Как определяется освещенность. В чем измеряется освещенность помещения? Методика измерения освещенности и пульсаций при наличии естественного освещения

В настоящее время при огромном разнообразии светотехнических приборов у населения нет единого понятия касательного того, в чем измеряется освещенность. Нередко возникает недоразумение с такими техническими характеристиками, как сила света и яркость, люмены и канделы. Приобретая осветительные приборы, часто обращают внимание на суммарный световой поток, не учитывая потери света и тепла.

В этой статье:

Понятие освещенности

Световой поток измеряется в специальных лабораторных условиях и самопроизвольно его определить невозможно. Поэтому СНиП учитывает величину освещенности, которую, в отличие от светового потока, каждый может измерить самостоятельно. Она представляет собой показатель отношения светового потока, измеряемого в люменах, к площади поверхности, на которую попадают фотоны. Угол падения при этом должен равняться 90°. Единица измерения освещенности — люкс (lux).

Давно уже установлена зависимость психологического и физического состояний человека от света. Если при слабом освещении происходит угнетение мозговых процессов, то при ярком свете они возбуждаются. Но в любом случае сетчатка глаза и ресурсы организма изнашиваются. При проектировании осветительных приборов определяют коэффициент запаса (КЗ), который должен учитывать вероятный спад освещенности установки. Для искусственного света в показателе предусматривается уменьшение яркости по причине износа оптических компонентов устройства и их естественного загрязнения. Коэффициент естественной освещенности снижается вследствие изменения отражающих свойств окружающих предметов.

Измерение освещенности проводится на рабочих местах вместе с определением уровня загрязненности, звуковых колебаний, электромагнитного излучения, а на некоторых производствах и гамма излучения. Важность знания этих параметров трудно переоценить при создании оптимальных условий труда, и все они соответствуют санитарным правилам и нормам. Например, освещенность должна быть:

  • в рабочем кабинете — 300 лк;
  • в офисе для постоянной работы с компьютером — 500 лк;
  • для технических и конструкторских бюро — 750 лк.


При наличии в помещении естественной подсветки уровень искусственного фона можно снижать.

Приборы для определения уровня освещенности и методика его определения

Наименование прибора похоже на название величины, которую он устанавливает, — люксметр. Принцип работы малогабаритного переносного устройства напоминает работу фотометра. Поток излучения, падая на фоточувствительный элемент полупроводника, отрывает электроны, которые начинают упорядоченно двигаться. Таким образом, замыкается электрическая цепь. Причем величина тока прямо пропорциональна интенсивности освещения фотоэлемента, что имеет свое отражение на шкале аналогового люксметра. Сегодня приборы со стрелками практически исчезли, их заменили цифровые. Они оснащены жидкокристаллическими дисплеями, у которых сам фоточувствительный датчик расположен в отдельном корпусе, а с дисплеем он соединяется с помощью гибкого провода.

В ходе проведения эксперимента по измерению освещенности прибор устанавливается в горизонтальном положении. Причем в соответствии с требованиями ГОСТа их размещают в разных точках помещения, согласно определенной схеме. В 2012 г. Россия приняла новый стандарт измерения характеристики количества светового потока. В старом понятийном аппарате при измерениях использовались такие термины данной величины, как:

  • минимальная, средняя, максимальная, цилиндрическая;
  • естественная;
  • градиент запаса;
  • относительная эффективность когерентного лучевого потока.

В настоящее время к ним добавлены следующие типы освещения:

  • аварийное;
  • рабочее;
  • охранное;
  • эвакуационное;
  • резервное.

Стандарт подробно описывает все тонкости проведения измерительных исследований.

Замеры осуществляются отдельно по естественной и искусственной иллюминации. В ходе проведения эксперимента нельзя допустить, чтобы хоть малейшая тень падала на прибор, а вблизи был хотя бы 1 источник электромагнитных волн. Все они вносят помехи в работу устройства.

После выполнения необходимых замеров освещенности определяется искомая величина. Она сравнивается с нормативным значением. Затем подводятся итоги о достаточности освещенности территории или помещения. Каждый вид измерительных испытаний оформляется специальным оценочным протоколом, чего требует ГОСТ.

