Как изменить размер изображения в фотошопе. Процесс интерполяции

Почему изображение, масштабированное с бикубической интерполяцией, выглядит не как в Фотошопе. Почему одна программа ресайзит быстро, а другая - нет, хотя результат одинаковый. Какой метод ресайза лучше для увеличения, а какой для уменьшения. Что делают фильтры и чем они отличаются.

Вообще, это было вступлением к другой статье, но оно затянулось и вылилось в отдельный материал.

Этот человек сидит среди ромашек, чтобы привлечь ваше внимание к статье.

Для наглядного сравнения я буду использовать изображения одинакового разрешения 1920×1280 (одно , второе), которые буду приводить к размерам 330×220, 1067×667 и 4800×3200. Под иллюстрациями будет написано, сколько миллисекунд занял ресайз в то или иное разрешение. Цифры приведены лишь для понимания сложности алгоритма, поэтому конкретное железо или ПО, на котором они получены, не так важно.

Ближайший сосед (Nearest neighbor)

Это самый примитивный и быстрый метод. Для каждого пикселя конечного изображения выбирается один пиксель исходного, наиболее близкий к его положению с учетом масштабирования. Такой метод дает пикселизированное изображение при увеличении и сильно зернистое изображение при уменьшении.

Вообще, качество и производительность любого метода уменьшения можно оценить по отношению количества пикселей, участвовавших в формировании конечного изображения, к числу пикселей в исходном изображении. Чем больше это отношение, тем скорее всего алгоритм качественнее и медленнее. Отношение, равное одному, означает что как минимум каждый пиксель исходного изображения сделал свой вклад в конечное. Но для продвинутых методов оно может быть и больше одного. Дак вот, если например мы уменьшаем изображение методом ближайшего соседа в 3 раза по каждой стороне, то это соотношение равно 1/9. Т.е. большая часть исходных пикселей никак не учитывается.




1920×1280 → 330×220 = 0,12 ms
1920×1280 → 1067×667 = 1,86 ms

Теоретическая скорость работы зависит только от размеров конечного изображения. На практике при уменьшении свой вклад вносят промахи кеша процессора: чем меньше масштаб, тем меньше данных используется из каждой загруженной в кеш линейки.

Метод осознанно применяется для уменьшения крайне редко, т.к. дает очень плохое качество, хотя и может быть полезен при увеличении. Из-за скорости и простоты реализации он есть во всех библиотеках и приложениях, работающих с графикой.

Аффинные преобразования (Affine transformations)

Аффинные преобразования - общий метод для искажения изображений. Они позволяют за одну операцию повернуть, растянуть и отразить изображение. Поэтому во многих приложениях и библиотеках, реализующих метод аффинных преобразований, функция изменения изображений является просто оберткой, рассчитывающей коэффициенты для преобразования.

Принцип действия заключается в том, что для каждой точки конечного изображения берется фиксированный набор точек исходного и интерполируется в соответствии с их взаимным положением и выбранным фильтром. Количество точек тоже зависит от фильтра. Для билинейной интерполяции берется 2x2 исходных пикселя, для бикубической 4x4. Такой метод дает гладкое изображение при увеличении, но при уменьшении результат очень похож на ближайшего соседа. Смотрите сами: теоретически, при бикубическом фильтре и уменьшении в 3 раза отношение обработанных пикселей к исходным равно 4² / 3² = 1,78. На практике результат значительно хуже т.к. в существующих реализациях окно фильтра и функция интерполяции не масштабируются в соответствии с масштабом изображения, и пиксели ближе к краю окна берутся с отрицательными коэффициентами (в соответствии с функцией), т.е. не вносят полезный вклад в конечное изображение. В результате изображение, уменьшенное с бикубическим фильтром, отличается от изображения, уменьшенного с билинейным, только тем, что оно еще более четкое. Ну а для билинейного фильтра и уменьшения в три раза отношение обработанных пикселей к исходным равно 2² / 3² = 0.44, что принципиально не отличается от ближайшего соседа. Фактически, аффинные преобразования нельзя использовать для уменьшения более чем в 2 раза. И даже при уменьшении до двух раз они дают заметные эффекты лесенки для линий.

