Как определить местоположение в море. Штурманские приборы

Данная статья содержит перечень основных штурманских инструментов и их описание.

Штурманские приборы и инструменты

Чтобы обеспечить безопасность плавания, контроль за движением судна и его местонахождением относительно берега, в штурманской практике применяют различные технические средства судовождения (ТСС), навигационные приборы и инструменты:

  • для определения направления - компасы;
  • для определения скорости движения судна и пройденного расстояния - лаги;
  • для определения глубины под килем - ручные лоты и эхолоты;
  • угломерные инструменты (секстаны), часы и секундомеры, оптические дальномеры, бинокли, наклономеры и др.;
  • традиционный инструментарий для работе на карте - штурманский транспортир, параллельная линейка, циркуль- измеритель, циркуль, протрактор, грузики для карт;
  • гидрометеорологические приборы - барометр, барограф, анемометр, круг СМО, термометр наружный, кренометр.

Компасы.

Это навигационные приборы, предназначенные для определения курса судна и направлений на береговые ориентиры и плавучие объекты, находящиеся в поле зрения судоводителя. На маломерных судах могут встретиться различные типы компасов и их модификации. Наиболее распространенным курсоуказателем является магнитный компас.

Измерители скорости – лаги

Лаги различных типов прочно заняли место наряду с другими современными ТСС. Из всех типов лагов (гидродинамического, индукционного, доплеровского гидроакустического, корреляционного, радиодоплеровского) наиболее приемлемыми для катеров и яхт являются гидроакустический и индукционный лаги, для судов на воздушной подушки наиболее приемлем радиодоплеровский лаг.

Измерители глубины.

Лотом называется прибор, с помощью которого измеряют глубины под днищем судна. Навигационные лоты различных типов предназначены для измерения глубин до 500 м Лоты бывают ручные и гидроакустические эхолоты. На маломерных судах используются преимущественно ручные лоты,
Ручной лот предназначен для измерения глубин до 50 м. Лот состоит из гири и лотлиня.

Эхолот. Хотя редко, но и на маломерных судах применяются современные измерители глубины – эхолоты

Принцип действия эхолота основан на измерении времени, за которое звуковой импульс достигает дна и после его отражения возвращается обратно. После необходимых преобразований (практически это происходит мгновенно) на специальном табло или дисплее высвечивается значение глубины и рельеф дна.

Измерители расстояния.

Бинокль. Бинокли используются судоводителями для наблюдения за окружающей обстановкой (другими судами, береговыми ориентирами, знаками навигационной обстановки и т.д.)

Секстан – угломерный инструмент отражательного типа для измерения высот небесных светил и углов (вертикальных и горизонтальных) на земной поверхности. Для измерения вертикального угла секстан берется в правую руку и в вертикальном положении направляется трубой на основание предмета (маяк, судно, заводская труба, знак и т.д.). Затем стопором передвигается алидада так, чтобы подвести дважды отраженное изображение верхней части предмета к его основанию. После чего снимается в градусах отсчет по индексу алидады в соответствии с делением лимба, а минуты и их десятые доли – с отсчетного барабана. Снятый отсчет исправляют поправкой индекса секстана и полученный результат будет соответствовать величине вертикального угла на данный предмет.

Измерители времени.

Морской хронометр.
Этот прибор служит для определения достаточно точного гринвичского времени, его часто называют хранителем всемирного времени. Высокая точность хода и его равномерность обеспечиваются специальными регуляторами. Большой циферблат разбит на 12 часовых делений и имеет часовую и минутную стрелку. На одном из двух малых циферблатов стрелка отсчитывает секунды, на другом – время, прошедшее с момента последнего завода хронометра. Хранится хронометр в специальном ящике на кардановом подвесе, который обеспечивает состояние покоя часовому механизму во время качки. Заводится хронометр ежесуточно в одно и тоже время (как правило, в 8 часов).
Поправка хронометра (разность между Тгр и показанием хронометра) определяется по радиосигналам точного времени и каждые сутки фиксируется в специальном журнале. Рис.15 Хронометр
Палубные часы. Устанавливаются по гринвичскому времени, и при отсутствии на судне хронометра, выполняют его функцию. Механизм часов имеет повышенную точность.
Циферблат разбит на 12 делений и имеет часовую, минутную и центральную секундную стрелки.
Судовые или морские часы. Назначение судовых часов – показывать судовое время, по которому организуется служба и повседневная жизнь на судне. Их устанавливают в каютах и служебных помещениях. Часы имеют круглый циферблат, разбитый на 12 или 24 часовых деления, часовую, минутную и центральную секундную стрелки. Как правило завод часов недельный.
Секундомер - служит для точного измерения небольших промежутков времени. На маломерных судах ручные или карманные часы, имеющие большую центральную секундную стрелку, вполне могут заменить секундомер. Эти же часы можно использовать для определения пройденного расстояния, моментов взятия пеленгов, времени изменения курса и других моментов, которые необходимо наносить на карту.

Прокладочные ин струменты

При работе на карте судоводитель-любитель должен использовать прокладочный инструмент, в набор которого входят параллельная линейка, транспортир, циркуль-измеритель, грузики для карт.

Параллельная линейка (рис.16) служит для проведения на карте прямых и параллельных заданному направлению линий. Линейка состоит из двух половин, соединенных двумя равными тягами на шарнирах. Срезы линеек не должны иметь зазубрин, изгибов, заусениц, а тяги должны легко вращаться вокруг осей, но без свободного хода. При работе с линейкой необходимо следить за параллельностью передвижения, чтобы не сбить заданного направления линии. Линии наносят остроотточенным карандашом без заметного усилия.


Транспортир навигационный (рис. 16) служит для построения и измерения на карте углов, курсов и пеленгов. Он представляет собой полукруг с линейкой имеется несколько разновидностей). Центр полукруга отмечен вырезом на линейке. Верхний срез дуги градуирован по верхнему ряду от точки 1 до точки 2 влево - от 0 до 90°, от точки 2 до точки 3 влево - от 270 до 360°, по нижнему ряду от точки 1 до точки 2 влево - от 180 до 270° и от точки 2 до точки 3 - от 90° до 180°. Верхний ряд цифр используется для прокладки направлений северной половины картушки компаса, а нижний - южной.


Следует помнить, что углы увеличиваются от О до 360° от нордовой части меридиана вправо.
Циркуль-измеритель служит для измерения ‘расстояний и нанесения их на карту. Работать с циркулем удобнее одной рукой. Большие расстояния откладывают по частям. Разводить ножки циркуля более чем на 90° не рекомендуется. Расстояние измеряют на боковой рамке карты в той же широте, где происходит плавание или находится измеряемое расстояние. Отложив расстояние, следует проверить его повторным обратным измерением.


Грузики для карт предназначены для удержания карты на рабочем месте. На маломерных судах, где нет рубки, грузики можно заменять кнопками, которыми карта крепится на плоском деревянном переносном планшете.