Измерение количества света для светодиодных устройств и примеры в природе

Светодиодные светильники стали очень востребованными благодаря уникальной энергоэффективности. Но светодиоды и их источники питания при освещении выделяют тепло, которое рассеивается с помощью теплопроводящих материалов (алюминий) и конструктивных особенностей (ребер, большой радиаторной площади). Несмотря на кажущееся отсутствие связи между потерями тепла и освещенностью, специалисты всегда учитывают ее при создании новых устройств.

Трудности с работой светодиодных светильников начинаются при эксплуатации в условии повышения температуры более +50°С. Почему измерение освещенности светодиодов и рекомендуют проводить после 2 часов их работы, т. е. после выхода на оптимальный режим. Для исключения появления погрешности проводятся неоднократные замеры в течение рабочей смены. Желательно эти исследования проводить как минимум 1 раз в год. Чтобы при проектировании исключить любые ошибки, закладывают коэффициент снижения освещенности, зависящий от физических характеристик объекта.

Обычно производители LED-устройств дают гарантию по их безупречной работе на 3 года. Все параметры функционирования таких светильников, в том числе, и освещенность, должны соответствовать заявленным значениям. Если условия работы устройств происходят при температуре наружного воздуха свыше 45°С, то измерения освещенности необходимо делать гораздо чаще. Иначе неправильное проектирование и полученные результаты приведут к быстрому падению показателей освещения.

Что касается примеров иллюминации в природе, то на орбите Земли и экваторе в полдень данная величина равняется 135 тыс. люкс. В солнечный день она составляет до 100 тыс. лк, в пасмурный — только 1 тыс. люкс, а вот от Луны всего лишь 0,2 лк. Измерение света на улице на широте Москвы в зимний период показало от 4 до 5 тыс. люкс. В безлунную ночь освещенность в тысячу раз меньше, чем в полнолуние, а при 10-бальной облачности — в 10 тыс. раз меньше. То, в чем измеряется освещенность в помещении и естественных условиях, относится к физическим величинам, входящим в Международную систему единиц.

Люксметр Ю-116 предназначен для измерения освещенности, создаваемой люминисцентными лампами, лампами накаливания и естественным светом.

Прибор состоит из измерителя (гальванометр) и селенового фотоэлемента с насадками. Принцип работы: под действием света в селеновом фотоэлементе возникает электроток, силой тока, пропорциональной силе падающего света, который регистрируется магнитно-электрическим измерителем. Показания прибора выражаются в люксах (лк).

На панели прибора имеются две шкалы (от 0 до 1 лк и от 0 до 30 лк) и две кнопки переключения диапазонов с табличкой пересчета освещенности на тип применяемой насадки. На каждой шкале точкой обозначено начало отсчета измерений: 1-й диапазон от 20 лк, 2-й диапазон от 5 лк.

На боковой стенке прибора имеется полюсная вилка для присоединения фотоэлемента. Селеновый фотоэлемент находится в пластмассовом корпусе.

Для уменьшения косинусной погрешности применяется насадка на фотоэлемент, состоящая из полусферы, выполненная из белой светорассеивающей пластмассы и непрозрачного пластмассового кольца, имеющего сложный профиль.

Насадка обозначена буквой "Н" и применяется только в сочетании с поглощающими насадками "М", "Р", "Г", каждая из этих трех насадок совместно с насадкой "К" образует три поглотителя с коэффициентом ослабления: "КМ" - в 10 раз, "КР" - в 100 раз, "КГ" - в 1 раз, что значительно расширяет диапазон измерений.

Порядок выполнения измерений:

1.Выбрать и установить поглощающие насадки (в помещении обычно начинают с насадок "КР", на улице - с насадок "КГ").

2.Подсоединить фотоэлемент к измерителю (соблюдать полярность 1).

3.Фотоэлемент поместить на исследуемую поверхность (плоскость).

