло всего три года и очередная модель релейного «компьютера» посылала команды калькулятору используя телефонную линию и телетайп - ну прямо древний интернет в действии.

Что же представляют собой двоичная, десятичная, шестнадцатеричная и, вообще говоря, любая N-ичная система? Да ничего сложного. Возьмем трехзначное число в нашей любимой десятичной системе, оно изображается при помощи 10 знаков - от 0 до 9 с учетом их расположения. Определимся, что цифры этого числа находятся на позициях 0, 1, 2 (порядок идет от последней цифры к первой). На каждой из позиций может находиться любое из чисел системы, однако величина этого числа определяется не только его начертанием, но и местом положения. Например, для числа 365 (соответственно, позиция 0 - цифра 5, позиция 1 - цифра 6, и позиция 2 - цифра 3) значение числа на нулевой позиции - просто 5, на первой позиции - 6*10, и на второй - 3*10*10. Здесь любопытно, что начиная с первой позиции, число содержит значащую цифру (от 0 до 9) и основание системы в степени равной номеру позиции, т.е. можно записать, что 345 = 3*10*10 + 6*10 +3 = 3*102 + 6*101 + 5*100.

Еще пример:

260974 = 2*105 + 6*104 + 0*103 + 9*102 + 7*101 + 4*100.

Как видим, каждое позиционное место содержит значащее число из набора данной системы, и множитель из основания системы в степени равной позиции данного числа (разрядность числа это есть количество позиций, но на +1 больше).

С точки зрения представления числа, его двоичная форма озадачивает своей простотой - только 2 числа в системе - 0 и 1. Но красота математики в том, что даже в усеченном виде, как может показаться, двоичные числа такие же полноценные и равноправные, как и их более «рослые товарищи». Но как же их сравнивать, например, с десятичным числом? Как вариант, нужно сделать, и не торопясь, перевод из двоичной в десятичную. Задачу не назовешь трудной, но эта кропотливая работа требует внимания. Итак, начнем.

Исходя из сказанного выше о порядке представления чисел в любой системе, и имея в виду простейшую из них - двоичную, возьмем любую последовательность «единичек-ноликов». Назовем это число VO (по-русски ВО), и попробуем узнать, что это такое - перевод из двоичной в десятичную систему. Пусть это будет VO=11001010010. На первый взгляд, число как число. Посмотрим!

В первой строке расположим само число в растянутом виде, а вторую распишем как сумму каждой позиции в виде сомножителей - значащей цифры (здесь выбор небольшой - 0 или 1) и числа 2 в степени, равной позиционному числу в десятичной системе, мы же делаем перевод из двоичной в десятичную. Теперь во второй строке нужно просто выполнить вычисления. Для наглядности можно дописать еще и третью строку с промежуточными вычислениями.

VO = 1 1 0 0 1 0 1 0 0 1 0;

VO = 1*210 + 1*29 + 0*28 + 0*27 + 1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 0*20;

VO=1*1024 + 1*512+0*256+0*128+ 1*64 + 0*32 + 1*16 + 0*8 +0*4 + 1*2 + 0*1.

Вычисляем «арифметику» в третьей строке и имеем то, что искали: VO = 1618. Ну и что же тут замечательного? А то, что это число - самое знаменитое из всех, которые известны людям: с ним связаны пропорции египетских пирамид, знаменитой Джоконды, музыкальных нот и человеческого тела, но… Но с небольшим уточнением - зная, что хорошего должно быть много, его величество случай дал нам это число в 1000 раз больше настоящего значения - 1,618. Наверное, чтобы всем досталось. А попутно перевод из двоичной системы в десятичную помог из бесконечного моря чисел «выловить» самое замечательное - его еще называют «золотая пропорция».

Инструкция

Видео по теме

В той системе счета, которой мы пользуемся каждый день, десять цифр - от нуля до девяти. Поэтому она называется десятичной. Однако в технических расчетах, особенно тех, которые имеют отношение к компьютерам, используются и другие системы , в частности, двоичная и шестнадцатеричная. Поэтому нужно уметь переводить числа из одной системы счисления в другую.

Вам понадобится

  • - листок бумаги;
  • - карандаш или ручка;
  • - калькулятор.