Теоретически, должны быть реализации именно аффинных преобразований, масштабирующие окно фильтра и сам фильтр в соответствии с заданными искажениями, но в популярных библиотеках с открытым исходным кодом я таких не встречал.




1920×1280 → 330×220 = 6.13 ms
1920×1280 → 1067×667 = 17.7 ms
1920×1280 → 4800×3200 = 869 ms

Время работы заметно больше, чем у ближайшего соседа, и зависит от размера конечного изображения и размера окна выбранного фильтра. От промахов кеша уже практически не зависит, т.к. исходные пиксели используются как минимум по двое.

Мое скромное мнение, что использование этого способа для произвольного уменьшения изображений попросту является багом , потому что результат получается очень плохой и похож на ближайшего соседа, а ресурсов на этот метод нужно значительно больше. Тем не менее, этот метод нашел широкое применение в программах и библиотеках. Самое удивительное, что этот способ используется во всех браузерах для метода канвы drawImage() (наглядный пример), хотя для простого отображения картинок в элементе используются более аккуратные методы (кроме IE, в нем для обоих случаев используются аффинные преобразования). Помимо этого, такой метод используется в OpenCV, текущей версии питоновской библиотеки Pillow (об этом я надеюсь написать отдельно), в Paint.NET.

Кроме того, именно этот метод используется видеокартами для отрисовки трехмерных сцен. Но разница в том, что видеокарты для каждой текстуры заранее подготавливают набор уменьшенных версий (mip-уровней), и для окончательной отрисовки выбирается уровень с таким разрешением, чтобы уменьшение текстуры было не более двух раз. Кроме этого, для устранения резкого скачка при смене mip-уровня (когда текстурированный объект приближается или отдаляется), используется линейная интерполяция между соседними mip-уровнями (это уже трилинейная фильтрация). Таким образом для отрисовки каждого пикселя трехмерного объекта нужно интерполировать между 2³ пикселями. Это дает приемлемый для быстро движущейся картинки результат за время, линейное относительно конечного разрешения.

Суперсемплинг (Supersampling)

С помощью этого метода создаются те самые mip-уровни, с помощью него (если сильно упростить) работает полноэкранное сглаживание в играх. Его суть в разбиении исходного изображения по сетке пикселей конечного и складывании всех исходных пикселей, приходящихся на каждый пиксель конечного в соответствии с площадью, попавшей под конечный пиксель. При использовании этого метода для увеличения, на каждый пиксель конечного изображения приходится ровно один пиксель исходного. Поэтому результат для увеличения равен ближайшему соседу.

Можно выделить два подвида этого метода: с округлением границ пикселей до ближайшего целого числа пикселей и без. В первом случае алгоритм становится малопригодным для масштабирования меньше чем в 3 раза, потому что на какой-нибудь один конечный пиксель может приходиться один исходный, а на соседний - четыре (2x2), что приводит к диспропорции на локальном уровне. В то же время алгоритм с округлением очевидно можно использовать в случаях, когда размер исходного изображения кратен размеру конечного, или масштаб уменьшения достаточно мал (версии разрешением 330×220 почти не отличаются). Отношение обработанных пикселей к исходным при округлении границ всегда равно единице.




1920×1280 → 330×220 = 7 ms
1920×1280 → 1067×667 = 15 ms
1920×1280 → 4800×3200 = 22,5 ms

Подвид без округления дает отличное качество при уменьшении на любом масштабе, а при увеличении дает странный эффект, когда большая часть исходного пикселя на конечном изображении выглядит однородной, но на краях видно переход. Отношение обработанных пикселей к исходным без округления границ может быть от единицы до четырех, потому что каждый исходный пиксель вносит вклад либо в один конечный, либо в два соседних, либо в четыре соседних пикселя.




1920×1280 → 330×220 = 19 ms
1920×1280 → 1067×667 = 45 ms
1920×1280 → 4800×3200 = 112 ms

Производительность этого метода для уменьшения ниже, чем у аффинных преобразований, потому что в расчете конечного изображения участвуют все пиксели исходного. Версия с округлением до ближайших границ обычно быстрее в несколько раз. Также возможно создать отдельные версии для масштабирования в фиксированное количество раз (например, уменьшение в 2 раза), которые будут еще быстрее.

