Экраны усиливающие. Экраны Типы усиливающих экранов их техническая характеристика

Компания «Неразрушающий Контроль» предлагает широкий ассортимент усиливающих экранов российского и зарубежного производства.

Металлические экраны

В большинстве случаев металлические экраны изготавливают из свинца, реже - из меди, вольфрама или тантала. По сравнению с флуоресцентными экранами, металлические требуют большего времени экспозиции, но при этом увеличивают качество изображения за счет повышения контрастности. Эффективность действия металлического экрана зависит от толщины и экспонирующего излучения, а также от свойств фотоматериала, с которым его используют. Наибольший коэффициент усиления проявляется при применении металлических экранов с крупнозернистыми материалами.

Экраны свинцовые усиливающие, Германия. Применяют с несенсибилизированными пленками (D2, D3, D4, D5, D7 и D8). Диапазон толщин от 0,02 до 0,16 мм. Толщину экрана выбирают в зависимости от требуемого коэффициента усиления. Экраны серии поставляют листами или в упаковках.

Флуоресцентные экраны

Флуоресцентные экраны состоят из подложки и слоя люминофора, за счет которого они приобретают высокую поглощающую способность (доля поглощенной энергии достигает 20%) и значительно снижают время экспозиции. При этом резкость изображение получается ниже, чем у металлических экранов. Флуоресцентные экраны выпускают в комплекте из переднего и заднего экранов, при этом толщина заднего больше, чем у переднего.

Экраны серии УПВ на гибкой полиэстровой подложке с применением мелкозернистого люминофора. В серии есть стандартные усиливающие экраны УПВ-1 и УПВ-2, а также модель УПВ-3 ВУ повышенной яркости. Изготавливаемые форматы: 30х40 см, 8х30 см, 8х40 см, 10х30 см и 10х40 см. Все экраны рекомендуется применять с техническими пленками типа РТ-1.

Agfa NDT 1200. Экраны на пластиковой основе с люминофором из вольфрамата кальция. NDT 1200 применяют при контроле толстостенных конструкций или бетонных сооружений. Время экспозиции сокращается до 150 раз. Экраны NDT 1200 рекомендуется применять с пленками Agfa F8.

Металлофлуоресцентные экраны

Металлофлуоресцентные экраны появились сравнительно недавно (в восьмидесятых годах) и объединяют в себе преимущества металлических и флуоресцентных экранов. В их состав входит слой люминофора и слой свинцовой фольги, что позволяет уменьшить время экспозиции без ухудшения качества изображения.

Экраны Kyokko на пластиковой основе используют для контроля сварных соединений и металлических изделий. Формат экранов 30х40 см. Все экраны рекомендуется применять с техническими пленками типа Agfa F8.

Agfa NDT RCF . Экраны на пластиковой основе с люминофором из вольфрамата кальция и защитным покрытием. NDT RCF применяют при контроле толстостенных конструкций. Также, благодаря гибкости, их можно использовать при контроле трубопроводов и изогнутых деталей. Время экспозиции сокращается до 40 раз. Экраны NDT 1200 рекомендуется применять с пленками Agfa NDT F8 и Agfa NDT F6. Экраны RCF выпускаются форматами10х24 см,10х48 см и 30х40 см.

Экраны серии СМП на полимерной высокоотражающей основе применяют при контроле трубных поверхностей при отрицательных температурах. Свинцовая фольга с составе экранов обеспечивает высокий контраст и резкость изображения. Экраны СМП используют и с импульсными рентгеновскими аппаратами, и с аппаратами постоянного потенциала. Экраны серии рекомендуется применять с пленками Agfa F8 и Р8Ф.

Консультанты отдела продаж помогут в выборе усиливающего экрана, подходящего для ваших задач и объектов контроля.

Доставим во все города России, а также в страны СНГ и Таможенного Союза (Казахстан, Белоруссия, Украина, Таджикистан, Республика Молдавия, Кыргызстан).

Усиливающий экра́н (УЭ) - экран в виде пластины (пленки), покрытой люминофором, предназначенный для преобразования невидимого рентгеновского изображения в видимое.

УЭ состоят:

1. основа (прозрачная самоклеющаяся);

2. отражающий слой;

3. люминофорный слой;

4. защитный слой.

УЭ как и пленка быват сине- и зелено- чувствительная.

УЭ должны обладать следующими качествами:

Высокая абсорбционная способность (способность экрана поглощать фотонное ищлучение, чем выше поглощение, тем лучше);

Высокий конверсионный показатель (преобразование R-излучения в видимое), чем выше тем лучше;

Спектр световой эмиссии - должен соответствовать спектру пленки (зеленый экран - зеоеная пленка, синий экран - синяя пленка, зеленый экран - синя пленка, добавляются KV);

Отсутствие послесвечения (чем меньше, тем лучше);

Задержка разгорания (чем меньше, тем лучше).