Инструкция

Двоичная система - самая простая. В ней всего две цифры - ноль и единица. Каждая цифра двоичного числа , начиная с конца, соответствует степени двойки. Два в равняется одному, в первой - двум, во второй - четырем, в третьей - восьми, и так далее.

Предположим, что вам дано двоичное число 1010110. Единицы в нем стоят на втором, третьем, пятом и седьмом с конца местах. Поэтому в десятичной системе это число равно 2^1 + 2^2 + 2^4 + 2^6 = 2 + 4 + 16 + 64 = 86.

Обратная задача - десятичного числа систему. Предположим, у вас есть число 57. Чтобы получить его запись, вы должны последовательно делить это число на 2 и записывать остаток от деления. Двоичное число будет строиться от конца к началу.
Первый шаг даст вам последнюю цифру: 57/2 = 28 (остаток 1).
Затем вы получаете вторую с конца: 28/2 = 14 (остаток 0).
Дальнейшие шаги: 14/2 = 7 (остаток 0);
7/2 = 3 (остаток 1);
3/2 = 1 (остаток 1);
1/2 = 0 (остаток 1).
Это последний шаг, потому что результат деления равен нулю. В итоге вы получили двоичное число 111001.
Проверьте правильность ответа: 111001 = 2^0 + 2^3 + 2^4 + 2^5 = 1 + 8 + 16 + 32 = 57.

Вторая , используемая в компьютерных вопросах - шестнадцатеричная. В ней не десять, а шестнадцать цифр. Чтобы не новых условных обозначений, первые десять цифр шестнадцатеричной системы обозначаются обычными цифрами, а остальные шесть - латинскими буквами: A, B, C, D, E, F. десятичной записи они соответствуют числа м от 10 до 15. Во избежание путаницы перед числом, записанным по шестнадцатеричной системе, ставят знак # или символы 0x.

Чтобы число из шестнадцатеричной системы , нужно каждую его цифру умножить на соответствующую степень шестнадцати и сложить результаты. Например, число #11A в десятичной записи равняется 10*(16^0) + 1*(16^1) + 1*(16^2) = 10 + 16 + 256 = 282.

Обратный перевод из десятичной системы в шестнадцатеричную совершается тем же методом остатков, что и в двоичную. Например, возьмите число 10000. Последовательно деля его на 16 и записывая остатки, вы получите:
10000/16 = 625 (остаток 0).
625/16 = 39 (остаток 1).
39/16 = 2 (остаток 7).
2/16 = 0 (остаток 2).
Результатом вычислений станет шестнадцатеричное число #2710.
Проверьте правильность ответа: #2710 = 1*(16^1) + 7*(16^2) + 2*(16^3) = 16 + 1792 + 8192 = 10000.

Переводить числа из шестнадцатеричной системы в двоичную гораздо проще. Число 16 является двойки: 16 = 2^4. Поэтому каждую шестнадцатеричную цифру можно записать как четырехзначное двоичное число. Если у вас в двоичном числе получается меньше четырех знаков, добавляйте в начало нули.
Например, #1F7E = (0001)(1111)(0111)(1110) = 1111101111110.
Проверьте правильность ответа: оба числа в десятичной записи равны 8062.

Для перевода вам нужно разбить двоичное число на группы по четыре цифры, начиная с конца, и каждую такую группу заменить шестнадцатеричной цифрой.
Например, 11000110101001 превращается в (0011)(0001)(1010)(1001), что в шестнадцатеричной записи дает #31A9. Правильность ответа подтверждается переводом в десятичную запись: оба числа равны 12713.

Совет 5: Как перевести число в двоичную систему исчисления

Благодаря ограниченности в использовании символов двоичная система является наиболее удобной для использования в компьютерах и других цифровых устройствах. Символов всего два: 1 и 0, поэтому эту систему применяют в работе регистров.

Инструкция

Двоичная является позиционной, т.е. позиции каждой цифры в числе соответствует определенный разряд, который равен двум в соответствующей степени. Степень начинается с нуля и увеличивается по мере движения справа налево. Например, число 101 равно 1*2^0 + 0*2^1 + 1*2^2 = 5.

Широким распространением среди позиционных систем пользуются также восьмеричная, шестнадцатеричная и десятичная системы . И если для первых двух более применим второй метод, то для перевода из применимы оба.