4.Нажать правую кнопку и снять показания прибора по шкале 20-100

а) если стрелка находится в пределах от 0 до 20 лк, нажать левую кнопку показания по шкале 5-30 лк;

б) если стрелка находится в пределах от 0 до 5 лк необходимо перейти на насадку "КМ".



5.Отсчет показаний. Показания прибора умножаются на степень ослабления насадки и поправочный коэффициент (для ламп накаливания 1,0, для лю-минисцентных ламп ЛБ - 1,15, ЛДЦ-0,95, ЛХБ- 1,03).

Например: люминисцентные лампы белые ЛБ, показания прибора 36 лк, насадка "КР", Е = 36 х 10 х 1,15 = 414 лк.

6.Выключить прибор, отсоединить фотоэлемент, снять насадки.

Определение светотехнических показателей естественного и искусственного освещения с помощью люксметра Ю-116.

1.Определение горизонтальной освещенности естественным светом проводится в нескольких точках с наилучшими и наихудшими световыми условия­ми (у окна, в центре помещения, у внутренней стены). Высчитывается среднее значение освещенности.

2.Определение КЕО. Определяется средняя горизонтальная освещенность внутри помещения и освещенность под открытым небом. КЕО рассчитывается по формуле:

КЕО = (Е внутр / Е наруж) х 100%

3.Определение горизонтальной освещенности на рабочем месте (выполняется в темное время суток). При выполнении исследования днем необходимо определить освещенность при включенном освещении, затем при выключенном. Разница будет составлять искусственное освещение.

4.Определение коэффициента неравномерности. Определяется освещен­ность в нескольких точках на рабочей поверхности на расстоянии 0,5 м друг от друга. Освещенность должна отличаться не более чем на 30% (0,3).

5.Определение коэффициента отражения поверхности. Определяется освещенность поверхности (стена, потолок, стол и т.д.) затем фотоэлемент поворачивают на 180 градусов и определяют отраженную освещенность на расстоянии 20-30 см от поверхности.

Расчет по формуле:

Е отр.

К.отр.= х 100%

Е общ.

Определение горизонтальной освещенности источников искусственного света упрощенным методом "ватт" (по удельной мощности).

Данный метод позволяет ориентировочно оценить уровень искусственного освещения в помещении при условии равномерного размещения светильников.

Расчет основан на зависимости средней горизонтальной освещенности от суммарного светового потока всех источников и размеров помещения.

1. Удельная мощность всех источников находится по формуле:

Р = W 1 + W 2 + W N / S , ГДЕ

Р - удельная мощность, вт/м 2

S - площадь помещения, м 2

W 1 ;W 2 ….. W n - мощность отдельных источников света, вт.

2. Горизонтальная освещенность находится по формуле:

Е = Р х В , где

Е - горизонтальная освещенность, лк

Р - удельная мощность, вт/м 2

В - световая отдача источников, лм/вт (или освещенность, создаваемая лампой накаливания - лк, при удельном расходе энергии в 1 вт/м 2).

Находится по таблице № 4. (Для люминисцентных ламп В = 10 лм/вт).

Таблица № 4 Световая отдача ламп накаливания лм/вт в зависимости от мощности и типа светильника

Любой источник света является источником светового потока, и чем больший световой поток попадает на поверхность освещаемого предмета, тем лучше этот предмет видно. А физическая величина, численно равная световому потоку, падающему на единицу площади освещаемой поверхности, именуется освещенностью.

Освещенность обозначают символом Е, и находят ее значение по формуле Е = Ф/S, где Ф - световой поток, а S - площадь освещаемой поверхности. В системе СИ освещенность измеряется в Люксах (Лк), и один Люкс — это такая освещенность, при которой световой поток, попадающий на один квадратный метр освещаемого тела, равен одному Люмену. То есть 1 Люкс = 1 Люмен / 1 Кв.м.

Для примера приведем некоторые типичные значения освещенности:

    Солнечный день в средних широтах — 100000 Лк;

    Пасмурный день в средних широтах — 1000 Лк;

    Светлая комната, освещенная лучами солнца — 100 Лк;

    Искусственное освещение на улице — до 4 Лк;

    Свет ночью при полной луне — 0,2 Лк;

    Свет звездного неба темной безлунной ночью — 0,0003 Лк.