Классификация усиливающих экранов осуществляется по их чувствительности (световому выходу). Для удобства экраны подразделяют на несколько категорий чувствительности:

– низкой чувствительности (класс 50–100) обеспечивают наивысшую разрешающую способность (различимость деталей изображения) при малом факторе усиления. Их рекомендуется применять для воспроизведения микродеталей, например, мелких костей (кисти, стопы).

– средней (класс чувствительности 200) - универсальный. Используют в большинстве видов рентгенографии: костей, органов грудной клетки, исследований в педиатрии.

– высокой (класс 400) - высокочувствительные усиливающие экраны, отличающиеся повышенной яркостью свечения, при относительно меньшей разрешающей способности, рекомендуются для исследования органов желудочно-кишечного тракта, органов грудной клетки, сердечно-сосудистой системы, мочеполовых органов, позвоночника, в том числе у детей.

– сверхвысокой (класс чувствительности 600 и более).Для некоторых специальных видов исследований, при которых определяющим фактором является необходимость максимального снижения экспозиционной дозы облучения (серийная ангиография, рентгенография позвоночника (при сколиозе) у детей, исследования беременных), применяют сверхвысокочувствительные усиливающие экраны с высоким уровнем абсорбции рентгеновских лучей и световой отдачей.

Срок службы УЭ не более 5 лет. Использование экранов более данного срока требуют значительного повышения экспозиционных режимов, что увеличивает уровень лучевой нагрузки и сопровождается значительным снижением качества ищображения. Срок хранения экранов до начала эксплуатации не более 3-х лет со дня производства. Хранение экранов производится в вертикальном положении, вклеенными в кассеты. При необходимости они моются водой с мылом и просушиваются. Проверка качества проводится один раз в шесть месяцев.

Московский химико-фармацевтический завод им. Н. А. Семашко выпускает пять типов усиливающих экранов, применяемых в медицинской практике: «Стандарт», УФДМ, ПРС, СБ и УС.

Экраны типа «Стандарт» - кальций-вольфраматные, универсального применения. Используются во всем диапазоне практически применяемых напряжений на трубке. Выпускаются в виде комплектов, состоящих из двух экранов с примерно одинаковой навеской светосостава (60/60мг/см2).

Экраны типа УФДМ - кальций-вольфраматные, увеличенного фотографического действия, позволяют сократить время экспозиции в 1,5-2 раза по сравнению с экранами типа «Стандарт» без ухудшения качества изображения. Выпускаются в виде комплектов, состоящих из двух экранов с обозначением «передний» и «задний». Передний экран (с навеской 40 мг/см2- более тонкий) помещается между пленкой и дном кассеты, обращенным к источнику рентгеновского излучения. Задний экран (с навеской 160 мг/см2) прикрепляется к крышке кассеты.

Экраны типа УФДМ рекомендуются во всех случаях, когда желательно уменьшение экспозиции при одновременном обеспечении высокого качества изображения, в частности для рентгенографии легких, для боковых снимков поясничного отдела позвоночника и т. п.

Экраны типа ПРС - кальций-вольфраматные усиливающие экраны повышенной разрешающей способности, дают возможность улучшить (по сравнению с экранами «Стандарт») выявляемость деталей на изображениях неподвижных объектов небольшой толщины, т. е. при условии обеспечения достаточно малой динамической и геометрической нерезкости изображения. По усиливающему фотографическому действию не уступают экранам типа «Стандарт». Выпускаются в виде комплектов, состоящих из двух экранов с примерно одинаковой навеской светосостава.
Рекомендуются главным образом для снимков конечностей, а также для работы при повышенных напряжениях на трубке.

Экраны типа СБ - свинцово-баритовые. Предназначены главным образом для применения при напряжениях на трубке 80-120 кв (макс). В указанном диапазоне напряжений экраны СБ обладают наибольшей эффективностью, позволяя уменьшать экспозицию при рентгенографии сильно фильтрующих объектов примерно в 2 раза по сравнению с экранами «Стандарт», без ухудшения качества изображения. Выпускаются в виде комплектов, состоящих из двух экранов, с приблизительно равной навеской светосостава.

Экраны типа УС - цинк-кадмий-сульфидные усиливающие экраны в сочетании с сенсибилизированной (изохроматической) пленкой типа РМ-6 позволяют сократить экспозицию в 3-5 раз по сравнению с экранами типа «Стандарт», применяемыми с обычной оптически несенсибилизированной рентгеновской пленкой. Вся работа с пленкой типа РМ-6 производится в полной темноте. Следует применять кассеты, совершенно не пропускающие видимого света. При использовании кассет с дном из пластмассы, пропускающей красные и оранжевые лучи, следует между дном и передним экраном делать прокладку из двух листов плотной черной бумаги.

Экраны УС выпускаются в виде комплектов, состоящих из двух экранов «переднего» и «заднего» с неодинаковой навеской светосостава. Комбинацию экранов типа УС с пленкой РМ-6 рекомендуется применять в тех случаях, когда необходимо максимально уменьшить экспозицию, например при рентгенографии беременных женщин, при серийной ангиографии, при напряжениях на трубке не выше 90-100 кв (макс.)