Гидрометеорологические приборы.
Атмосферное давление (давление воздуха, барометрическое давление) определяется весом столба воздуха, который давит на единицу площади горизонтальной поверхности. Прибор для измерения атмосферного давления носит название барометра. Шкала прибора проградуирована в миллиметрах ртутного столба, на ней встроен термометр.

Искусство вождения судна кратчайшим путем от порта к порту называется навигацией. Другими словами, навигация - это способ прокладки курса судна от места отправления до места назначения, контроля курса, а при необходимости и его корректировка.

На ходовом мостике находятся приборы и устройства, необходимые для управления судном. Навигационные приборы - компасы, гироазимуты, автопрокладчики, лаги, лоты, эхолоты, секстаны и другие устройства, предназначены для определения местоположения судна и измерения отдельных элементов его движения судна.

Компасы

Компас – основной навигационный прибор, служащий для определения курса судна, для определения направлений (пеленгов) на различные объекты. На судах применяются магнитные и гироскопические компасы.

Магнитные компасы используются в качестве резервных и контрольных приборов. По назначению магнитные компасы делятся на главные и путевые.

Главный компас устанавливают на верхнем мостике в диаметральной плоскости судна, так чтобы обеспечить хороший обзор по всему горизонту (рис. 3.1). Изображение шкалы картушки при помощи оптической системы проектируется на зеркальный отражатель, установленный перед рулевым (рис. 3.2).

Рис. 3.1. Главный магнитный компас

Путевой магнитный компас устанавливают в рулевой рубке. Если главный компас имеет телескопическую передачу отсчета к посту рулевого, то путевой компас не устанавливают.

Рис. 3.2. Зеркальный отражатель магнитного компаса

На магнитную стрелку на судне действует судовое магнитное поле. Оно представляет собой совокупность двух магнитных полей: поля Земли и поля судового железа. Этим объясняется, что ось магнитной стрелки располагается не по магнитному меридиану, а в плоскости компасного меридиана. Угол между плоскостями магнитного и компасного меридианов называется девиацией.

В комплект компаса входят: котелок с картушкой, нактоуз, девиационный прибор, оптическая система и пеленгатор.

На спасательных шлюпках используется легкий, небольшой по размерам компас, не закрепленный стационарно (рис. 3.3).

Рис. 3.3. Шлюпочный магнитный компас

Гирокомпас - механический указатель направления истинного (географического) меридиана, предназначенный для определения курса объекта, а также азимута (пеленга) ориентируемого направления (рис. 3.4 - 3.5). Принцип действия гирокомпаса основан на использовании свойств гироскопа и суточного вращения Земли.

Рис. 3.4. Современный гирокомпас

Гирокомпасы имеют два преимущества перед магнитными компасами:

  • они показывают направление на истинный полюс, т.е. на ту точку, через которую проходит ось вращения Земли, в то время как магнитный компас указывает направление на магнитный полюс;
  • они гораздо менее чувствительны к внешним магнитным полям, например, тем полям, которые создаются ферромагнитными деталями корпуса судна.

Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна.

Рис. 3.5. Репитер гирокомпаса с пеленгатором, установленный на пелорусе

Гирокомпас может выдавать ошибки измерения. Например, резкое изменение курса или скорости вызывают девиацию, и она будет существовать до тех пор, пока гироскоп не отработает такое изменение. На большинстве современных судов имеются системы спутниковой навигации (типа GPS) и/или другие навигационные средства, которые передают во встроенный компьютер гирокомпаса поправки. Современные конструкции лазерных гироскопов не выдают таких ошибок, поскольку вместо механических элементов в них используется принцип разности оптического пути.

Электронный компас построен на принципе определения координат через спутниковые системы навигации (рис. 3.6). Принцип действия компаса:

  1. на основании сигналов со спутников определяются координаты приёмника системы спутниковой навигации;
  2. засекается момент времени, в который было сделано определение координат;
  3. выжидается некоторый интервал времени;
  4. повторно определяется местоположение объекта;
  5. на основании координат двух точек и размера временного интервала вычисляется вектор скорости движения:
    • направление движения;
    • скорость движения.

Рис. 3.6. Электронные компасы

Эхолот

Навигационный эхолот предназначен для надежного измерения, наглядного представления, регистрации и передачи в другие системы данных о глубине под килем судна (рис. 3.7). Эхолот должен функционировать на всех скоростях судна от 0 до 30 узлов, в условиях сильной аэрации воды, ледяной и снежной шуги, колотого и битого льда, в районах с резко меняющимся рельефом дна, скалистым, песчаным или илистым грунтом.

Рис. 3.7. Указатель эхолота

На судах устанавливаются гидроакустические эхолоты. Принцип их работы заключается в следующем: механические колебания, возбуждаемые в вибраторе-излучателе, распространяются в виде короткого ультразвукового импульса, доходят до дна и, отразившись от него, принимаются вибратором-приемником.

Эхолоты автоматически указывают глубину моря, которую определяют по скорости распространения звука в воде и промежутку времени от момента посылки импульса до момента его приема (рис. 3.8).

Рис. 3.8. Принцип работы эхолота

Эхолот должен обеспечивать измерение глубин под килем в диапазоне от 1 до 200 метров. Указатель глубин должен быть установлен в рулевой рубке, а самописец – в рулевой или штурманской рубке.

Для измерения глубин применяется также ручной лот в случаях посадки судна на мель, промера глубин у борта во время стоянки у причала и т.п.

Ручной лот (рис. 3.9) состоит из свинцовой или чугунной гири и лотлиня. Гиря выполняется в форме конуса высотой 25 - 30 см и весом от 3 до 5 кг. В нижнем широком основании гири делается выемка, которая перед замером глубины смазывается солидолом. При касании лотом морского дна частицы грунта прилипают к солидолу, и после подъема лота по ним можно судить о характере грунта.

Рис. 3.9. Ручной лот

Разбивка лотлиня производится в метрических единицах и обозначается по следующей системе: на десятках метров вплетаются флагдуки различных цветов; каждое количество метров, оканчивающееся цифрой 5, обозначаются кожаной маркой с топориками.

В каждой пятерке первый метр обозначается кожаной маркой с одним зубцом, второй - маркой с двумя зубцами, третий - с тремя зубцами и четвертый - с четырьмя.

Лаг

Примерно с конца XV в. получил известность простой измеритель скорости - ручной лаг. Он состоял из деревянной дощечки со свинцовым грузом формой в 1/1 круга, к которой прикреплялся легкий трос, имеющий узлы через равные промежутки (чаще всего 7 м). Для измерения скорости парусных судов, плававших в те времена, лаг, как приблизительно постоянная отметка на поверхности воды, бросали за борт и поворачивали песочные часы, отмеряющие определенную продолжительность времени (14 с). За время, пока сыпался песок, матрос считал количество узлов, которые проходили через его руки. Число узлов, полученных за это время, давало в пересчете скорость судна в морских милях в час. Этот способ измерения скорости объясняет возникновение выражения «узел».

Лаг - навигационный прибор для измерения скорости судна и пройденного им расстояния. На морских судах применяются механические, геомагнитные, гидроакустические, индукционные и радиодоплеровские лаги. Различают:

  • относительные лаги, измеряющие скорость относительно воды; и
  • абсолютные лаги, измеряющие скорость относительно дна.