Представьте, что вы сидите в темной комнате с фонариком, и пытаетесь прочесть книгу. Для чтения нужна освещенность не меньше 30 Лк. Что вы сделаете? Во-первых, вы приблизите фонарик к книге, значит освещенность связана с расстоянием от источника света до освещаемого предмета. Во-вторых, вы расположите фонарик под прямым углом к тексту, значит освещенность зависит и от угла, под которым данная поверхность освещается. В-третьих, вы можете просто достать более мощный фонарик, поскольку очевидно, что освещенность тем больше, чем выше сила света источника.

Допустим, световой поток попадает на какой-то экран, расположенный на каком-то расстоянии от источника света. Увеличим это расстояние вдвое, тогда освещаемая часть поверхности увеличится по площади в 4 раза. Так как Е = Ф/S, то и освещенность уменьшится в целых 4 раза. То есть освещенность обратнопропорциональна квадрату расстояния от точечного источника света до освещаемого предмета.

Когда пучок света падает под прямым углом к поверхности, световой поток распределен на наименьшей площади, если же угол увеличивать, то увеличится площадь, соответственно, уменьшится освещенность.

Как было отмечено выше, освещенность напрямую связана и с силой света, и чем больше сила света, тем больше и освещенность. Экспериментально давно установлено, что освещенность прямопропорциональна силе света источника.

Конечно, освещенность уменьшается, если свету препятствует туман, дым или частички пыли, но если освещаемая поверхность расположена под прямым углом к свету источника, и свет при этом распространяется через чистый, прозрачный воздух, то освещенность определяется непосредственно по формуле Е = I / R2 , где I - сила света, а R - расстояние от источника света до освещаемого предмета.

В Америке и Англии используют единицу измерения освещенности Люмен на квадратный Фут или Фут-Кандела, в качестве единицы освещенности от источника, обладающего силой света в одну канделу, и расположенного на расстоянии в один фут от освещаемой поверхности.

Исследователи доказали, что через сетчатку человеческого глаза, свет воздействует на процессы, протекающие в мозге. По этой причине недостаточная освещенность вызывает сонливость, угнетает трудоспособность, а избыточное освещение — наоборот, возбуждает, помогает включить дополнительные ресурсы организма, однако, изнашивая их, если это происходит неоправданно.

В процессе ежедневной работы осветительных установок, возможен спад освещенности, поэтому для компенсации данного недостатка, еще на стадии проектирования осветительных установок вводят специальный коэффициент запаса. Он учитывает понижение освещенности и в процессе эксплуатации осветительных приборов из-за загрязнений, утраты отражающих и пропускающих свойств отражающих, оптических, и других элементов приборов искусственного освещения. Загрязнения поверхностей, выход из строя ламп, все эти факторы учитываются.

Для естественного освещения вводят коэффициент снижения КЕО (коэффициента естественной освещенности), ведь со временем могут загрязнится светопрозрачные заполнители световых проемов, и загрязниться отражающие поверхности помещений.

Европейский стандарт определяет нормы освещенности для разных условий, так например, если в офисе не требуется рассматривать мелкие детали, то достаточно 300 Лк, если люди работают за компьютером — рекомендуется 500 Лк, если изготавливаются и читаются чертежи — 750 Лк.

Освещенность измеряют портативным прибором - люксметром. Его принцип работы аналогичен фотометру. Свет попадает на , стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры.

Часто измерительная часть соединена с прибором гибким спиральным проводом, чтобы можно было проводить измерения в самых труднодоступных, при этом важных местах. К прибору прилагается набор светофильтров, чтобы регулировать пределы измерений с учетом коэффициентов. Согласно ГОСТу, погрешность прибора должна быть не более 10%.

При измерении соблюдают правило, согласно которому прибор должен располагаться горизонтально. Его устанавливают поочередно в каждую необходимую точку, согласно схеме ГОСТа Р 54944-2012. В ГОСТе, кроме прочего, учитываются охранное освещение, аварийное освещение, эвакуационное освещение и полуцилиндрическая освещенность, там также описан метод проведения измерений.