Данный метод используется в функции gdImageCopyResampled() библиотеки GD, входящей в состав PHP, есть в OpenCV (флаг INTER_AREA), Intel IPP, AMD Framewave. Примерно по такому же принципу работает libjpeg, когда открывает изображения в уменьшенном в несколько раз виде. Последнее позволяет многим приложениям открывать изображения JPEG заранее уменьшенными в несколько раз без особых накладных расходов (на практике libjpeg открывает уменьшенные изображения даже немного быстрее полноразмерных), а затем применять другие методы для ресайза до точных размеров. Например, если нужно отресайзить JPEG разрешением 1920×1280 в разрешение 330×220, можно открыть оригинальное изображение в разрешении 480×320, а затем уменьшить его до нужных 330×220.

Свертки (Convolution)

Этот метод похож на аффинные преобразования тем, что используются фильтры, но имеет не фиксированное окно, а окно, пропорциональное масштабу. Например, если размер окна фильтра равен 6, а размер изображения уменьшается в 2,5 раза, то в формировании каждого пикселя конечного изображения принимает участие (2,5 * 6)² = 225 пикселей, что гораздо больше, чем в случае суперсемплинга (от 9 до 16). К счастью, свертки можно считать в 2 прохода, сначала в одну сторону, потом в другую, поэтому алгоритмическая сложность расчета каждого пикселя равна не 225, а всего (2,5 * 6) * 2 = 30. Вклад каждого исходного пикселя в конечный как раз определяется фильтром. Отношение обработанных пикселей к исходным целиком определяется размером окна фильтра и равно его квадрату. Т.е. для билинейного фильтра это отношение будет 4, для бикубического 16, для Ланцоша 36. Алгоритм прекрасно работает как для уменьшения, так и для увеличения.




1920×1280 → 330×220 = 76 ms
1920×1280 → 1067×667 = 160 ms
1920×1280 → 4800×3200 = 1540 ms

Скорость работы этого метода зависит от всех параметров: размеров исходного изображения, размера конечного изображения, размера окна фильтра.

Именно этот метод реализован в ImageMagick, GIMP, в текущей версии Pillow с флагом ANTIALIAS.

Одно из преимуществ этого метода в том, что фильтры могут задаваться отдельной функцией, никак не привязанной к реализации метода. При этом функция самого фильтра может быть достаточно сложной без особой потери производительности, потому что коэффициенты для всех пикселей в одном столбце и для всех пикселей в одной строке считаются только один раз. Т.е. сама функция фильтра вызывается только (m + n) * w раз, где m и n - размеры конечного изображения, а w - размер окна фильтра. И наклепать этих функций можно множество, было бы математическое обоснование. В ImageMagick, например, их 15. Вот как выглядят самые популярные:

Билинейный фильтр (bilinear или triangle в ImageMagick)


Бикубический фильтр (bicubic , catrom в ImageMagick)


Фильтр Ланцоша (Lanczos)

Примечательно, что некоторые фильтры имеют зоны отрицательных коэффициентов (как например бикубический фильтр или фильтр Ланцоша). Это нужно для придания переходам на конечном изображении резкости, которая была на исходном.

Теперь для интерполяции множеств можно использовать формулу (1). Она примет вид:

Чтобы осуществить построение переходного множества при некотором значении t ,нужно сначала построить множества и , далее найти их сумму.

Пример 4. Пусть – круг радиуса с центром в точке = (0;0), – круг радиуса с центром в некоторой точке . Тогда интерполяционное множество () – это круг с центром в точке , расположенной на отрезке / /, радиуса (рис.9).

Рис.9. Интерполяция двух кругов

Действительно, зафиксировав некоторое значение t (), построим множества и . Окажемся в условиях примера 2. Переписав его результат в текущих обозначениях, получаем нужное утверждение. Видим, что в этом случае переходные изображения (круги) примыкают к общим касательным, проведённым к двум исходным кругам, т.е. результаты интерполяции очень хорошо согласуются с нашими наглядными представлениями о переходных изображениях.