Гидродинамический лаг - относительный лаг, действие которого основано на измерении разности давления, которая зависит от скорости судна. Основу гидродинамического лага составляют две трубки, выведенные под днище судна: выходное отверстие одной трубки направлено к носовой части судна; а выходное отверстие другой трубки находится заподлицо с обшивкой. Динамическое давление определяется по разности высот воды в трубках и преобразуется механизмами лага в показания скорости судна в узлах. Кроме скорости, гидродинамические лаги показывают пройденное судном расстояние в милях.

Индукционный лаг - относительный лаг, принцип действия которого основан на зависимости между относительной скоростью проводника в магнитном поле и наводимой в этом проводнике электродвижущей силой (ЭДС). Магнитное поле создается электромагнитом лага, а проводником является морская вода. Когда судно движется, магнитное поле пересекает неподвижные участки водной среды, при этом в воде индуцируется ЭДС, пропорциональная скорости перемещения судна. С электродов ЭДС поступает в специальное устройство, которое вычисляет скорость судна и пройденное расстояние.

Гидроакустический лаг - абсолютный лаг, работающий на принципе эхолота. Различают доплеровские и корреляционные гидроакустические лаги.

Геомагнитный лаг - абсолютный лаг, основанный на использовании свойств магнитного поля Земли.

Радиолаг - лаг, принцип действия которого основан на использовании законов распространения радиоволн.

На практике отсчеты лага замечают в начале каждого часа и по разности отсчетов получают плавание S в милях и скорость судна V в узлах. Лаги имеют погрешность, которая учитывается поправкой лага.

Радионавигационные приборы

Судовая радиолокационная станция (РЛС) предназначена для обнаружения надводных объектов и берега, определения места судна, обеспечения плавания в узкостях, предупреждения столкновения судов (рис. 3.10).

Рис. 3.10. Экран РЛС

В РЛС используется явление отражения радиоволн от различных объектов, расположенных на пути их распространения, таким образом, в радиолокации используется явление эха. РЛС содержит передатчик, приемник, антенно-волноводное устройство, индикатор с экраном для визуального наблюдения эхо-сигналов.

Принцип работы РЛС следующий. Передатчик станции вырабатывает мощные высокочастотные импульсы электромагнитной энергии, которые с помощью антенны посылаются в пространство узким лучом. Отраженные от какого-либо объекта (судна, высокого берега и т. п.) радиоимпульсы возвращаются в виде эхо-сигналов к антенне и поступают в приемник. По направлению узкого радиолокационного луча, который в данный момент отразился от объекта, можно определить пеленг или курсовой угол объекта. Измерив, промежуток времени между посылкой импульса и приемом отраженного сигнала, можно получить расстояние до объекта. Так как при работе РЛС антенна вращается, излучаемые импульсные колебания охватывают весь горизонт. Поэтому на экране индикатора судовой РЛС создается изображение окружающей судно обстановки. Центральная светящаяся точка на экране индикатора РЛС отмечает место судна, а идущая от этой точки светящаяся линия показывает курс судна.

Изображение различных объектов на экране радара может быть ориентировано относительно диаметральной плоскости судна (стабилизация по курсу) или относительно истинного меридиана (стабилизация по норду). Дальность «видимости» РЛС достигает несколько десятков миль и зависит от отражательной способности объектов и гидрометеорологических факторов.

Судовые РЛС позволяют за короткий промежуток времени определить курс и скорость встречного судна и избежать, таким образом, столкновения.

Рис. 3.11. Экран САРП

Все суда должны обеспечивать радиолокационную прокладку на экране РЛС, для этого их оборудуют системой автоматической радиолокационной прокладки (САРП). САРП выполняет обработку радиолокационной информации и позволяет производить (рис. 3.11):

  • ручной и автоматический захват целей и их сопровождение;
  • отображение на экране индикатора векторов относительного или истинного перемещения целей;
  • выделение опасно сближающихся целей;
  • индикацию на табло параметров движения и элементов сближения целей;
  • проигрывание маневра курсом и скоростью для безопасного расхождения;
  • автоматизированное решение навигационных задач;
  • отображение элементов содержания навигационных карт;
  • определение координат местоположения судна на основе радиолокационных измерений.

Автоматическая информационная система (АИС) является морской навигационной системой, использующей взаимный обмен между судами, а также между судном и береговой службой для передачи информации о позывном и наименовании судна для его опознавания, координатах, сведений о судне (размеры, груз, осадка и др.) и его рейсе, параметрах движения (курс, скорость и др.) с целью решения задач по предупреждению столкновений судов, контроля за соблюдением режима плавания и мониторинга судов в море.

Электронные картографические навигационные информационные системы (ЭКНИС) являются эффективным средством навигации, существенно сокращающим нагрузку на вахтенного помощника и позволяющим уделять максимум времени наблюдению за окружающей обстановкой и выработке обоснованных решений по управлению судном (рис. 3.12).

Рис. 3.12. ЭКНИС

Основные возможности и свойства ЭКНИС:

  • проведение предварительной прокладки;
  • проверка маршрута на безопасность;
  • ведение исполнительной прокладки;
  • автоматическое управление судном;
  • отображение "опасной изобаты " и "опасной глубины";
  • запись информации в электронный журнал с возможностью дальнейшего проигрывания;
  • ручная и автоматическая (через Internet) корректура;
  • подача сигнала тревоги при приближении к заданной изобате или глубине;
  • дневная, ночная, утренняя и сумеречная палитры;
  • электронная линейка и неподвижные метки;
  • базовая, стандартная и полная нагрузка дисплея;
  • обширная и дополняемая база морских объектов;
  • база приливов более чем в 3000 точек Мирового Океана.

Спутниковая система навигации - это система, состоящая из наземного и космического оборудования, предназначенная для определения местоположения (географических координат), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов (рис. 3.13).

Рис. 3.13. Индикатор GPS

GPS - это глобальная навигационная спутниковая система определения местоположения Global Position System. Система включает группировку низкоорбитальных навигационных спутников, наземные средства слежения и управления и самые разнообразные, служащие для определения координат. Принцип определения своего места на земной поверхности в глобальной системе позиционирования заключается в одновременном измерении расстояния до нескольких навигационных спутников (не менее трёх) - с известными параметрами их орбит на каждый момент времени, и вычислении по изменённым расстояниям своих координат.

Навигационные инструменты

Навигационный секстан - угломерный инструмент (рис. 3.14), служащий:

  • в мореходной астрономии - для измерения высот светил над видимым горизонтом;
  • в навигации - для измерения углов между земными предметами.

Рис. 3.14. Секстан

Слово «секстан» происходит от латинского слова «Sextans» - шестая часть круга.

Морской хронометр - высокоточные переносные часы, позволяющие получать в любой момент достаточно точное гринвичское время (рис. 3.15).