При переходе от стандартных усиливающих экранов завода им. Семашко к экранамтипа СБ, УФДМ и УС следует уменьшить время экспозиции, установленное для стандартных экранов, умножив его на коэффициент, соответствующий применяемому напряжению на рентгеновской трубке.

Усиливающие экраны типа «Симультан-1» и «Симультан-2» предназначены для одномоментной (симультанной) томографии, т. е. для одновременного получения томограмм нескольких слоев объекта, расположенных на определенном расстоянии друг от друга. Они выпускаются в виде наборов из пяти комплектов. Экраны сброшюровываются в «альбом» вместе с разделяющими их прокладками из крупнопористого пенопласта (поролона) толщиной 6 или 12 мм. Оба типа экранов применяются с обычной двусторонней рентгеновской пленкой.

Фотографическое действие экранов подобрано так, чтобы при напряжении на трубке 75-85 кв (макс.) на всех пяти пленках получалось практически одинаковое почернение. При этом экраны «Симультан-1» позволяют получить пять томограмм при дозе (токе через трубку), лишь в 1,8 раза превышающей дозу, необходимую для получения томограммы одного слоя с применением усиливающих экранов типа «Стандарт». Экраны «Симультан-2» вообще не требуют увеличения дозы, позволяющей получать пять томограмм при тех же технических условиях, какие необходимы для получения одной томограммы при использовании экранов типа «Стандарт».

Наборы «Симультан-1 » применяется в тех случаях, когда от экранов требуется возможно большая разрешающая способность. Наборы «Симультан-2» применяются в тех случаях, когда на первый план выдвигается требование максимального снижения дозы излучения.

УДК 678.01

ВЛИЯНИЕ УСИЛИВАЮЩИХ ЭКРАНОВ НА ФОТОГРАФИЧЕСКИЕ СВОЙСТВА РАДИОГРАФИЧЕСКОГО ФОТОМАТЕРИАЛА НА ПОЛИМЕРНОЙ ПОДЛОЖКЕ ПРИ ЭКСПОНИРОВАНИИ ИОНИЗИРУЮЩИМ ИЗЛУЧЕНИЕМ

Ключевые слова: усиливающий экран, радиографические материалы, полимерная основа, скрытое изображение.

Исследовано изменение фотографических свойств радиографических фотоматериалов при экспонировании ионизирующим излучением в контакте с усиливающими экранами на основе меди и свинца. Показано, что фотографические свойства радиографического фотоматериала зависят от толщины усиливающего экрана и энергии ионизирующего излучения.

Keywords: intensifying screen, x-ray film, polymer base, latent image.

In this investigation the change of photographic properties X-ray films was analyzed when they exposed by ionizing radiations with using of intensifying screens. Intensifying screens with cuprum foil and lead foil were used. It is shown that photographic properties of X-ray films depended upon the thickness of intensifying screen and energy of Y-rays and X-rays.

Поглощение ионизирующего излучения определяют, в основном, два фактора: химический состав материала и его толщина . В зависимости от энергии падающего излучения эти два фактора будут определять действие усиливающего экрана на фотографические свойства радиографического материала на полимерной основе. При этом протекают два конкурирующих, с точки зрения влияния на эмульсионный слой, процесса: поглощение (и рассеяние) в самом экране - за счет чего происходит уменьшение интенсивности излучения, падающего на эмульсионный слой, и эмиттирование электронов при поглощении.

Формирование скрытого изображения при действии ионизирующего излучения

(рентгеновского или гамма-излучения) происходит за счёт электронов, образующихся при поглощении этих излучений . Образование электронов, оказывающих фотографическое действие, может происходить как в самом эмульсионном слое, так и вне слоя - в усиливающем экране. В практической промышленной радиографии в качестве усиливающего экрана часто применяется свинцовая фольга, которая находится в контакте с эмульсионными слоями. Длина пробега электронов, выделяющихся при поглощении излучения, определяется энергией источника излучения.

Известно , что при экспонировании ионизирующим излучением с энергией 75 кэВ длина пробега электрона в эмульсионном слое, содержащем равное по весу количество AgHal и желатина, составляет 30 мкм. С увеличением энергии излучения длина пробега электрона увеличивается. В условиях практической радиографии энергия ионизирующего излучения может превышать 1-10 МэВ. В этом случае образующиеся электроны могут пересечь эмульсионный слой, основу и оказать

фотографическое действие на другой эмульсионный слой, как это показано в работе .

Поскольку усиливающие экраны помещаются с двух сторон радиографического

материала, то фотографическое действие этих экранов, точнее электронов, эмиттируемых при поглощении ионизирующего излучения, может накладываться.

Зависимость между энергией и направлением движения рассеянных электронов и электронов отдачи, выделяющихся при поглощении излучения, демонстрируется диаграммой Дебая, из которой видно, что фотоны могут рассеиваться во всех направлениях, а электроны только вперёд .