Рассмотрим десятичного числа в двоичную систему методом последовательного деления на 2.Чтобы перевести десятичное число 25 в

Сдающим ЕГЭ и не только…

Странно, что в школах на уроках информатики обычно показывают ученикам самый сложный и неудобный способ перевода чисел из одной системы в другую. Это способ заключается в последовательном делении исходного числа на основание и сборе остатков от деления в обратном порядке.

Например, нужно перевести число 810 10 в двоичную систему:

Результат записываем в обратном порядке снизу вверх. Получается 81010 = 11001010102

Если нужно переводить в двоичную систему довольно большие числа, то лестница делений приобретает размер многоэтажного дома. И как тут собрать все единички с нулями и ни одной не пропустить?

В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.

Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.

Таблица степеней числа 2:

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10
2 4 8 16 32 64 128 256 512 1024

Она легко получается умножением предыдущего числа на 2. Так, что если помните не все эти числа, остальные нетрудно получить в уме из тех, которые помните.

Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 A B C D E F

Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.

Перевод целых чисел

Итак, начнем с перевода сразу в двоичную систему. Возьмём то же число 810 10 . Нам нужно разложить это число на слагаемые, равные степеням двойки.

  1. Ищем ближайшую к 810 степень двойки, не превосходящую его. Это 2 9 = 512.
  2. Вычитаем 512 из 810, получаем 298.
  3. Повторим шаги 1 и 2, пока не останется 1 или 0.
  4. У нас получилось так: 810 = 512 + 256 + 32 + 8 + 2 = 2 9 + 2 8 + 2 5 + 2 3 + 2 1 .
Далее есть два способа, можно использовать любой из них. Как легко увидеть, что в любой системе счисления её основание всегда 10. Квадрат основания всегда будет 100, куб 1000. То есть степень основания системы счисления - это 1 (единица), и за ней столько нулей, какова степень.

Способ 1 : Расставить 1 по тем разрядам, какие получились показатели у слагаемых. В нашем примере это 9, 8, 5, 3 и 1. В остальных местах будут стоять нули. Итак, мы получили двоичное представление числа 810 10 = 1100101010 2 . Единицы стоят на 9-м, 8-м, 5-м, 3-м и 1-м местах, считая справа налево с нуля.

Способ 2 : Распишем слагаемые как степени двойки друг под другом, начиная с большего.

810 =

А теперь сложим эти ступеньки вместе, как складывают веер: 1100101010 .

Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».

Ответ - столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.

Теперь пример попроще.

Переведём число 63 в 5-ричную систему счисления. Ближайшая к 63 степень числа 5 - это 25 (квадрат 5). Куб (125) будет уже много. То есть 63 лежит между квадратом 5 и кубом. Тогда подберем коэффициент для 5 2 . Это 2.

Получаем 63 10 = 50 + 13 = 50 + 10 + 3 = 2 * 5 2 + 2 * 5 + 3 = 223 5 .

Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.

Переведем в двоичную систему число 547 8 .

547 8 = 101 100 111
5 4 7

Ещё одно, например 7D6A 16 .

7D6A 16 = (0)111 1101 0110 1010
7 D 6 A

Переведем в 16-ричную систему число 7368. Сначала цифры запишем тройками, а потом поделим их на четверки с конца: 736 8 = 111 011 110 = 1 1101 1110 = 1DE 16 . Переведем в 8-ричную систему число C25 16 . Сначала цифры запишем четвёрками, а потом поделим их на тройки с конца: C25 16 = 1100 0010 0101 = 110 000 100 101 = 6045 8 . Теперь рассмотрим перевод обратно в десятичную. Он труда не представляет, главное не ошибиться в расчётах. Раскладываем число на многочлен со степенями основания и коэффициентами при них. Потом всё умножаем и складываем. E68 16 = 14 * 16 2 + 6 * 16 + 8 = 3688 . 732 8 = 7 * 8 2 + 3*8 + 2 = 474 .

Перевод отрицательных чисел

Здесь нужно учесть, что число будет представлено в дополнительном коде. Для перевода числа в дополнительный код нужно знать конечный размер числа, то есть во что мы хотим его вписать - в байт, в два байта, в четыре. Старший разряд числа означает знак. Если там 0, то число положительное, если 1, то отрицательное. Слева число дополняется знаковым разрядом. Беззнаковые (unsigned) числа мы не рассматриваем, они всегда положительные, а старший разряд в них используется как информационный.