Рис. 3.15. Хронометр

Судовое время определяется по меридиану местонахождения судна и чаще всего корректируется ночью вахтенным офицером. Так, например, при изменении долготы на 15° на восток часы переводятся на 1 час вперед, а при изменении долготы на 15° в западном направлении - на 1 час назад.

Для того чтобы в машинном отделении, столовой команды, каютах, салонах, барах, камбузе иметь точное и одинаковое показание времени, устанавливают электрические часы, корректируемые от главных часов, находящихся на мостике.

Рис. 3.16. Прокладочный инструмент

К прокладочным инструментам относятся (рис. 3.16):

  • измерительный циркуль - для измерения и откладывания расстояний на карте;
  • параллельная линейка - для проведения на карте прямых, а также параллельных заданному направлению линий;
  • навигационный транспортир - для построения и измерения углов, курсов и пеленгов на карте.

Кроме этого, на мостике находятся журналы, папки с документацией, навигационные карты, обязательные справочники и пособия и др. (рис. 3.17).

Рис. 3.17. Документация

История мореплавания, а, стало быть, и пиратства, тесным образом связана с историей навигации и картографии. История мореплавания, а, стало быть, и пиратства самым тесным образом связана с историей навигации и картографии. Когда появились морские карты? Как люди в древности ориентировались в море? Ответить на эти вопросы не так просто, как может показаться вначале.

Конечно, плавание вдоль берегов не требует карт или каких-то специальных способов ориентации. Достаточно изучить береговую линию. Большинство древних мореплавателей так и поступало, это, кстати, значительно упрощало и снаряжение судна: не требовалось иметь значительного запаса провианта и пресной воды. А раз так, то, казалось бы, и приспособления для навигации должны были бы появиться совсем недавно. Но штука вся в том, что длительные плавания совершались уже тысячелетия назад, в то время, как первые сведения о каких-либо навигационных приборах относятся к довольно позднему времени.

Современная наука считает, что индейцы обеих американских континентов, также как и папуасы островов Океании, происходят от сибирских племен, мигрировавших через океан. Сибиряки оставили свой «след» в местах проживания майя, инков, ацтеков и других племен. Впрочем, есть и другие гипотезы на этот счет. Например, учеными не исключаются миграции финикийцев или других народов, населявших Средиземноморье, через Атлантический океан. Известным путешественником и ученым Туром Хейердалом было предпринято несколько успешных экспедиций на «Кон-Тики» и «Ра» с целью подтвердить это предположение.

Как бы то ни было, речь, безусловно, идет о плаваниях через океан, вдали от берегов, где единственным ориентиром могло быть звездное небо, солнце и луна. Сегодня считается, что первые мореплаватели пользовались антретным ориентированием (т. е. на глаз) по небесным светилам. Восток и запад определяли по восходу и заходу солнца, а север и юг - по положению Полярной звезды или звезд из созвездия Южный крест.

Часто древние мореплаватели брали с собой клетки с птицами . Если корабль терялся в море, то моряки периодически выпускали птицу (часто - черного ворона). Если птица возвращалась назад, значит суши поблизости нет, а если же она улетала в определенном направлении - то корабль следовал за ней, полностью доверяя пернатому: значит, птица летит на сушу. Такой прием был особенно популярен у скандинавов.


Карта Птолемея (II век н. э.) Благодаря опросу купцов и мореплавателей, а также чтению всех отчетов античных путешественников, ему удалось нарисовать карту мира в конической проекции, с параллелями и меридианами

Вероятно, это дало толчок к появлению портулан, хотя точное время зарождения этих карт я бы не рискнул назвать даже приблизительно. Что же такое портуланы?

Средиземноморские мореплаватели испытали необходимость иметь точные путеводители, которые помогли бы вести торговлю на очень больших расстояниях от родных портов. Из-за непостоянства ветров удаляться от берегов в Средиземном море можно было не всегда, так как капризная погода Средиземноморья делала эти путешествия весьма опасными. Даже в средневековье большинство передвижений в этом регионе по-прежнему совершалось в пределах видимости берегов.

Во времена критских, финикийских и египетских мореплавателей Средиземноморье бороздило множество кораблей, но из-за необходимости держаться берега, в год можно было успеть совершить только одно путешествие с востока на запад. С октября по март торговля практически прекращалась, а некоторые маршруты с севера на юг (Греция - Египет, Галлия - Северная Африка), при встречном ветре, занимали целые месяцы.

Таким образом, в античные времена и в раннем средневековье первые карты становились скорее путеводителями для перехода из порта в порт, нежели точным описанием берегов. Лоцманы были больше заинтересованы в точном знании рельефа побережья, наличия мелей, постоянства ветров, местоположения портовых городов, нежели в научном представлении о поверхности Земли. Не имея для управления кораблем компаса, не обладая никакими средствами для определения широты (особенно когда облака прикрывали небо), лоцману - будь он египетским, греческим, венецианским или каталонским, оставался единственный выход - нарисовать карту! Ему необходим был портулан (от итальянского «портолано», то есть «путеводитель по портам»). Иначе говоря, требовался путеводитель, объединяющий в себе сведения о берегах, портах, ветрах, глубинах и течениях, собранные профессионалами мореплавания со времен античности, сведения с помощью которых в средневековье осуществлялась торговля в средиземноморских портах.

Первые сведения о непосредственно морских картах Марина Тирского относят ко II веку до н. э., хотя, карты вообще существовали уже у древних полинезийцев в V веке до н. э. и представляли собой сплетенные из растений циновки с изображением островов и рифов.

Карты того периода мало отличались от весьма схематичных планов, и чем большие территории изображались, тем меньше была точность карт: ведь Земля-то круглая, и большие участки ее поверхности нельзя показать на плоскости без искажений!

Одно из решений этой проблемы было найдено еще две тысячи лет назад Эратоcфеном (276–196 г. до н. э.), который начал применять при создании карт квадратную равнопромежуточную цилиндрическую проекцию. Кстати говоря, именно Эрастофен, наблюдая за полуденной высотой солнца в Александрии и Асуане, определил радиус Земли (6366,7 км) с такой высокой точностью, что этому поражаются до сих пор! А в качестве измерительного инструмента «выступил» верблюд! Эрастофен определил расстояние между двумя точками методом подсчета среднего числа шагов, и, зная разницу в длине солнечной тени, провел несложные вычисления. Сейчас это элементарная задачка по геометрии о подобии двух треугольников, но в те времена это было чудом.