Измерения по искусственному и естественному проводятся отдельно, при этом важно чтобы на прибор не попадала случайная тень. На основе полученных результатов, с использованием специальных формул делается общая оценка, и принимается решение, нужно ли что-то корректировать, или освещенность помещения или территории достаточна.

Андрей Повный

Работая со светом невозможно развиваться без ежедневного изучения тенденций и новинок рынка. Одним из последних наших открытий стало приложение, благодаря которому с помощь обычного смартфона можно замерять количество света в помещении. Безусловно, с профессиональной точки зрения мы не могли остаться равнодушными к такому вызову. Немецкий Институт Прикладной Светотехники (DIAL GmbH) , в которой рассматривался именно интересовавший нас вопрос: может ли смартфон стать достойной заменой люксметру?

Люксметр против смартфона: может ли специальное приложение стать альтернативой измерительному прибору?

Если такая замена действительно себя оправдывает, то это стало бы не то чтоб революцией, но, как минимум, очень выгодным предложением. Посудите сами, люксметр - удовольствие недешевое. А вот смартфон есть практически у каждого. И специальные приложения либо бесплатные, или стоят дешево. Поскольку наша компания профессионально работает со светом, идея замера фотометрических параметров с помощью телефона нас умиляет. Но, справедливости и любопытства ради, мы решили провести эксперимент. Цель исследования: сравнение результатов работы соответствующих приложений с показателями нашего штатного люксметра.

Тестируемое оборудование

В нашем эксперименте принимали участие iphone разных серий, а также телефоны Sony, Samsung и Nokiа:

Программное обеспечение

Мы выбрали следующие приложения (большинство из них бесплатны), и установили их на каждой из систем:

Название Производитель Операционная система Возможность калибровки Цена
Galactica Luxmeter Flint Soft Ltd. iOS нет -
LightMeter by whitegoods Whitegoods iOS есть -
LuxMeterPro Advanced AM PowerSoftware iOS есть 7,99€
Luxmeter KHTSXR Android есть -
Light Meter Pro Mannoun.Net Android есть -
Lux Light Meter Geogreenapps Android есть -
Sensor List Ryder Donahue Windows Phone есть -

Для справки

Контрольное измерение произведено с помощью откалиброванного люксметра PRC Krochmann (Model 106e, специальная модель, класс А).

Используемые источники света

Для теста мы выбрали три различных источника света:

  • галогенная лампа низкого напряжения;
  • компактная люминесцентная лампа (цветовая температура 2700 K);
  • LED (цветовая температура 3000 K).

Чтоб упростить наши исследования, мы решили оставить один источник света - LED.

Условия тестирования

Испытание проходило в помещении без источников дневного или искусственного освещения. На горизонтальной поверхности мы разместили источники света. На них поочередно устанавливалась освещенность 100 лк, 500 лк и 1000 лк. Фотометрическая головка нашего люксметра была расположена перпендикулярно оси светильника. Затем, точно так же, мы размещали смартфоны с установленными приложениями. Фронтальная камера и датчик яркости находились там же, где до этого располагался фотометр.

Такое расположение подходило всем приложениям кроме платного «Luxmeter Pro Advanced», так как оно для измерения освещённости использует свет, отраженный от поверхности. В этом приложении также доступны настройки типов источника света, расстояния до него и т.д.

Некоторые приложения позволяли произвести калибровку, и, если была такая возможность, мы проводили ее в соответствии с инструкциями производителя, а именно на 100 лк.

Результаты

Во время нашего теста мы выяснили, что хотя в некоторых приложениях можно было произвести калибровку до определенного значения, определить его точно было достаточно сложно. Таким образом, или шаг был большим, либо значение в 100 лк вообще не устанавливалось (например, максимальное значение, которое удалось установить на iPhone 5 с LightMeter by whitegoods - 34 лк). Часто отклонения от контрольных значений оказывались весьма высокими (до 113% у Samsung Galaxy S5 с приложением «Lux Light Meter» от Geogreenapps). При использовании эталонна 500 лк дисплей смартфона показывал 1,063 лк. Самое низкое отклонение в 3% было на iPhone 5 с «LightMeter by whitegoods». При 500 лк этот смартфон показывал 484 лк. В то же время, мы не можем утверждать, что именно эта комбинация всегда будет приводить к наименьшим возможным отклонениям. В случае использования значения 100 лк и этого же приложения, отклонение достигало 89%, а устройство показывало 11 лк.