Для изучения влияния усиливающих экранов на свойства радиографических фотоматериалов при экспонировании

ионизирующими излучениями (рентгеновским или гамма-излучением) проводили эксперименты, предусматривающие дифференциацию действия ионизирующего излучения, поглощенного в экранах, электронов, эмиттированных из экранов при поглощении ионизирующего излучения, поглощённого непосредственно в эмульсионных слоях, и обратного рассеянного излучения.

Установка для проведения экспериментов включала в себя источник ионизирующего излучения, фильтр из алюминия толщиной 4,5 мм для устранения длинноволновых компонент неоднородного излучения, рентгеновский

коллиматор для ограничения ширины пучка

ионизирующего излучения, модулятора экспозиции для градации интенсивности излучения, падающего на радиографический материал с усиливающими экранами и представляющего собой ступенчатый клин из алюминиевого сплава, светонепроницаемую кассету, в которую помещались испытываемые радиографические материалы и усиливающие

экраны. Конструкция кассеты обеспечивала плотный контакт эмульсионных слоёв радиографического материала с поверхностью

усиливающих экранов для избежания потерь электронов, эмиттированных из экранов и, как следствие, уменьшения оптической плотности изображения. Доза облучения, падающая на испытываемые образцы, контролировалась

дозиметром ДРГ-04 с рентгеносцинтилляционным датчиком.

Схема эксперимента по изучению влияния усиливающих экранов на фотографические свойства радиографических фотоматериалов при

экспонировании ионизирующими излучениями приведена на рис. 1.

Рис. 1 - Схема эксперимента по изучению особенностей формирования радиографического изображения: 1 - источник ионизирующего

излучения;. 2 - фильтр; 3 - коллиматор; 4 - поток ионизирующего излучения; 5 - модулятор

экспозиции (ступенчатый клин из алюминия); 6 -передний усиливающий экран; 7 - задний

усиливающий экран; 8 - кассета; 9 -

радиографический фотоматериал; 10 - передний усиливающий экран, находящийся в контакте с эмульсионным слоем; 11 - задний усиливающий экран, находящийся в контакте с эмульсионным слоем; 12 - рентгеносцинтилляционный датчик; 13 - дозиметр ДРГ-04

Экспонирование эмульсионных слоёв осуществляли непосредственно ионизирующим излучением (в этом случае усиливающие экраны выносились за пределы кассеты) и тем же излучением, но в контакте с усиливающими экранами.

В зависимости от энергии излучения, материала и толщины усиливающего экрана может изменяться как интенсивность излучения, так и длина пробега электронов, а, следовательно, и соотношение между вкладами этих процессов в построение радиографического изображения.

Соотношение между этими процессами можно характеризовать численно разностью оптических плотностей:

Л = йэ - йбэ; (H = const),

где Л - разность оптических плотностей; йэ - оптическая плотность эмульсионного слоя,

экспонированного в контакте с усиливающим экраном; йбэ - оптическая плотность эмульсионного слоя, экспонированного с усиливающим экраном, вынесенным за пределы кассеты; H - доза

облучения.

Величина Л, равная разнице оптических плотностей, характеризует вклад вторичных

электронов, эмиттированных из экрана, в

построение изображения и показывает прирост

оптической плотности за счет электронов, образующихся вне эмульсионного слоя и оказывающих фотографическое действие на эмульсионный слой. На рис. 2 представлена

зависимость Л = йэ - Обэ от энергии ионизирующего излучения.

"0,80.01 0,1 1.0 Е.МЭВ

Рис. 2 - Зависимость фотографического действия усиливающего экрана Фз-Обз) от энергии ионизирующего излучения: 1 - усиливающие экраны из свинцовой фольги; 2- усиливающие экраны из медной фольги.

В экспериментах использовали

усиливающие экраны из свинцовой фольги

толщиной 0,023 мм и медной фольги толщиной

0,029 мм. Результаты показали, что в пределах исследуемого интервала энергий величина Л возрастает с увеличением энергии экспонирующего излучения. Это свидетельствует о том, что роль электронов, эмиттированных из усиливающего экрана, в построении радиографического

изображения увеличивается с ростом энергии ионизирующего излучения.

У свинцового экрана это возрастание наблюдается в большей степени, чем у медного, что свидетельствует о том, что вклад электронов, эмиттированных из усиливающего экрана, в построение радиографического изображения увеличивается с ростом атомного номера элемента и линейного коэффициента ослабления.

В том случае, когда величина Л < 0,

электроны, выбиваемые из усиливающего экрана при поглощении ионизирующего излучения, в построении радиографического изображения не участвуют.

Необходимо отметить, что металлические усиливающие экраны выполняют функцию не только «усилителя» действия излучения, но также способствуют повышению качества изображения за счет поглощения рассеянного излучения, которое, как правило, имеет более низкую энергию .

Усиливающие экраны изготавливаются обычно из металлов с высоким атомным номером, однако в последние годы находят достаточно широкое применение также усиливающие экраны из олова, железа и меди .