Чтобы лучше читать карту нужна лоция. Лоция (от голл. loodsen - вести корабль) - руководство для плавания в определенном водном бассейне с подробным описанием его навигационных особенностей. Древнейшая из сохранившихся лоций - грека Скилака (VI век до н. э.) которая подробно описывала расстояния между портами, их оборудовании, о якорных местах, навигационных опасностях…

Вообще, задолго до средневековых космографов человек совершал попытки изобразить Землю в форме глобуса. Такими были уже упомянутые Эратосфен и Марин Тирский, таким был и Птолемей: они дерзко рисовали карты, основываясь на своих собственных расчетах. Когда Палла Строцци привез в Константинополь полный экземпляр «Географии» Птолемея, то его перевод на латинский язык стал, как сказали бы сегодня, одним из «бестселлеров» зарождавшегося книгопечатания! Птолемей - греческий ученый из Александрии, живший примерно с 90 по 160 года нашей эры. Благодаря опросу купцов и мореплавателей, а также чтению всех отчетов античных путешественников, ему удалось нарисовать карту мира в конической проекции, с параллелями и меридианами, то есть сетку координат, исчисляемых в градусах, где широты измерялись от экватора, а долготы - от самой западной точки известного тогда мира. Частично ошибочная, очень неточная во многих своих местах, «География» тем не менее, являла собой ощутимый этап в математическом осмыслении мира.


Квадрант — примитивный инструмент для измерения высоты звезд и определения широты.

Как уже стало ясно, понятия географической широты и долготы для однозначного определения местоположения на поверхности Земли, впервые возникли в Древней Греции. Днем (в полдень) широту определяли по длине солнечной тени, ночью - по высоте определенных звезд над горизонтом. Сегодня пальма первенства в использовании широты и долготы присуждается Гиппарху из Никеи (ок. 190–125 гг. до н. э.), который предложил метод определения долготы разных точек по измерению местного времени при наблюдении лунного затмения. Кроме того, Гиппархом была изобретена астролябия (греч. astron - «звезда», и labe - «схватывание») - угломерный инструмент, служивший с древнейших времен до начала XVIII века для определения положения небесных светил. Раньше для тех же целей использовался квадрант.

В 1342 году математиком Леви Бен Гершоном впервые был описан прибор впоследствии названный «Палочка Леви». Называемая также «арбалет», она являлась простым, но хитроумным приспособлением, с помощью которого можно измерять относительную высоту солнца в зените по отношению к линии горизонта. Благодаря таблицам Закуто и Визиньо (1465 год), используемым одновременно, можно было определить с точностью до одного или двух градусов широты свое местоположение.


Палочка Леви — средневековый инструмент для определения широты местоположения.

Эволюция европейской картографии вплоть до XVI века отражает собой гигантский коллективный труд во имя того, чтобы составить представление о мире, почерпнув сведения из грубого эмпиризма портуланов. Так моряки мало-помалу получают возможность пользоваться всеми плодами научного познания Земли. На место описаний, даже достаточно точных, но всегда неполных, приходят карты, способные дать геометрически верное представление о нашей планете. Но для этого требовалось избавиться от предрассудков мифологизированного сознания, а заодно обзавестись некоторыми навигационными и топографическими инструментами.

Одним из первых навигационных «приборов» можно считать соларстейн (в переводе с древнескандинавского - «солнечный камень») . С его помощью можно было определить положение солнца в туманную погоду. Он несколько раз упоминается в текстах древних викингов. Предполагается, что речь идет о кристалле исландского полевого шпата (кордиерита), обладавшего магнитными свойствами.

Явление магнетизма было подмечено людьми еще в глубокой древности. История магнетизма богата наблюдениями и фактами, различными взглядами и представлениями.

Сегодня считается, что впервые свойства магнитного железняка описал Фалес Милетский в VI веке до н. э. Это были чисто теоретические выкладки, не подтвержденные опытами. Фалес дал маловразумительное объяснение свойствам магнита, приписывая ему «одушевленность». Через столетие после него Эмпедокл объяснял притяжение железа магнитом некими «истечениями» из него какой-то нематериальной субстанции. Позднее подобное же объяснение в более определенной форме было представлено в книге Лукреция «О природе вещей». Высказывания о магнитных явлениях имелись и в сочинениях Платона, где он описывал их в поэтической форме. Представления о существе магнитных действий были у ученых более позднего времени - Декарта, Гюйгенса и Эйлера, причем эти представления в некоторых отношениях не слишком отличались от представлений древних философов.

В морской навигации магнитные явления использовались со времени раннего средневековья. В конце XII века в трудах англичанина Некаме и француза Гио де Провенс впервые описана простейшая буссоль (фр. boussole)- устройство, позволяющее определять магнитный азимут в море. Хотя в Китае буссоль применялась для навигации еще до нашей эры. В Европе же она приобрела распространение лишь в XIII веке.

Первым экспериментатором, занявшимся магнитами, был Петр Перегрин из Марикура (XIII век). Он опытным путем установил существование магнитных полюсов, притяжение разноименных полюсов и отталкивание одноименных. Разрезая магнит, он обнаружил невозможность изолировать один полюс от другого. Он выточил сфероид из магнитного железняка и пытался экспериментально показать аналогию в магнитном отношении между этим сфероидом и землей. Этот опыт впоследствии (в 1600 году) еще более наглядно воспроизвел Гильберт.

Первые компасы, изобретенные независимо друг от друга в Азии и в Скандинавии около XI века, пришли на Средиземноморское побережье Европы в XII веке и представляли собой плавающую в наполненной водой раковине дощечку. К одному из ее концов был прикреплен кусочек каламита - камня, обладающего природными магнитными свойствами, привозимого из Магнезии в Греции, где он очень распространен. Такой компас хорошо действовал лишь при незначительной качке на корабле.


а). Один из первых компасов, представлявший собой плавающую в наполненной водой раковине дощечку. К одному из ее концов был прикреплен кусочек магнитного камня;
б). Обычная буссоль, состоящая из стальной магнитной стрелки, вращающейся на острие, расположенном в центре небольшой круглой или четырехугольной коробочки (по-итальянски - «боссола»), была наиболее распространена на борту первых каравелл.
в). Компас или сухая буссоль со стрелкой, усовершенствованная в Сагрской школе, изготавливался из картонного диска, на котором была нарисована роза ветров. Под северной точкой розы ветров закреплялась небольшая намагниченная стальная полоска. Это уже более точный инструмент, чтобы держать правильный курс.

Так были ли достоверными сведения, содержавшиеся в портуланах? Думаю, что это зависело от возлагаемых на них задач. Для решения «местных» прикладных задач - попадания из точки А в точку Б - они вполне подходили. Навигация по Средиземному морю была довольно неплохо изучена, поскольку постоянно поддерживалась крупными лоцманскими школами, такими как генуэзская, венецианская или лагушская. Для познания же всего мира портуланы совершенно не годились, больше путая исследователей, нежели помогая им.

Только с конца XIII века первые попытки океанского плавания, а также более широкое использование компаса выявили необходимость реального отображения на плоском листе бумаги рельефа берегов с указанием ветров и основных координат.

После XIV века портуланы часто сопровождаются приблизительными контурными рисунками средиземноморского побережья и атлантических берегов Западной Европы. Постепенно корабли, уходящие в океанские плавания, начинают включаться в работу по составлению более точных портуланов и рисунков.

Где-то к началу XV века появляются уже настоящие навигационные карты. Они представляют собой уже полный набор сведений для лоцмана: рельеф берегов, перечень расстояний, указания широты и долготы, ориентиры, названия портов и местных обитателей, указываются ветра, течения и морские глубины.