Также мы заметили, что отображаемые значения на устройствах от Sony, Samsung и Nokia были значительно выше эталонных, в то время, как на iPhone существенно ниже. Среднее отклонение во всех приложениях на Android-смартфонах и на телефонах с Windows Phone были приблизительно на 60% выше контрольных. Расхождение значений измеренных различными iPhone было на 60% ниже опорных.

Мы также заметили, что различные приложения, установленные на смартфонах от Samsung и Sony, показывали близкие значения. Скорее всего, в этих устройствах для измерения освещенности используется датчик яркости, а не камера.

В некоторых моделях Samsung можно переключиться в режим инженерного меню с помощью комбинации *#0*#. Выбрав пункт «Датчик света», вы можете узнать предполагаемую освещенность без установки приложения. Так что в этом случае специальная программа может и не понадобиться. Тем не менее, показатели на этих устройствах также отклонились от эталонного значения в рамках 37%-113%.

Будут ли совпадать результаты на аналогичных смартфонах с одинаковыми приложениями?

Чтобы проверить это, мы использовали 4 идентичных iPhone 5 с установленными на них приложениями «Galactica Luxmeter» и «LightMeter by whitegoods». К сожалению, нас ждало разочарование. Все четыре смартфона показали совершенно разные показатели.


Мы считаем, что причиной таких колебаний является отличие комплектующих в телефонах. Такие отклонения пользователь не замечает при повседневном использовании, но при непосредственном тестировании они заметны.

Всегда ли есть процентное отклонение от эталонного значения?

Если вы всегда используете смартфон с одним и тем же приложением, вы можете предположить, что можно достаточно точно производить замеры, зная процентное отклонение от эталонного значения. Но всегда ли этот процент одинаковый?

Для того, чтобы проверить это, мы провели измерения освещённости на 10 лк, 100 лк, 1000 лк и 10000 лк с помощью iPhone 5 размещенным на оптической скамье в черной комнате. Увеличение яркости можно очень точно задавать путем регулировки расстояния между источником света и приемником.

В качестве источника излучения снова использовался светодиодный светильник с цветовой температурой 3000 K. В этом тесте мы рассмотрели показатели двух различных приложений. Оказалось, значения разных программ отклоняются друг от друга, в некоторых случаях до 358% (12 лк до 55 лк при эталоне 100 лк). Если рассмотреть процент отклонений от эталонных значений, то никакой закономерности мы не увидим.


При использовании приложения «Galactica Luxmeter» значения были выше контрольных на 180% при 10 лк и на 50% ниже эталонных значений при 10 000 лк. «LightMeter by whitegoods» было откалиброванным на 10 лк. При опорных 100 лк отклонение составило 88% в меньшую сторону, а при 10 000 лк - 59%. Значения всех остальных приложений были так же существенно ниже контрольных, а сам процент отклонений все время менялся.

К тому же, мы обнаружили, что измерения, проведенные с помощью передней и задней камеры показывают различные значения. К тому же, некоторые приложения никогда не показывают 0 лк, даже если на камеру свет не попадает и она закрыта «заглушкой».

Заключение

Результаты доказывают, что серьезные измерения освещенности возможны только с помощью профессионального оборудования. Оно оснащено откалиброванным датчиком, гарантирующим, что оценка освещенности будет проведена в соответствии с чувствительностью человеческого глаза при дневном свете. Кроме того, приборы позволяют измерить количество света в зависимости от угла падения луча. Смартфоны не могут сделать ни того, ни другого, в противном случае они не смогут выполнять свои функции как телефон.