Для перевода отрицательного числа в двоичный дополнительный код нужно перевести положительное число в двоичную систему, потом поменять нули на единицы и единицы на нули. Затем прибавить к результату 1.

Итак, переведем число -79 в двоичную систему. Число займёт у нас один байт.

Переводим 79 в двоичную систему, 79 = 1001111. Дополним слева нулями до размера байта, 8 разрядов, получаем 01001111. Меняем 1 на 0 и 0 на 1. Получаем 10110000. К результату прибавляем 1, получаем ответ 10110001 . Попутно отвечаем на вопрос ЕГЭ «сколько единиц в двоичном представлении числа -79?». Ответ - 4.

Прибавление 1 к инверсии числа позволяет устранить разницу между представлениями +0 = 00000000 и -0 = 11111111. В дополнительном коде они будут записаны одинаково 00000000.

Перевод дробных чисел

Дробные числа переводятся способом, обратным делению целых чисел на основание, который мы рассмотрели в самом начале. То есть при помощи последовательного умножения на новое основание с собиранием целых частей. Полученные при умножении целые части собираются, но не участвуют в следующих операциях. Умножаются только дробные. Если исходное число больше 1, то целая и дробная части переводятся отдельно, потом склеиваются.

Переведем число 0,6752 в двоичную систему.

0 ,6752
*2
1 ,3504
*2
0 ,7008
*2
1 ,4016
*2
0 ,8032
*2
1 ,6064
*2
1 ,2128

Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.

Получается 0,6752 = 0,101011 .

Если число было 5,6752, то в двоичном виде оно будет 101,101011 .

Привет, посетитель сайта сайт! Продолжаем изучать и протокол сетевого уровня IP, а если быть более точным, то его версию IPv4. На первый взгляд тема двоичных чисел и двоичной системы счисления не имеет отношения к протоколу IP, но если вспомнить, что компьютеры работают с нулями и единицами, то оказывается, что двоичная система и ее понимание — это основа основ, нам нужно научиться переводить числа из двоичной системы счисления в десятичную и наоборот: из десятичной в двоичную . Это нам поможет лучше понять протокол IP, а также принцип работы масок сети переменной длины. Давайте приступать!

Если тема компьютерных сетей вам интересна, то можете ознакомиться с другими записями курса.

4.4.1 Введение

Прежде чем мы начнем, стоит вообще объяснить зачем нужна эта тема сетевому инженеру. Хотя вы могли убедиться в ее необходимости, когда мы говорили , но, вы можете сказать, что есть IP-калькуляторы, которые существенно облегчают задачу по распределению IP-адресов, вычислению нужных масок подсетей/сетей и определению номера сети и номера узла в IP-адресе. Так-то оно так, но IP-калькулятор не всегда под рукой, это причина номер раз. Причина номер два заключается в том, что на экзаменах Cisco вам не дадут IP-калькулятор и все преобразования IP-адресов из десятичной системы счисления в двоичную вам придется делать на листе бумаги , а вопросов, где это требуется на экзамене/экзаменах по получению сертификата CCNA не так уж и мало, будет обидно, если из-за такой мелочи экзамен будет завален. Ну и наконец понимания двоичной системы счисления ведет к лучшему пониманию принципа работы .

Вообще сетевой инженер не обязан уметь делать перевод чисел из двоичной системы счисления в десятичную и наоборот в уме. Более того, это редко кто умеет делать в уме, в основном к такой категории относятся преподаватели различных курсов по компьютерным сетям, так как они сталкиваются с этим постоянно изо дня в день. Но при помощи листа бумаги и ручки вам стоит научиться осуществлять перевод.

4.4.2 Десятичные цифры и числа, разряды в числах

Давайте начнем с простого и поговорим про двоичные цифры и числа , вы же знаете, что цифры и числа – это две разные вещи. Цифра – это специальный символ для обозначения, а число – это абстрактная запись, означающая количество. Например, чтобы записать, что у нас пять пальцев на руке мы можем использовать римские и арабский цифры: V и 5. В данном случае пять является одновременно и числом, и цифрой. А, например, для записи числа 20 мы используем две цифры: 2 и 0.