Карта, наследница математических знаний, полученных древними, все более точных сведений об астрономии и тысячелетнего опыта навигации из порта в порт, становится одним из главных плодов научной мысли первооткрывателей: отныне во время длительных плаваний требуется составлять отчеты, необходимые для полного отображения знаний о мире. И более того, появились первые судовые журналы! Конечно, морские путешествия описывались и ранее, но теперь это начинает носить регулярный характер. Первым ввел обязательный судовой журнал для капитанов своих каравелл инфант Генрих. Капитаны должны были ежедневно записывать сведения о берегах с указанием координат - дело чрезвычайно полезное для составления достоверных карт.

Несмотря на стремление уточнять и проверять, двигавшее наиболее знаменитыми картографами (Фра Мауро в 1457 году утверждал, что ему не удалось вместить в свою карту всех сведений, которые ему удалось собрать), фантазии, легенды, вымысел окружали любой картографический труд неким «фольклорным» ореолом: на большинстве карт, датированных до XVII века, мы видим, как на месте малоизвестных или недостаточно исследованных регионов возникают изображения различных чудовищ, почерпнутых из античной и раннехристианской мифологий.

Достаточно часто составитель, описывая обитателей отдаленных уголков, прибегал к домыслам. Районы, исследованные и попавшие под власть европейских королей, отмечались гербами и флагами. Однако великолепно разрисованные обширные розы ветров не могли принести пользы, если они неправильно ориентированы или размечены в ошибочных линиях «ромбов» (примитивная система ориентации, предшествовавшая системе меридианов и параллелей). Часто работа картографа становилась настоящим произведением искусства. При дворах королей разглядывали планисферы, словно полотна, за ними угадывались пустившиеся в дальние путешествия мореплаватели, чудовища вызывали дрожь, пройденные расстояния и интригующие названия завораживали. Потребовалось немало времени, прежде чем обычай делать карту декоративной уступил место действительно полезной картографии, лишенной всяческого вымысла.

Этим объясняется та недоверчивость, с которой великие мореплаватели, и в первую очередь Христофор Колумб, относились к разукрашенным картам XV века. Большинство моряков предпочитало доверяться своему знанию ветров, рельефа дна, течений и наблюдениям за небесной сферой, или отслеживанию движения косяков рыб или птичьих стай, для того чтобы ориентироваться в бескрайних просторах океана.

Несомненно, именно в XV веке благодаря португальским мореплавателям, а затем путешествию Колумба и, наконец, кругосветному путешествию Магеллана в 1522 году человечество смогло на практике проверить расчеты древних греков и представления о сферичности Земли. Многие мореплаватели теперь на практике получали конкретные знания, свидетельствующие о шаровидности нашей планеты. Кривая линия горизонта, перемещение относительной высоты расположения звезд, рост температуры по мере приближений к экватору, смена созвездий в южном полушарии - все это делало очевидной истину, которая противоречила христианской догме: Земля - это шар! Оставалось только измерить расстояния, которые необходимо было преодолеть в открытом море, чтобы добраться до Индии, в южном направлении, как это сделали португальцы в 1498 году, или в западном, как казалось Колумбу, когда он в 1492 году встретил на своем пути непреодолимое препятствие в лице обеих Америк.

Колумб был хорошо знаком с космографической литературой того времени. Его брат был картографом в Лиссабоне, и он сам попытался построить глобус на основе имевшихся атласов, современных и античных трактатов по космографии. Он, правда, допустил, вслед за Пьером Айи и его «Имаго Мунди» (1410 год), грубую ошибку в оценке расстояния между Португалией и Азией, занизив его (есть гипотеза, что он сделал это преднамеренно). Тем не менее, он внял советам именитых картографов, таких как Тосканелли (который верил в морской путь на запад), Пикколомини (будущий папа Пий II) и Мартин Бехайм (впоследствии автора довольно точного глобуса).

Начиная с 1435 года португальские и итальянские моряки взяли за правило плыть на расстоянии от африканского берега, чтобы избежать опасных зон и переменчивости ветров. Прибрежная зона, изобилующая рифами и отмелями, и впрямь являла собой очевидную опасность кораблекрушения.

Однако столь значительное удаление от берега, что он теряется из виду, предполагает умение ориентироваться в открытом море на плоском однообразном пространстве без маяков, ограниченном лишь линией горизонта. А морякам XV века не хватало теоретических познаний в области математики и геометрии, необходимых для точного определения своего местонахождения. Что же касается измерительных приборов, с ними дела обстояли еще хуже. До XVI–XVII веков ни один из них не был по-настоящему хорош в деле. На картах, хотя и постоянно уточняемых, имелись существенные пробелы.

Чтобы оценить чрезвычайное мужество мореплавателей, которые осваивали ближнюю, а затем и дальнюю Атлантику, надо вспомнить, какими жалкими средствами они располагали для определения своего местонахождения в открытом море. Перечень будет краток: моряки XV века, в том числе и Христофор Колумб, не обладали практически ничем, что помогло бы им решить три главных задачи любого мореплавателя, отправляющегося в дальнее плавание: держать курс, измерять пройденный путь, знать с точностью свое настоящее местоположение.

У моряка XV века в распоряжении имелись всего лишь примитивная буссоль (в различных вариациях), грубые песочные часы, кишащие ошибками карты, приблизительные таблицы склонения светил и, в большинстве случаев, ошибочные представления о размерах и форме Земли! В те времена любая экспедиция по океанским просторам становилась опасной авантюрой, часто со смертельным исходом.

В 1569 году Меркатор составил первую карту в равноугольной цилиндрической проекции, а голландец Лука Вагенер ввел в обиход атлас. Это был крупный шаг в науке навигации и картографии, ведь даже сегодня, в двадцать первом веке, современные морские карты составлены в атласы и выполнены в меркаторской проекции!

В 1530 году голландский астроном Гемма Фризий (1508-1555) в своем труде «Принципы астрономической космографии» предложил способ определения долготы с помощью хронометра, но отсутствие достаточно точных и компактных часов надолго оставили этот метод чисто теоретическим. Этот способ был назван хронометрическим. Почему же способ оставался теоретическим, ведь часы появились много ранее?

Дело в том, что часы в те времена редко могли идти без остановки в течение суток, а их точность не превышала 12–15 минут в сутки. Да и механизмы часов того времени не были приспособлены для работы в условиях морской качки, высокой влажности и резких перепадов температуры. Конечно, кроме механических, в морской практике долгое время использовались песочные и солнечные часы, но точность солнечных часов, время «завода» песочных часов были совершенно недостаточными для реализации хронометрического метода определения долготы.

Сегодня считается, что первые точные часы были собраны в 1735 англичанином Джоном Гаррисоном (1693-1776). Их точность составляла 4–6 секунд в сутки! По тем временам это была просто фантастическая точность! И более того, часы были приспособлены для морских путешествий!

Предки наивно считали, что Земля вращается равномерно, лунные таблицы грешили неточностями, квадранты и астролябии вносили свою погрешность, поэтому итоговые ошибки в вычислениях координат составляли до 2,5 градусов, а это около 150 морских миль, т. е. почти 250 км!