В данной работе исследовали эффективность действия усиливающих экранов разной толщины и из разных металлов на эмульсионные слои с различными средними размерами микрокристаллов AgHal в зависимости от энергии ионизирующего излучения.

Фотографическое действие экранов можно характеризовать коэффициентом усиления,

определяемым отношением времени

экспонирования без экрана ко времени экспонирования с усиливающими экранами (при прочих равных условиях):

где К - коэффициент усиления; тбэ - время экспонирования без усиливающего экрана; тбэ -время экспонирования с экраном.

Эксперименты проводили на образцах радиографических фотоматериалов со средним размером микрокристаллов AgHal 0,54 и 1,49 мкм. При экспонировании их помещали в кассету между усиливающими экранами. В качестве источника излучения использовали рентгеновский аппарат с напряжением на трубке 150 кВ.

0 2 0 4 0 6 0 8 11, м

Рис. 3 - Зависимость коэффициента усиления от толщины переднего и заднего усиливающих экранов и материала экрана: 1 - усиливающий экран из свинцовой фольги расположен перед плёнкой; 2 - усиливающий экран из свинцовой фольги расположен за плёнкой; 3 - усиливающий экран из медной фольги расположен перед плёнкой; 4 - усиливающий экран из медной фольги расположен за плёнкой

Результаты экспериментов (рис. 3)

показали, что при увеличении толщины переднего усиливающего экрана коэффициент усиления возрастает и, пройдя через максимум, уменьшается, вероятно, вследствие того, что сказывается поглощение излучения в самом экране.

Для заднего экрана с увеличением толщины также возрастает коэффициент усиления, однако, в меньшей степени, чем для переднего экрана. Достигнув определенного значения, коэффициент усиления в дальнейшем не изменяется, вероятно, вследствие того, что при этой толщине достигается

предельное значение интенсивности рассеянного излучения, действующего в направлении эмульсионного слоя, величина которого определяется значением энергии экспонирующего излучения.

Аналогичное изменение коэффициента усиления с увеличением толщины усиливающего экрана при экспонировании рентгеновским излучением наблюдалось и при использовании экранов из меди, где коэффициент усиления был ниже, однако интервал толщины, в котором экран имеет максимальное значение, значительно больше. Если для усиливающего экрана из свинца максимальные значения коэффициента усиления находятся в интервале толщины 0,5 - 0,8 мм, то для экрана из меди интервал, в котором коэффициент усиления имеет максимальные значения, составляет

На рис. 4 приведены кривые зависимости оптической плотности изображения от экспозиции при экспонировании рентгеновским излучением с напряжением на трубке 150 кВ. Кривые 1, 3 соответствуют экспонированию без усиливающего экрана для радиографических пленок со средним размером микрокристаллов AgHal 0,54 и 1,49 мкм соответственно. Кривые 2, 4 соответствуют

экспонированию тех же пленок с усиливающим экраном из свинцовой фольги толщиной 0,1 мм.

4^ х= ,49 мкм м

0 2 0 4 0 6 0 8 Н. Р

Рис. 4 - Зависимость оптической плотности изображения от экспозиции: 1 -экспонирование без усиливающего экрана; 2 - экспонирование с усиливающим экраном из свинцовой фольги толщиной 0,1 мм; 3 экспонирование без

усиливающего экрана; 4 - экспонирование с усиливающим экраном из свинцовой фольги толщиной 0,1 мм

Сравнение экспериментальных данных, представленных на рис. 4, показало, что при экспонировании радиографического материала со средним размером микрокристаллов AgHal 1,49 мкм наблюдается большее повышение оптической плотности изображения, чем при экспонировании радиографического фотоматериала со средним размером микрокристаллов 0,54 мкм (ЛР2 > Лй-|).

В целом результаты исследований показали, что при экспонировании ионизирующим излучением радиографических материалов на

полимерной подложке с усиливающими экранами повышение чувствительности определяется средним размером микрокристаллов AgHal, причем каждому среднему размеру при определенной энергии излучения соответствует определенная оптимальная толщина усиливающего экрана, которая, вероятно, зависит от длины пробега электронов.

1. Доказано, что вклад электронов, эмиттированных из усиливающего экрана в построение радиографического изображения, увеличивается с возрастанием энергии ионизирующего излучения, атомного номера элементов, составляющих экран, и массового коэффициента поглощения.

2. Установлено, что при экспонировании

рентгеновским излучением интервал толщины, в которой передний усиливающий экран из свинца в максимальной степени повышает оптическую плотность радиографического фотоматериала, составляет 0,5 - 0,8 мм, а экрана из меди - 0,6 - 0,9 мм. Увеличение толщины экрана выше этих значений приводит к уменьшению оптической плотности, а, следовательно, и чувствительности радиографического фотоматериала, вследствие

увеличения поглощения ионизирующего излучения в усиливающем экране.