Замечание. Из свойств арифметических операций над множествами следует, что аналогичная картина получится при интерполяции двух любых кругов. Действительно, круг радиуса с центром в произвольной точке может быть представлен в виде суммы круга радиуса с центром в точке (0;0) и множества, состоящего из одной точки (равносильно вектора ): = + . Тогда интерполяционная формула даёт:

= = + .

Остаётся заметить, что семейство векторов , , является переходным от вектора к нулевому вектору.

Таким образом, для удобства осуществления интерполяции (выполнения арифметических операций) можно всегда брать множества (фигуры), примыкающие к началу координат, поскольку произвольные заданные множества сводятся к такой ситуации сдвигом на определённые векторы. Эти векторы затем нужно тоже проинтерполировать (с тем же значением параметра t ).

Среди важных особенностей метода отметим факт, что при интерполяции двух многоугольников, вершины интерполяционного многоугольника получаются интерполяцией (с тем же значением t ) вершин исходных многоугольников. Это следует из того, что арифметические операции над множествами определяются через арифметические операции над отдельными их векторами. Получить «экстремальный» вектор в переходном множестве можно лишь, складывая соответствующие «экстремальные» векторы в исходных множествах.

Пример 5. Пусть – квадрат 2 x 2 с правой нижней вершиной в начале координат, – прямоугольник 4 x 5 с левой нижней вершиной в начале координат (стороны обеих фигур параллельны осям координат) (рис. 10). Построим интерполяционное множество .

1 способ. Воспользуемся формулой (2) при . Построив множества
и (их границы на рисунке 10 проведены пунктирными линиями), находим их сумму. Получим прямоугольник .

Рис.10. Интерполяция прямоугольников на основе арифметических операций

2 способ. Сопоставим соответствующие вершины исходных прямоугольников (в данном случае их соответствие очевидно, на рис. 11 оно показано отрезками); проинтерполировав каждую из этих пар точек (векторов) с заданным , получим вершины интерполяционного множества (прямоугольника).

Рис.11. Интерполяция прямоугольников путём интерполяции вершин

Снова обсуждаемый метод интерполяции даёт такой результат, какой мы ожидали бы увидеть.

Пример 6. Пусть – прямоугольные равнобедренные треугольники с гипотенузой h =100 и общей вершиной в начале координат. Тогда в результате интерполяции по Минковскому при получим шестиугольник (интерполяционное множество ) (рис. 12).

Рис.12. Интерполяция симметричных треугольников

Вычисления по интерполяционной формуле (2) сразу приводят к указанному итогу. В отличие от предыдущего примера, в случае данных треугольников сопоставление вершин, осуществляемое методом Минковского, как и сам результат, оказывается несколько неожиданным. Действительно, попарная интерполяция «верхних» и «нижних» вершин треугольников при даёт соответственно «верхнюю» и «нижнюю» вершины шестиугольника. А вот вершины прямых углов треугольников «интерполируются» с каждой из «верхней» и «нижней» вершин другого треугольника.

Результат примера 6, конечно, оставляет вопросы. Однако если вдуматься, то вряд ли мы сможем предложить «логичный» вариант переходного множества. Изначально предполагалось интерполировать «близкие», сходные изображения. См. также ниже замечание об особенностях интерполяции противоположных векторов.

Ещё более удивителен следующий случай.

Пример 7. Пусть – отрезки на осях координат: ,

. Тогда – квадрат со стороной единица, нижние вершины которого расположены в точках (1;0) и (2;0) (рис. 13).

Рис.13. Интерполяция отрезков

Множества и представляют собой соответственно отрезки и . Складывая их /прибавляя к каждой точке (вектору) отрезка отрезок (всевозможные векторы из него)/, получаем квадрат. В условиях примера 7 по наглядным представлениям переходным множеством, очевидно, должен бы быть отрезок, но особенности метода интерполяции приводят к прямоугольнику.

Анализируя разобранные примеры, можно увидеть, что алгоритм Минковского даёт блестящие результаты в случаях, когда:

1) ,

2) получено из параллельным переносом,

3) Когда пункты 1 и 2 выполняются одновременно.