В 1731 году английский оптик Джон Хэдли усовершенствовал астролябию. Новый прибор, получивший название октант, позволял решить проблему измерения широты на движущемся судне, так как теперь два зеркала позволяли одновременно видеть и линию горизонта и солнце. Но октанту не досталась слава астролябии: за год до этого Хадли сконструировал секстант - прибор, позволявший с очень большой точностью измерять местоположение судна.

Принципиальное устройство секстанта, т. е. прибора, использующего принцип двойного отражения объекта в зеркалах, было разработано еще Ньютоном, но было забыто и только в 1730 году было заново изобретено Хэдли независимо от Ньютона.

Морской секстант состоит из двух зеркал: указательного и неподвижного полупрозрачного зеркала горизонта. Свет от светила (звезды либо планеты) падает на подвижное зеркало, отражается на зеркало горизонта, на котором одновременно видны и светило и горизонт. Угол наклона указательного зеркала и есть высота светила.

Поскольку этот сайт по истории, а не по кораблевождению, то я не буду вдаваться в подробности и особенности различных навигационных приборов, но хочу сказать несколько слов о еще двух приборах. Это лот (лотлинь) и лаг (лаглинь).

В заключение, мне хотелось бы вкратце остановиться на некоторых исторических датах в истории развития навигации в России.

Тысяча семьсот первый год - это, пожалуй, самая знаменательная дата в отечественной навигации, поскольку в этом году император Петр I издал указ об учреждении «Математических и Навигацких, то есть мореходных хитростно наук учению».Год рождения первой отечественной навигационной школы.

Через два года, в 1703 году, преподаватель этой школы Магницкий составил учебник «Арифметика». Третья часть книги носит заглавие «Обще о земном размерении, и яже мореплаванию принадлежит».

В 1715 году старшие классы школы преобразовали в Морскую Академию.

1725 год - это год рождения Петербургской Академии Наук, где преподавали такие светила науки, как Леонард Эйлер, Даниил Бернулли, Михаил Ломоносов (1711-1765). Например, именно астрономические наблюдения и математическое описание движения планет Эйлера легли в основу высокоточных лунных таблиц для определения долготы. Гидродинамические исследования Бернулли позволили создать совершенные лаги для точного измерения скорости судна. Работы Ломоносова касались вопросов создания ряда новых навигационных приборов, прообразы которых используются и в настоящее время: курсопрокладчики, самописцы, лаги, кренометры, барометры, бинокли…

Мореплаватель должен уметь определять место корабля в море по береговым ориентирам, занимающим неизменное положение на земле и точно нанесенным на карты, а также по небесным светилам.
Производимые для этого наблюдения ориентиров и определения по ним места корабля называются обсервациями .
Точки, обозначающие на карте место корабля, полученное в результате обсерваций, называются обсервованными . Обсервованные координаты помечают в тексте индексом "о", например, Ш о или Д о.
Несовпадение счислимого места (то есть того места, где штурман считает находится, по его расчетам, в данный момент наблюдения корабль) с обсервованным (определенным тем или иным способом) называется невязкой . Невязку обозначают буквой С и выражают в тексте через расстояние и направление от счислимого места к обсервованному, например, С = 9,5-130°. Это значит, что обсервованное место расположено в 9,5 милях от счислимого в направлении 130°.
Ориентирами для визуального определения места корабля служат нанесенные на карты объекты: прежде всего специально установленные для этого маяки и знаки, положение которых точно определено; затем другие, хорошо усматриваемые искусственные сооружения - башни, колокольни, заводские трубы - и, наконец, хорошо выделяющиеся на местности естественные ориентиры - мысы, горные пики, отдельные скалы. Наиболее часто в качестве линий положения используют линии пеленгов, взятых на ориентиры.

Определение места корабля по пеленгам двух предметов

Простейшим и наиболее применяемым способом определения места корабля в море является определение места по двум одновременно взятым пеленгам двух различных предметов. Пусть предмет А (маяк) наблюдается с корабля по истинному пеленгу ИП1 , а предмет В в тот же момент по пеленгу ИП2 . Взяв компасные пеленги этих предметов и исправив их общей поправкой компаса, получим значения истинных пеленгов наблюдаемых предметов. Проложив на карте линии этих пеленгов, в точке пересечения линий (точка М) получим обсервованное место корабля.
Полученное место (точку пересечения линий истинных пеленгов) обводят кружком. Около полученной точки делают надпись в виде дроби, указывая на месте числителя момент времени, а на месте знаменателя - отсчет лага. Если обнаружена невязка, то ее также указывают. (Все работы на картах производят простым карандашом).

Определение места корабля по пеленгам трех предметов


Допустим, одновременно взяты компасные пеленги трех предметов А,В и С и линии соответствующих истинных пеленгов ИПа, ИПв и ИПс проложены на карте. Ясно, что если наблюдения правильны и принятая поправка компаса верна, то линии всех трех пеленгов должны пересечься в одной и той же точке, так как истинное место корабля не может находиться одновременно в разных точках.
Если же в наблюдениях или принятых величинах допущена ошибка, то линии пеленгов пересекутся в трех точках, образуя между собой так называемый треугольник погрешностей. При этом, если треугольник погрешностей относительно мал, то место корабля принимают в его центре.

Определение места корабля по двум и
трем расстояниям



Аналогичным образом производят определение места корабля по двум и трем расстояниям (если представляется возможность измерить каким-либо образом расстояние до двух или трех ориентиров, например, по РЛС).

Определение места корабля по
двум горизонтальным углам



Таким же образом производят определения места корабля по двум горизонтальным углам (измеряя горизонтальные углы секстаном и нанося их на карты с помощью протрактора).
Из рисунка внизу, думаю, принцип определения места по 2 пеленгам Вам будет понятен.

Представьте себе, что корабль находится в открытом море. Его со всех сторон окружают только небо и вода; вокруг не видно ни берега, ни островка. Плыви куда хочешь! , когда не было ни спутников Земли, ни радиосвязи? Если капитан судна не умеет производить астрономические наблюдения, он не сможет определить местоположение своего корабля. Останется один выход - отдаться «на волю волн». Но в этом случае корабль обречён почти на верную гибель.

Параллели и меридианы

Вся поверхность земного шара покрыта рядом воображаемых взаимно перпендикулярных линий, которые называются параллелями и меридианами , а их совокупность составляет так называемую градусную сетку. Линия, которая образуется сечением земного шара плоскостью, проходящей через центр Земли перпендикулярно к оси её вращения, называется экватором . Экватор одинаково удалён как от Южного, так и от Северного полюсов. Долготой называется расстояние в градусах от некоторого «нулевого» меридиана к западу (западная долгота) и к востоку (восточная долгота). Долгота отсчитывается от 0 до 180 градусов по земному экватору. Широтой называется расстояние в градусах от экватора до некоторой точки, лежащей либо между Северным полюсом и экватором (северная широта), либо между Южным полюсом и экватором (южная широта). Широта отсчитывается от 0 до 90 градусов. Введение понятия долготы и широты имеет громадное значение: оно позволило отмечать, фиксировать местопребывание той или иной далекой экспедиции в малоизведанных районах земной поверхности или определять местонахождение корабля в открытом море. Широта и долгота вместе с тем служат основой любой географической карты. Долгота и широта любого места определяются при помощи астрономических наблюдений. На этих наблюдениях было основано безопасное плавание в открытых морях и океанах.