3. становлено, что задний усиливающий экран в меньшей степени влияет на значение чувствительности. Чувствительность незначительно растет с увеличением его толщины и затем достигает постоянной величины, определяемой энергией излучения.

Литература

1. Румянцев С.В. Справочник по радиационным методам неразрушающего контроля/ С.В. Румянцев, А.С. Штань, В.А. Гольцев. - М.: Энергоиздат, 1982. -240 с.

2. Ли Н.И. Особенности формирования радиографических изображений в полимер-желатиновой матрице галогенидосеребряных фотоматериалов / Н.И. Ли, А.С. Хабибуллин // Вестник Казан. Технол. ун-та. - 2010. -№ 10. - С.237-243

3. Ли Н.И. Изучение зависимости фотографических свойств фотоматериала на полимерной подложке от энергии экспонирующего излучения / Н.И., Ли, А.С. Хабибуллин // Вестник Казан. Технол. ун-та.- 2011. -№4. -С. 110-113

4. Джеймс, Т. Теория фотографического процесса / под ред. А.М. Картужанского. - Л.: Химия, 1980. -672с.

5. Гурвич А.М. Физические основы радиационного

контроля и диагностики / А.М. Гурвич. - М.:

Энергоатомиздат, 1989. - 168 с.

© Н. И. Ли - канд. техн. наук, доц. каф. ТППК КНИТУ, [email protected].

1. Металлические усиливающие экраны применяются для сокращения времени экспозиции и уменьшения влияния рассеянного излучения. Усиливающее действие металлических экранов основано на экспонировании пленки вторичными электронами, выбитыми фотонами из тонкой фольги металлического экрана. Поскольку пробег этих электронов очень мал, они практически полностью поглощаются пленкой, повышая тем самым плотность ее потемнения. Из-за малого пробега электронов, размывание изображения не происходит, т.е. усиление изображения снимка не сопровождается потерей его качества. Помимо сокращения времени экспозиции, свинцовые усиливающие экраны заметно снижают отрицательное действие рассеянного излучения на качество снимков.

Коэффициент усиления свинцовых экранов находится в пределах 1,5-3 (под коэффициентом усиления экранов понимается величина, показывающая, во сколько раз уменьшается экспозиция просвечивания при использовании данного экрана). Металлические экраны изготавливаются из свинца или свинцово-оловянистых сплавов по ГОСТ 18394-73 и ГОСТ 9559-75. Толщина металлических экранов выбирается в зависимости от применяемого . Таблица с рекомендациями по выбору толщины экранов содержится в таблице 6-13 учебно-методического пособия «Радиографический контроль сварных соединений»

2. Флуоресцирующие усиливающие экраны так же применяют для сокращения времени экспозиции. Усиливающее действие флуоресцентных экранов основано на конвертировании ими части рентгеновского излучения в оптическое слоем люминофора. Коэффициент усиления флуоресцирующих экранов значительно выше, чем у свинцовых и находится в диапазоне 20-30. Обратной стороной существенного сокращения экспозиции при использовании флуоресцентных экранов, являются значительные потери в контрастной чувствительности, т.е. качестве контроля. Причина этого в очень большом размере зерна люминофора. Так, если средний размер зерна у безэкранной рентгеновской пленки составляет не более 0,5 мкм, у экранной пленки - 1-1,5 мкм, то у экранов порядка 10 мкм. Добавление к флуоресцирующим экранам свинцовых всегда приводит к увеличению контраста рентгеновского изображения, но при этом увеличивает продолжительность экспонирования.

Данный тип экранов, как правило, используется с пленками имеющими повышенную чувствительность в видимой области спектра типа Fuji IX 100HD , AGFA F8 , KODAK HS800 . Флуоресцирующие экраны изготовляются из пластика или картона, на одну сторону которого наносится слой люминофора. В качестве люминофора используют соединения ZnS, CdS, PbSO4, CaWO4, BaSO4 и др. Из-за снижения разрешающей способности радиографических снимков, получаемых с использованием флуоресцирующих экранов, их применение не разрешается при рентгенографическом контроле высокоответственных сварных швов, например, в атомной энергетике.

3. Флуорометаллические усиливающие экраны. В настоящее время все большее распространение получают флуорометаллические усиливающие экраны, являющиеся своеобразным сочетанием двух вышеописанных типов. Флуорометаллические экраны выполнены в виде свинцовой подложки с нанесенным на нее слоем люминофора. Эти экраны имеют больший коэффициент усиления, чем металлические, при этом обеспечивают лучшую чувствительность по сравнению с флуоресцирующими. К современным флуорометаллическиим усиливающим экранам относятся, например AGFA RCF и СМП-1

Усиливающие экраны Agfa NDT используются для контроля толстостенных изделий, позволяя значительно сократить время контроля и увеличить ресурс импульсных аппаратов . Экраны Agfa NDT представлены высокоскоростным флуоресцентным экраном NDT 1200 и флуорометаллическим экраном RCF.