Итого, в десятичной системе счисления у нас есть десять цифр или десять символов (0,1,2,3,4,5,6,7,8,9), комбинируя которые мы можем записывать различные числа. Каким принципом мы руководствуемся, используя десятичную систему счисления? Да все очень просто, мы возводим десятку в ту или иную степень, для примера возьмём число 321. Как его можно записать по-другому, да вот так: 3*10 2 +2*10 1 +1*10 0 . Таким образом получается, что число 321 представляет собой три разряда:

  1. Цифра 3 означает старший разряд или в данном случае это разряд сотен, иначе их количество.
  2. Цифра 2 стоит в разряде десятков, у нас два десятка.
  3. Цифра один относится к младшему разряду.

То есть в данной записи двойка это не просто двойка, а две десятки или два раза по десять. А тройка это не просто тройка, а три раза по сто. Получается такая зависимость: единица каждого следующего разряда в десять раз больше единицы предыдущего, ведь, что такое 300 – это три раза по сто. Отступление по поводу десятичной системы счисление было нужно, чтобы проще понять двоичную.

4.4.3 Двоичные цифры и числа, а также их запись

В двоичной системе счисления всего две цифры: 0 и 1 . Поэтому запись числа в двоичной системе зачастую гораздо больше, чем в десятичной. За исключением чисел 0 и 1, ноль в двоичной системе счисления равен нулю в десятичной, аналогично и для единицы. Иногда, чтобы не перепутать в какой системе счисления записано число, используют суб-индексы: 267 10 , 10100 12 , 4712 8 . Число в суб-индексе указывает на систему счисления.

Для записи двоичных чисел могут быть использованы символы 0b и &(амперсанд): 0b10111, &111 . Если в десятичной системе счисления, чтобы произнести число 245 мы воспользуемся вот такой конструкцией: двести сорок пять, то в двоичной системе счисления чтобы назвать число, нам нужно произнести цифру из каждого разряда, например, число 1100 в двоичной системе счисления следует произносить не как тысяча сто, а как один, один, ноль, ноль. Давайте посмотрим на запись чисел от 0 до 10 в двоичной системе счисления:

Думаю, логика должна быть уже понятна. Если в десятичной системе счисления для каждого разряда у нас было доступно десять вариантов (от 0 до 9 включительно), то в двоичной системе счисления в каждом из разрядов двоичного числа у нас только два варианта: 0 или 1 .

Для работы с IP-адресами и масками подсети нам достаточно натуральных чисел в двоичной системе счисления, хотя двоичная система позволяет записывать дробные и отрицательные числа, но нам это без надобности .

4.4.4 Преобразование чисел из десятичной системы счисления в двоичную

Давайте лучше разберемся с тем, как преобразовать число из десятичной системы счисления в двоичную . И тут все на самом деле очень и очень просто, хотя на словах объяснить трудно, поэтому сразу приведу пример преобразования чисел из десятичной системы счисления в двоичную . Возьмем число 61, чтобы выполнить преобразование в двоичную систему, нам нужно это число делить на два и смотреть, что получается в остатке от деления. А результат деления снова делить на два. В данном случае 61 – это делимое, в качестве делителя у нас всегда будет двойка, а частное (результат деления) мы делим снова на два, продолжаем деление до тех пор, пока в частном не окажется 1, эта последняя единица и будет крайним левым разрядом. Рисунок ниже это демонстрирует.

При этом обратите внимание, что число 61, это не 101111, а 111101, то есть выписываем результат с конца. Единицу в последнем частном смысла делить на два нет, поскольку в данном случае используется целочисленное деление, а при таком подходе получается так, как на Рисунке 4.4.2.