Морская миля

Координаты местонахождения корабля в открытом море определялись только путём астрономических наблюдений. Отсюда взята и величина морской мили - основной единицы измерения расстояний, пройденных кораблем. Морская миля соответствует изменению положения какого-либо светила ровно на одну минуту дуги. Для наглядности представим себе, что Солнце находится в меридиане и его наблюдают с двух кораблей. Если при этом разность высот Солнца составит одну минуту дуги, то, следовательно, расстояние между этими кораблями будет равно одной морской миле.

Наука мореходства

Отсутствие точных знаний о движении небесных тел и неумение производить астрономические наблюдения долго служили громадным препятствием для развития мореходства. Итак, возникала настойчивая необходимость совершенствовать науку мореходства и мореходную астрономию. Английский парламент в 1714 году назначил премию в 20 тысяч фунтов стерлингов тому, кто предложит метод для определения долготы места в море, хотя бы с точностью до половины градуса. Много людей работало над этим вопросом десятилетия. Заманчиво было стать автором такого важного изобретения, не менее заманчиво было получить право на столь солидную премию. Прошло более полстолетия, а задача, поставленная парламентом, всё ещё не была решена.

Метод определения долготы

Наконец, в 1770 году часовщик Арнольд предложил парламенту метод определения долготы в открытом море . Этот метод был основан на перевозке хронометров. Первые пригодные для этого хронометры были построены Гаррисоном ещё в 1744 году. Этот метод заключался в следующем. Отправляясь в море из какого-нибудь порта, долгота которого известна, пользуются правильно идущим хронометром, который показывает время отправного пункта. Находясь в открытом море, путешественники по наблюдению небесных светил определяли местное время. Из сравнения местного времени с показанием хронометра находили разность времён. Эта разность времён и является разностью долгот отправного пункта и пункта нахождения. Этим методом в 1843 году с большой точностью (до сотой доли секунды) была определена долгота Пулковской астрономической обсерватории.

Положение точки на земной поверхности

Итак, положение какой-либо точки на земной поверхности определяется долготой и широтой. Величина дуги меридиана от земного экватора до данного места определяет его широту. Величина дуги экватора от нулевого (главного) меридиана до меридиана данного места определяет его долготу. Главным, или нулевым, меридианом принято считать тот, который проходит через знаменитую Гринвичскую астрономическую обсерваторию, находящуюся в Англии, неподалёку от Лондона. Чтобы определить долготу какой-либо точки на Земле, достаточно знать показания часов в этом месте и в Гринвиче в один и тот же момент . Это основано на том, что разность показаний часов в один и тот же момент каких-нибудь двух мест равна разности долгот этих мест. Вся окружность, как известно, составляет 360 градусов, что соответствует 24 часам; одному часу соответствует 15 градусов, а одной минуте времени соответствует 1/4 градуса, или 15 минут дуги. Так, например, разность показаний часов для одного и того же момента времени в Ленинграде и Гринвиче составляет 2 часа и 1 минуту. Следовательно, Ленинград находится к востоку от Гринвича на 30 градусов и 15 минут. Или, как принято говорить, Ленинград имеет 30 градусов и 15 минут восточной долготы. Широта - дуга меридиана от земного экватора до какого-либо определённого места. Или, иначе говоря, широта точки на земной поверхности равна угловой высоте полюса над горизонтом . Поэтому для определения широты местонахождения корабля в море проводили ряд астрономических наблюдений. Эти наблюдения обычно вели при помощи угломерного инструмента, называемого секстаном . Днём при помощи этого инструмента измеряют высоту , а ночью высоту Луны, Полярной или какой-нибудь другой звезды. В связи с изобретением радио определение долготы в море производится гораздо проще.

Международная комиссия времени

Была создана специальная Международная комиссия времени , которая весь земной шар условно разделила на девять зон. Выработана специальная схема, обязательная для всех стран мира, передачи точных, так называемых ритмических, сигналов времени, основанных на наблюдениях звезд. Ритмические сигналы времени передавались несколько раз в сутки по радио с девяти наиболее мощных радиостанций в различные часы гринвичского времени. Наиболее известны из этих радиостанций были ЭйРегби в Англии и станция имени Коминтерна в Москве. Поэтому, в каком бы пункте земного шара ни находился корабль, он при помощи радио, хотя бы с одной из девяти станций, получал сигнал точного времени и, следовательно, знал показание часов для главного меридиана в данный момент. Затем при помощи астрономических наблюдений определялось точное местное время и по разности этих двух времён - долгота местонахождения корабля.

О перемещении континентов

Известный геолог Вегенер когда-то высказал предположение, что континенты постоянно несколько перемещаются . Это перемещение, по его мнению, столь значительно, что оно при помощи астрономических наблюдений может быть обнаружено через небольшой сравнительно срок. Отсюда следовало, что долгота места тоже меняется, и это изменение можно заметить на протяжении сравнительно небольшого отрезка времени. Предположение, высказанное Вегенером, вызвало большой интерес у специалистов. Комиссия из представителей Международного астрономического и Международного геодезического союзов разработала проект определения мировых долгот по радио через каждые несколько лет. Впервые это определение долгот было проведено в 1926 году. Вершинами основного полигона были избраны три группы обсерваторий. Первая группа - в Алжире (Африка), Зи-Ка-Вей (Китай) и Сан-Диего (Калифорния); вторая группа - в Гринвиче, Токио, Ванкувере и Оттаве (Канада); третья группа - Манилла (Филиппины), Гонолулу (Сандвичевы острова), Сан-Диего и Вашингтон. Эти обсерватории имели связь с рядом обсерваторий, ведущих работу по службе времени. Вместе с тем долготные наблюдения велись многими обсерваториями и временными станциями. Работа была проведена успешно. Радиосигналы принимались на огромных расстояниях. Так, например, радиосигналы станций Бордо (Франция) принимались в Америке и Австралии. Долготы определялись с исключительно высокой точностью, и ошибка замыкания основного полигона не превышала 0,007 секунды. В 1933 году это предприятие было повторено в ещё более грандиозных масштабах, а технический уровень проведенных работ был ещё выше, чем в 1926 году. В результате оказалось, что предположение, высказанное Вегенером, не вполне подтвердилось. Если и имеет место вековое смещение Америки относительно Европы, то его величина, во всяком случае, не может превышать трёх сантиметров в год. Небезынтересно, однако, отметить, что из сравнения приёма сигналов времени, проводимых систематически обсерваториями Европы и Америки, обнаружено заметное (около 18 метров) колебание долгот с периодом примерно в 11 лет, почти совпадающим с периодом солнечных пятен.