Усиливающие экраны Agfa изготовлены с использованием вольфрамата кальция (CaW04), флюоресцирующего голубым светом под воздействием ионизирующих излучений. Гибкость экранов значительно упрощает радиографию объектов изогнутой формы. Дополнительная защита от внешних воздействий обеспечивается благодаря специальному покрытию.

Экраны Agfa NDT обычно поставляются парами, форматом 30х40см или другими форматами. Для получения необходимых форматов экраны можно резать. По заявке возможна поставка экранов для рулонной пленки. Усиливающие экраны Agfa RCF и NDT-1200 рекомендуются для использования с радиографической пленкой Agfa F8 . Использование этих экранов с радиографической пленкой РТ-1, либо использование экранов российского производства с пленкой F8, не позволяет получить эффективного уменьшения экспозиции из-за несогласованности спектра излучения экранов и спектров поглощения пленок.

Особенности и свойства усиливающего экрана AGFA 1200 . Флуоресцентный экран AGFA NDT 1200 имеет чрезвычайно высокую поглощающую способность в сочетании с приемлемой различимостью деталей снимка. Комбинация пленки AGFA F8 или F6 особенно подходит для случаев, когда требуются высокие энергии излучения, например, для контроля тяжелых металлических или бетонных конструкций. Экран AGFA NDT 1200 также эффективен при контроле импульсными аппаратами и для микрофокусной технологии, когда дозы излучения очень низки.

Особенности и свойства усиливающего экрана AGFA RCF . Экран AGFA RCF имеет встроенный фильтр из оксида свинца для рассеянного излучения. При стандартном применении экранов AGFA NDT RCF в сочетании с пленкой AGFA NDT F8 дает значительную экономию во времени. Флуоресцентный экран AGFA RCF это оптимальный компромисс между различимостью деталей и скоростью работы. Защитное покрытие (ЕВС/ Elektron-BeamCured) и полиэстеровая основа делают экран особенно прочным. Усиливающие экраны AGFA RCF можно применять, в том числе для обследования морских трубопроводов.

Условия хранения и эксплуатации . Экраны AGFA NDT должны быть защищены от сырости, высоких температур и ультрафиолетового излучения. Пыль и пятна должны удаляться с экрана специальным очистителем. Очиститель, содержащий антистатик, не только очищает экран, но и предотвращает налипание на экран грязи и пыли, вызванное статическим электричеством.

Относительный фактор экспозиции . При экспонировании с применением флуоресцентных экранов, важно учитывать влияние факторов температуры, энергии излучения и времени экспозиции. Так эффективность экранов снижается при повышении температуры окружающей среды.С увеличением энергии излучения, поглощение флуоресцентных экранов уменьшается и в результате эффект усиления уменьшается. Из-за эффекта, характерного для флуоресцентных экранов, усиливающее действие последних, по сравнению со свинцовыми экранами, уменьшается с увеличением продолжительности экспозиции. Относительные факторы экспозиции усиливающих экранов представлены в следующей таблице

Мощность / источник излучения Тип экрана Тип пленки Agfa
F8 F6 D7
100 kB NDT 1200 0.010 0.049
RCF 0.030 0.174
Без экрана 1.000
300 kB NDT 1200 + Pb 0.008 0.042
RCF 0.022 0.132
Pb 1.000
Иридий 192 NDT 1200 + Pb 0.007 0.063
RCF 0.035 0.389
Pb 1.000
Кобальт 192 NDT 1200 + Pb 0.006 0.096
RCF 0.040 0.562
Pb 1.000

Усиливающие экраны РЕНЕКС УПВ применяются для сокращения времени экспозиции и уменьшения влияния рассеянного излучения. Экраны РЕНЕКС изготавливаются в России и адаптированы для работы в температурном диапазоне от - 30° С до + 50°С без потери фотографических и механических свойств. При производстве экранов используется гибкая полиэстровая подложка и прочное защитное покрытие. При поливе экранов применяются лучшие рентгенолюминофоры ведущих мировых производителей.

На сегодняшний день выпускаются следующие типы усиливающих экранов Ренекс

  • РЕНЕКС УПВ-1 ПРС —Флуоресцирующие экраны повышенной разрешающей способности. Экраны изготовлены из высокоэффективного мелкозернистого рентгенолюминофора - вольфрамата кальция с использованием специального красителя, эффективно поглощающего рассеянное световое излучение, образующееся в люминофорном слое. Благодаря этой технологии, разрешающая способность экранов увеличена до 6.00-8.00 пар линий/мм (в зависимости от условий рентгенографии)
  • РЕНЕКС УПВ-1, РЕНЕКС УПВ-2 — флуоресцирующие экраны общего назначения. Стандартные усиливающие экраны для дефектоскопии, выпускаемые с 2002 года. Отлично зарекомендовали себя в разных областях применения, изготовлены из высокоэффективного мелкозернистого рентгенолюминофора - вольфрамата кальция с добавлением оксисульфида иттрия, активированного тербием (УПВ-2).
  • РЕНЕКС УПВ-3 ВУ — флюоресцирующие экраны высокого усиления и повышенной яркости. Экраны изготовлены из сверхэффективного мелкозернистого рентгенолюминофора - флюробромида бария, активированного европием. По усиливающему действию, разрешающей способности, детальной чувствительности экраны РЕНЕКС УПВ-3 ВУ являются 100% аналогом экранам зарубежных производителей: KYOKKO SUPER SPECIAL.