Разработчики приложений не утверждают, что смартфоны могут заменить профессиональные приборы. Утверждение, что некоторые приборы позволяют провести калибровку звучит эффектно, но, к сожалению, технически почти невозможно установить нужное значение. Даже при использовании одного и того же приложения на идентичных смартфонах результаты оценки отличаются.

Поэтому, к сожалению, приложения на самом деле не слишком помогают, даже в том, чтобы получить общее представление об освещенности. Более того, результат может оказаться кардинально противоположным и ввести пользователя в заблуждение.

Поэтому, если вам действительно понадобится измерить освещенность, воспользуйтесь люксметром, а телефон оставьте для звонков любимым.

Данная статья является переводом статьи Luxmeter App versus measuring device:
Are smartphones suitable for measuring illuminance?

Для смартфонов существует множество приложений, облегчающих нашу жизнь. Есть множество приложений для светотехников. Но значит ли это что можно использовать смартфон для измерения освещенности?

Мы задаемся этим вопросом все чаще и чаще, потому что выгода очевидна. Ведь такие приложения бесплатны или стоят не очень дорого. Было бы замечательно заменить люксметр, который, в зависимости от производителя и точности, стоит от 100 до 2000 евро (алиэкспресс не согласен и показывает суммы даже меньше 10 евро) , на приложение для смартфона, который и так есть почти у каждого.

Как аккредитованная светотехническая лаборатория мы можем только улыбаться идеи измерения освещенности с помощью смартфона. Тем не менее, нам показалась эта идея весьма любопытной, что и побудило нас провести эксперимент. Таким образом, мы начали искать различные приложения для различных операционных систем. Нам хотелось выяснить, насколько точно они измеряют по сравнению с люксметром из нашей лаборатории.

Аппаратное обеспечение

Для этого теста мы использовали различные модели iPhone, а также: Sony, Samsung и Nokia.

производитель

Операционная система

iPhone 5

iPhone 5с

iPhone 6

Sony Xperia Z 1

Android

Sony Xperia Z 2

Android

Samsung Galaxy S 5

Android

Nokia Lumia 925

Windows Phone


Программное обеспечение
Мы установили следующие приложения, большинство из которых бесплатны:

Программа

Разработчик

Операционная система

Возможность калибровки

Цена

Galactica Luxmeter

Flint Soft Ltd.

нет

бесплатно

LightMeter by whitegoods

Whitegoods

да

бесплатно

LuxMeterPro Advanced

AM PowerSoftware

да

7,99 €

Luxmeter

KHTSXR

Android

да

бесплатно

Light Meter Pro

Mannoun.Net

Android

да

бесплатно

Lux Light Meter

Geogreenapps

Android

да

бесплатно

Sensor List

Ryder Donahue

Windows Phone

да

бесплатно


Эталонный прибор


Мы провели контрольные измерения с помощью люксметра PRC Krochmann (Model 106e, special model, class A) И, конечно же, прибор был откалиброван.

Используемые источники света


Для этого теста мы выбрали три различных источника света:

· низковольтная галогеновая лампа

· компактная люминесцентная лампа (цветовая температура: 2700 K)

· LED (цветовая температура: 3000 K)

Что бы не усложнять статью мы оставили только LED источник.

Наша тестовая установка


Тест проходил в темном помещении без источников искусственного и естественно света. Для применяемых источников света мы устанавливали освещенность поочередно на 100 лк, 500 лк и 1000 лк (наверно всё же 2000) на горизонтальной поверхности. Для этого фотометрическая головка люксметра была расположена перпендикулярно оси светильника.

Затем, так же помешались смартфоны с различными приложениями так что бы фронтальная камера и датчик яркости находились под светильником. Датчик или фронтальная камера была расположены точно в той точки где ранее была расположена фотометрическая головка люксметра.

Так были расположены все устройства, за исключением iPhone с платным приложением «Luxmeter Pro Advanced» так как это приложение для измерения освещённости предполагает замер света, отраженного от поверхности. В этом приложении достаточно много настроек включая типы источников света, расстояние до источника света и т.д.

Так же при использовании некоторых приложений возможна калибровка. Калибровка была проведена в соответствии с инструкциями, а именно 100ЛК.