Это не самый быстрый способ перевода числа из двоичной системы счисления в десятичную . У нас есть несколько ускорителей. Например, число 7 в двоичной системе записывается как 111, число 3 как 11, а число 255 как 11111111. Все эти случаи до безобразия просты. Дело в том, что числа 8, 4, и 256 являются степенями двойки, а числа 7, 3 и 255 на единицу меньше этих чисел. Так вот для числа, которые на единицу меньше, чем число равное степени двойки, действует простое правило: в двоичной системе такое десятичное число записывается количеством единиц равным степени двойки. Так, например, число 256 это два в восьмой степени, следовательно, 255 записывается как 11111111, а число 8 это два в третьей степени, а это говорит нам о том, что 7 в двоичной системе счисления будет записано как 111. Ну а понять, как записать 256, 4 и 8 в двоичной системе счисления тоже не трудно, достаточно просто прибавить единицу: 256 = 11111111 + 1 = 100000000; 8 = 111 + 1 = 1000; 4 = 11 + 1 = 100.
Любой свой результат вы можете проверить на калькуляторе и по началу лучше так и делать.

Как видим, делить мы еще не разучились. И теперь можем двигаться дальше.

4.4.5 Преобразование чисел из двоичной системы счисления в десятичную

Преобразование чисел из двоичной системы счисления выполняется гораздо проще, чем перевод из десятичной в двоичную. В качестве примера перевода будем использовать число 11110. Обратите внимание на табличку ниже, она показывает степень, в которую нужно возвести двойку, чтобы потом в итоге получить десятичное число.

Чтобы из этого двоичной числа получить десятичное, нужно каждое число в разряде умножить на два в степени, а затем сложить результаты перемножения, проще показать:

1*2 4 +1*2 3 +1*2 2 +1*2 1 +0*2 0 = 16+8+4+2+0=30

Откроем калькулятор и убедимся, что 30 в десятичной системе счисления, это 11110 в двоичной.

Видим, что всё сделано верно. Из примера видно, что перевод числа из двоичной системы счисления в десятичную выполняется куда проще, чем обратный перевод . Чтобы уверенно работать с нужно лишь помнить степени двойки до 2 8 . Для наглядности приведу таблицу.

Нам больше и не нужно, поскольку максимально возможное число, которое можно записать в один байт (8 бит или восемь двоичных значений) равно 255, то есть в каждом октете IP-адреса или маски подсети протокола IPv4 максимально возможное значение — 255. В есть поля, в которых есть значения больше 255, но их нам рассчитывать не нужно.

4.4.6 Сложение, вычитание, умножение двоичных чисел и другие операции с двоичными числами

Давайте теперь посмотрим на операции, которые можно выполнять с двоичными числами . Начнем с простых арифметических операций, а затем перейдем к операциям булевой алгебры.

Сложение двоичных чисел

Складывать двоичные числа не так уж сложно: 1+0 =1; 1+1=0 (в дальнейшем дам пояснение); 0+0=0. Это были простые примеры, где использовался лишь один разряд, давайте посмотрим на примеры, где количество разрядов больше, чем один.
101+1101 в десятичной системе это будет 5 + 13 = 18. Давайте посчитаем в столбик.

Результат выделен оранжевым цветом, калькулятор говорит, что мы посчитали верно, можете проверить. Теперь давайте смотреть почему так получилось, ведь вначале я написал, что 1+1=0, но это для случая, когда у нас есть только один разряд, для случаев, когда разрядов больше, чем один, 1+1=10 (или два в десятичной), что логично.

Тогда смотрите, что получается, мы выполняем сложения по разрядам справа налево:

1. 1+1=10, записываем ноль, а единица уходит в следующий разряд.

2. В следующем разряде получается 0+0+1=1 (эта единица пришла к нам из результата сложения на шаге 1).

4. Тут у нас есть единица только у второго числа, но сюда еще перенеслась, поэтому 0+1+1 = 10.

5. Склеиваем всё воедино:10|0|1|0.

Если лень в столбик, то давайте считать так: 101011+11011 или 43 + 27 = 70. Как тут можно поступить, а давайте смотреть, ведь нам никто не запрещает делать преобразования, а от перемены мест слагаемых сумма не меняется, для двоичной системы счисления это правило также актуально.

  1. 101011 = 101000 + 11 = 101000 + 10 + 1 = 100000 + 1000 + 10 + 1.
  2. 11011 = 11000 + 10 + 1 = 10000 + 1000 + 10 + 1.
  3. 100000 + 10000 + (1000 +1000) + (10+10) + (1+1).
  4. 100000 + (10000 + 10000) + 100 + 10.
  5. 100000 + 100000 +110
  6. 1000000 + 110.
  7. 1000110.