В других случаях работа алгоритма может быть неудовлетворительной. В частности, когда множества и получаются поворотом друг из друга. Корни такого положения вещей кроются в самом подходе: уже для векторов, между которыми значительный угол, результат интерполяции получается плохой (рис. 14).

Рис.14. Интерполяция векторов, образующих большой угол

Важным моментом в представленном методе является то, что на его «фундаменте» можно строить новые, более совершенные алгоритмы. Они имеют важный прикладной характер и активно используются в современной технике.

.

С этим связаны дополнительные ограничения на применение арифметических операций над множествами в алгоритмах.

Тем не менее, если использовать только положительные числа, всё выполняется. Такая структура в математике называется «конусом». Т.е. изображения с заданными на них операциями по Минковскому образуют «конус».

Для увеличения или уменьшения размера изображения Фотошоп использует метод Интерполяции. Так, например, при увеличении изображения, Фотошоп создает дополнительные пиксели на основе значений соседних. Грубо говоря, если один пиксель черный, а другой белый, то Фотошоп вычислит среднее значение и создаст новый пиксель серого цвета. Некоторые виды интерполяции быстрые и некачественные, другие более сложные, но с помощью них достигаются хорошие результаты.

Для начала пойдем в главное меню Изображение - Размер изображения (Image - Image Size) или Alt+Ctrl+I .

Если вы кликните по стрелочке около параметра Ресамплинг (Resample Image) , то в выплывающем окне появится несколько вариантов интерполяции:

  • Автоматически (Automatic) . Приложение Photoshop выбирает метод ресамплинга на основе типа документа и увеличения либо уменьшения его масштаба.
  • Сохранить детали (с увеличением) (Preserve details (enlargement)) . Если выбран этот метод, становится доступным ползунок Снижение шума для сглаживания шума при масштабировании изображения.
  • Сохранение деталей 2.0 (Preserve Details 2.0) . Этот алгоритм даёт очень даже интересный результат увеличения картинки. Конечно, детализация подробнее не становится, но та, что есть увеличивается довольно сильно не теряя чёткости.
  • . Хороший метод для увеличения изображений на основе бикубической интерполяции, разработанный специально для получения более гладких результатов.
  • Бикубическая (с уменьшением) (Bicubic Sharper (reduction)) . Хороший метод для уменьшения размера изображения на основе бикубической интерполяции с повышенной резкостью. Этот метод позволяет сохранить детали изображения, подвергнутого ресамплингу. Если интерполяция «Бикубическая, c уменьшением» делает слишком резкими некоторые области изображения, попробуйте воспользоваться бикубической интерполяцией.
  • Бикубическая (плавные градиенты) (Bicubic (smooth gradients)) . Более медленный, но и более точный метод, основанный на анализе значений цвета окружающих пикселей. За счет использования более сложных вычислений бикубическая интерполяция дает более плавные цветовые переходы, чем интерполяция по соседним пикселам или билинейная интерполяция.
  • По соседним пикселам (четкие края) (Nearest Neighbor (hard edges)) . Быстрый, но менее точный метод, который повторяет пиксели изображения. Этот метод сохраняет четкие края и позволяет создать файл уменьшенного размера в иллюстрациях, содержащих несглаженные края. Однако этот метод может создать зубчатые края, которые станут заметными при искажении или масштабировании изображения, или проведении множества операций с выделением.
  • Билинейная (Bilinear) . Этот метод добавляет новые пиксели, рассчитывая среднее значение цвета окружающих пикселей. Он дает результат среднего качества.

Пример использования Бикубическая (с увеличением) (Bicubic Smoother (enlargement)) :

Есть фото, размеры 600 х 450 пикселей разрешение 72 dpi

Нам нужно его увеличить. Открывает окно Размер изображения (Image Size) и выбираем Бикубическая (с увеличением) (Bicubic Smoother (enlargement)) , единицы измерение - проценты.

Размеры документа сразу установятся на значения 100%. Далее будем постепенно увеличивать изображение. Измените значение 100% на 110%. Когда вы измените ширину, высота автоматически подгонится сама.