Усиливающие экраны Ренекс выпускаются в следующих форматах — 30х40см, 8х30см, 8х40см, 10х30см, 10х40см. По специальному заказу изготавливаются экраны любых форматов (длиной до 5 м, шириной до 40 см). Технические характеристики, заявленные производителем усиливающих экранов Ренекс приведены в таблице.

Характеристика Маркировка Разрешающая способность, пар линий/мм Чувствительность комбинации флюоресцентных экранов с плёнками РТ-1, HS800 , в Р-1 Коэффициент пересчета экспозиции при переходе от плёнки РТ-1 (HS800) к комбинации флуоресцентных экранов с плёнкой РТ-1
передний экран задний экран
Флуоресцирующие экраны повышенной разрешающей способности не имеющие зарубежных аналогов. РЕНЕКС УПВ-1 ПРС 6.00 - 8.00 100 30 40-45 40-45
Флуоресцирующие экраны общего назначения не имеющие зарубежных аналогов. РЕНЕКС УПВ-1 3.50-4.00 350 100 45-50 45-50
Флуоресцирующие экраны высокого усиления и повышенной яркости РЕНЕКС УПВ-2 3.00-3.50 620 180 65-70 65-70
Аналог — KyokkoHighPlus 3.00-3.50 650 200 45-50 65-70
РЕНЕКСУПВ-3 ВУ 3.20-3.80 1200 350 50-60 50-60
аналогKyokko Super special 3.20-3.80 1200 350 50-60 50-60

Все измерения характеристик флуоресцирующих экранов проводились при следующих условиях экспозиции:

  • напряжение на трубке рентгеновского аппарата 220 кВ;
  • дополнительный фильтр 25 мм Fe + 2 мм Cu;
  • фокус- 3 мм;
  • фокусное расстояние -100 см.
  • ток и время экспозиции подбирались для обеспечения плотности почернения плёнки 2.00 D.

Для определения разрешающей способности использовалась свинцовая мира, тип L 659037, толщиной 80 мкм. S. Чувствительность технических радиографических плёнок типа РТ-1, HS800 (по данным ЦНИИТМАШ) составляет 3.3-3.5 Р-1. Флуоресцирующие экраны для промышленной дефектоскопии РЕНЕКС УПВ предназначены для совместного использования с техническими радиографическими плёнками, сенсибилизация эмульсионного слоя которых позволяет применение усиливающих экранов с эмиссией в ультрафиолетовой, фиолетовой и синей области спектра. На сегодняшний день такими плёнками являются: РТ-1; РТ-1В; РТ -1TN; Kodak HS 800 ; Agfa F8 .

Металлические (свинцовые) усиливающие экраны применяются для сокращения времени экспозиции и уменьшения влияния рассеянного излучения. Усиливающее действие металлических экранов основано на экспонировании пленки вторичными электронами, выбитыми фотонами из тонкой фольги металлического экрана. Поскольку пробег этих электронов очень мал, они практически полностью поглощаются пленкой, повышая тем самым плотность ее потемнения. Из-за малого пробега электронов, размывание изображения не происходит, т.е. усиление изображения снимка не сопровождается потерей его качества. Помимо сокращения времени экспозиции, свинцовые усиливающие экраны заметно снижают отрицательное действие рассеянного излучения на качество снимков.

Коэффициент усиления свинцовых экранов находится в пределах 1,5-3 (под коэффициентом усиления экранов понимается величина, показывающая, во сколько раз уменьшается экспозиция просвечивания при использовании данного экрана). Металлические экраны изготавливаются из свинца или свинцово-оловянистых сплавов по ГОСТ 18394-73 и ГОСТ 9559-75. Толщина металлических экранов выбирается в зависимости от применяемого источника ионизирующего излучения и напряжения на рентгеновской трубке.

Толщина металлических усиливающих выбирается в соответствии с таблицей

Источник излучения Толщина экрана, мм
рекомендуемая допустимая
Рентгеновский аппарат с напряжением на рентгеновской трубке до 100 кВ до 0,02 0,02-0,09
Рентгеновский аппарат с напряжением на рентгеновской трубке от 100 кВ до 300 кВ 0,05-0,09
Рентгеновский аппарат с напряжением на рентгеновской трубке свыше 300 кВ 0,09
Тулий - 170 0,09 0,02-0,09
Селен - 75 0,09-0,20 0,05-0,02
Иридий - 192 0,20-0,30 0,05-0,30
Цезий 0,30-0,50 0,09-0,50
Кобальт - 60 0,30-0,50 0,20-0,50