Можете проверить калькулятором, 1000110 в двоичной системе счисления это 70 в десятичной.

Вычитание двоичных чисел

Сразу пример для вычитания одноразрядных чисел в двоичной системе счисления , про отрицательные числа мы не говорили, поэтому 0-1 не берем в расчет: 1 – 0 = 1; 0 – 0 = 0; 1 – 1 = 0. Если разрядов больше чем один, то тоже все просто, даже никаких столбиков и ухищрений не нужно: 110111 – 1000, это то же самое, что и 55 – 8. В результате мы получим 101111. И биться сердце перестало, откуда единица в третьем разряде (нумерация слева направо и начинается с нуля)? Да всё просто! Во втором разряде числа 110111 стоит 0, а в первом разряде стоит 1 (если примем, что нумерация разрядов начинается с 0 и идет слева направо), но единица четвертого разряда получается путем сложения двух единиц третьего разряда (получается этакая виртуальная двойка) и от этой двойки мы отнимаем единицу, которая стоит в нулевом разряде числа 1000, ну а 2 — 1 = 1, ну а 1 является допустимой цифрой в двоичной системе счисления.

Умножение двоичных чисел

Нам осталось рассмотреть умножение двоичных чисел, которое реализует за счет сдвига на один разряд влево . Но для начала давайте посмотрим на результаты одноразрядного умножения: 1*1 = 1; 1*0=0 0*0=0. Собственно, всё просто, теперь давайте посмотрим на что-нибудь более сложное. Возьмем числа 101001 (41) и 1100 (12). Умножать будем столбиком.

Если из таблицы непонятно как так получилось, то попробую объяснить словами:

  1. Умножение двоичных чисел удобно делать в столбик, поэтому выписываем второй множитель под первым, если числа с разным количество разрядов, то будет удобнее, если большее число будет сверху.
  2. Следующим шагом умножаем все разряды первого числа на самый младший разряд второго числа. Записываем результат перемножения ниже при этом нужно записать так, чтобы под каждым соответствующим разрядом был записан результат перемножения.
  3. Теперь нам нужно перемножить все разряды первого числа на следующий разряд второго числа и результат записать еще одной строчкой ниже, но этот результат нужно сдвинуть на один разряд влево, если смотреть на таблицу, то это вторая последовательность нулей сверху.
  4. Точно также нужно сделать для последующих разрядов, каждый раз сдвигаясь на один разряд влево, а если смотреть на таблицу, то можно сказать, что на одну клетку влево.
  5. У нас получилось четыре двоичных числа, которые нужно теперь сложить и получить результат. Сложение мы недавно рассмотрели, проблем возникнуть не должно.

В общем-то, операция умножения не такая уж и сложная, нужно лишь немного попрактиковаться.

Операции булевой алгебры

В булевой алгебре есть два очень важных понятия: true (истина) и false (ложь), эквивалентом для них служат ноль и единица в двоичной системе счисления. Операторы булевой алгебры расширяют количество доступных операторов над этими значениями, давайте на них посмотрим.

Операция «Логическое И» или AND

Операция «Логическое И» или AND эквивалентно умножению одноразрядных двоичных чисел.

1 AND 1 = 1; 1 AND 0 = 1; 0 AND 0 = 0; 0 AND 1 = 0.

1 AND 1 = 1 ;

1 AND 0 = 1 ;

0 AND 0 = 0 ;

0 AND 1 = 0.

Единица в результате «Логического И» будет только в том случае, если оба значения равны единицы, во всех остальных случаях будет ноль.

Операция «Логическое ИЛИ» или OR

Операция «Логическое ИЛИ» или OR работает по следующему принципу: если хотя бы одно значение равно единице, то в результате будет единица.

1 OR 1 = 1; 1 OR 0 = 1; 0 OR 1 = 1; 0 OR 0 = 0.

1 OR 1 = 1 ;

1 OR 0 = 1 ;

0 OR 1 = 1 ;

0 OR 0 = 0.

Операция «Исключающее ИЛИ» или XOR

Операция «Исключающее ИЛИ» или XOR даст нам в результате единицу только в том случае, если один из операндов равен единице, а второй равен нулю. Если оба операнда равны нулю, будет ноль и даже если оба операнда равны единице, в результате получится ноль.