Теперь его размеры уже 660 х 495 пикселей. Повторяя данные действия можно добиться хороших результатов. Конечно, идеальной четкости нам добиться будет достаточно сложно, так как фото было маленькое и низкого разрешения. Но посмотрите, какие изменения произошли в пикселях.

Насколько большими мы можем делать фотографии благодаря методу интерполяции? Все зависит от качества фотографии, как оно было сделано и для каких целей вы его увеличиваете. Лучший ответ: возьмите и проверьте сами.

До встречи в следующем уроке!

Функция изменения размера изображения, предоставленная Emgu (оболочка.net для OpenCV), может использовать любой из четырех методов интерполяции :

  • CV_INTER_NN (по умолчанию)
  • CV_INTER_LINEAR
  • CV_INTER_CUBIC
  • CV_INTER_AREA

Я грубо понимаю линейную интерполяцию, но могу только догадываться, что такое кубика или область. Я подозреваю, что NN выступает за ближайшего соседа, но я могу ошибаться.

Причина, по которой я изменяю размер изображения, заключается в уменьшении количества пикселей (они будут повторяться в какой-то момент), сохраняя их репрезентативными. Я упоминаю это, потому что мне кажется, что интерполяция является центральной для этой цели - поэтому правильный тип должен быть очень важным.

Мой вопрос, каковы преимущества и недостатки каждого метода интерполяции? Как они отличаются и какой из них я должен использовать?

4 ответов

Ближайший сосед будет как можно быстрее, но при изменении размера вы потеряете существенную информацию.

Линейная интерполяция менее быстрая, но не приведет к потере информации, если вы не уменьшаете изображение (которое вы есть).

Кубическая интерполяция (вероятно, фактически "Бикубическая") использует одну из многих возможных формул, которые включают в себя несколько соседних пикселей. Это намного лучше для сокращения изображений, но вы по-прежнему ограничены в отношении того, сколько вы можете уменьшить без потери информации. В зависимости от алгоритма вы можете уменьшить свои изображения на 50% или 75%. Основной подход этого подхода заключается в том, что он намного медленнее.

Не уверен, что такое "area" - на самом деле это может быть "Bicubic". По всей вероятности, этот параметр даст лучший результат (с точки зрения потери/появления информации), но за счет самого продолжительного времени обработки.

Используемый метод интерполяции зависит от того, чего вы пытаетесь достичь:

CV_INTER_LINEAR или CV_INTER_CUBIC применяет фильтр нижних частот (средний) для достижения компромисса между визуальным качеством и удалением края (фильтры нижних частот имеют тенденцию удалять края по порядку для уменьшения наложения изображений). Между этими двумя, я бы рекомендовал вам CV_INTER_CUBIC .

Метод CV_INTER_NN на самом деле является ближайшим соседом, это самый базовый метод, и вы получите более резкие края (ни один фильтр нижних частот не будет применяться). Однако этот метод просто напоминает "масштабирование" изображения, отсутствие визуального улучшения.

Алгоритмы: (описания из документации OpenCV)

  • INTER_NEAREST - интерполяция ближайшего соседа
  • INTER_LINEAR - билинейная интерполяция (используется по умолчанию)
  • INTER_AREA - повторная выборка с использованием отношения области пикселей. Это может быть предпочтительный метод для прореживания изображения, поскольку он дает результаты без муара. Но когда изображение масштабируется, оно похоже на метод INTER_NEAREST.
  • INTER_CUBIC - бикубическая интерполяция по окрестности 4x4 пикселей.
  • INTER_LANCZOS4 - интерполяция Lanczos в окрестности 8x8 пикселей

Если вы хотите увеличить скорость, используйте метод Nearest Neighbor.

Рынок мобильных телефонов заполнен моделями с камерами с огромными разрешениями. Встречаются даже относительно недорогие смартфоны с сенсорами разрешением 16-20 Мп. Незнающий покупатель гонится за "крутой" камерой и отдает предпочтение тому телефону, у которого разрешение камеры выше. Он даже и не догадывается, что попадается на удочку маркетологов и продавцов.

Что такое разрешение?

Разрешение камеры - это параметр, который указывает на конечный размер изображения. Он определяет только то, насколько полученное изображение будет большим, то есть его ширину и высоту в пикселях. Важно: качество картинки при этом не изменяется. Фотография может получиться некачественной, но большой из-за разрешения.

Разрешение не влияет на качество. Нельзя было не упомянуть об этом в контексте интерполяции камеры смартфона. Теперь можно переходить непосредственно к сути.

Что такое интерполяция камеры в телефоне?

Интерполяция камеры - это искусственное увеличение разрешения изображения. Именно изображения, а не То есть это специальное программное обеспечение, благодаря которому снимок с разрешением 8 Мп интерполируется до 13 Мп или больше (или меньше).

Если проводить аналогию, то интерполяция камеры подобна или биноклю. Эти устройства увеличивают изображение, но не делают его более качественным или детализированным. Так что если в характеристиках к телефону указана интерполяция, то фактическое разрешение камеры может быть ниже заявленного. Это не плохо и не хорошо, это просто есть.

Для чего это нужно?

Интерполяцию придумали для увеличения размера изображения, не более того. Сейчас это уловка маркетологов и производителей, которые пытаются продать продукт. Они большими цифрами указывают на рекламном постере разрешение камеры телефона и позиционируют это как преимущество или нечто хорошее. Мало того, что само по себе разрешение не оказывает влияния на качество фотографий, так оно еще может быть интерполировано.

Буквально 3-4 года тому назад многие производители гнались за количеством мегапикселей и разными способами пытались впихнуть их в свои смартфоны сенсоры с как можно большим числом. Так появлялись смартфоны с камерами с разрешением 5, 8, 12, 15, 21 Мп. Фотографировать они при этом могли как самые дешевые мыльницы, но покупатели, увидев наклейку "Камера на 18 Мп", сразу хотели купить такой телефон. С появлением интерполяции продавать такие смартфоны стало проще из-за возможности искусственно добавить мегапикселей камере. Конечно, качество фото со временем начало расти, но точно не из-за разрешения или интерполяции, а из-за естественного прогресса в плане разработки сенсоров и программного обеспечения.

Техническая сторона

Что такое интерполяция камеры в телефоне технически, ведь весь текст выше описывал только основную идею?

С помощью специального программного обеспечения на изображении "рисуются" новые пиксели. Например, для увеличения изображения в 2 раза после каждой строки пикселей картинки добавляется новая строка. Каждый пиксель в этой новой строке заполняется цветом. Цвет заливки высчитывается специальным алгоритмом. Самый первый способ - залить новую строку цветами, которыми обладают ближайшие пиксели. Результат такой обработки будет ужасным, но зато подобный способ требует минимум вычислительных операций.

Чаще всего используется другой метод. То есть на исходное изображение добавляются новые строки пикселей. Каждый пиксель заливается цветом, который, в свою очередь, вычисляется как среднее значение соседних пикселей. Этот способ дает лучшие результаты, но требует больше вычислительных операций.

Благо, современные мобильные процессоры быстры, и на практике пользователь не замечает, как программа редактирует изображение, пытаясь искусственно увеличить его размер.

Есть много продвинутых способов и алгоритмов интерполяции, которые совершенствуются постоянно: улучшаются границы перехода между цветами, линии становятся более точными и четкими. Неважно, как построены все эти алгоритмы. Сама идея интерполяции камеры банальна и вряд ли приживется в ближайшем будущем. С помощью интерполяции невозможно сделать изображение более детализированным, добавить новые детали или улучшить его каким-либо еще образом. Только в фильмах маленькая размытая картинка после наложения пары фильтров становится четкой. На практике такого быть не может.

Нужна ли вам интерполяция?

Многие пользователи по своему незнанию задают на разных форумах вопросы, как сделать интерполяцию камеры, полагая, что это улучшит качество изображений. На самом деле интерполяция не только не улучшит качество картинки, но даже может сделать хуже, ведь к фотографиям будут добавляться новые пиксели, и из-за не всегда точного вычисления цветов для заливки на фото могут быть недетализированные участки, зернистость. В результате качество падает.

Так что интерполяция в телефоне - это маркетинговая уловка, которая совершенно не нужна. Она может увеличивать не только разрешение фото, но и стоимость самого смартфона. Не попадайтесь на уловки продавцов и производителей.