Оценка


Во время нашего теста мы выяснили, что, хотя калибровка в некоторых приложений и была возможна до определенного значения, не удалось установить значение достаточно точно. Это произошло из-за того что шаг с которым устанавливалось значение был большим, либо значение в 100лк вообще не устанавливалось, так например в приложении LightMeter by whitegoods для iPhone 5 значение для калибровки удалось установить максимум на 34лк.

Отклонения от эталонных значений порой были весьма высоки (доходило до 113% у Samsung Galaxy S5 с приложением «Lux Light Meter» от Geogreenapps). При установки эталонного значения в 500 лк на дисплее смартфона отображалось значение в 1,063 лк. Самое низкое отклонение в процентах (3%) было зафиксировано при использовании iPhone 5 и приложения « LightMeter by whitegoods» . При установки эталонного значения в 500 лк, этот смартфон показал 484 лк. Однако мы не можем сделать из этого вывод что именно данный смартфон с конкретной программой всегда будет показывать верное значение. При установки освещенности на 100лк и при использовали это же приложения на том же смартфоне отклонение достигало 89% и устройство показывало 11 лк.

Нам удалось выявить тенденцию, что отображаемые значения на устройствах от Sony, Samsung и Nokia были значительно выше эталонных значений, в то время, как правило, на iP hone отображаемые значения значительно ниже эталонных значений. Среднее отклонение от эталонного значения, измеренного во всех приложений на Android-смартфонах и на телефонах с Windows Phone , были в среднем на 60% выше эталонных значений.

Среднее отклонение всех значений, измеренных различными iPhone было на 60% ниже эталонных значений. Мы также заметили, что различные приложения, установленные на смартфонах от Samsung и Sony, показывали близкие значения. По всей видимости, что в этих моделях для измерения используется датчик яркости, а не камера.

В некоторых моделях Samsung можно переключиться в режим инженерного меню - с помощью набора с клавиатуры комбинации *#0*#. Выбрав пункт меню «Датчик света», вы можете узнать предполагаемую освещенностью без установки приложения. Так что установка приложений в данном случае будет лишним. Тем не менее, все отображаемые этими устройствами значения также отклонилась от 37% до 113% от эталонного значения. Galactica Luxmeter» и « LightMeter by whitegoods ». К сожалению, и здесь нас ждало разочарование. Диаграмма показывает, что четыре смартфона которые мы тестировали, показали в некоторых случаях совершенно разные результаты измерений.

Мы подозреваем, что причиной этих колебаний является использование отличных друг от друга компонентов, что пользователь не замечает при повседневном использовании, но что становится заметным при непосредственном сравнении.

Сохраняется ли динамика процентного отклонений от эталонного значения?

Если вы всегда используете смартфон с одним и тем же приложением, вы можете предположить, что можно достаточно точно производить замеры, если вы уже знаете, процентное отклонение от эталонного значения.

Но всегда ли одинаковый процент на которое отклоняется значение? Для того, чтобы ответить на этот вопрос, мы провели измерения освещённости на 10 лк, 100 лк, 1000 лк и 10000 лк с помощью iPhone 5 расположенным на оптической скамье в нашей черной комнате. Приращение яркости можно очень точно задавать путем регулировки расстояния между источником света и приемником. В качестве источника излучения снова использовался светодиодный источник света с цветовой температурой 3000 K.

В этом тесте мы рассмотрели показания двух различных приложений. Как показывает опыт, значения приложений отклоняются друг от друга - в некоторых случаях до 358% (значения составляют от 12 лк до 55 лк при эталоном значении 100 лк), если мы посмотрим на процентное значение отклонений от эталонных значений, то никакой закономерности мы не увидим.

При использовании приложения « Galactica Luxmeter» значения были выше 180% эталонных при 10 лк и на 50% ниже эталонных значений при 10 000 лк.

При использовании приложения « LightMeter by whitegoods » откалиброванным на 10 лк. При эталонном значении 100 отклонение составила 88% в меньшую сторону, а при 10 000 лк 59%. Значения всех остальных приложенный были так же значительно ниже. При всех остальных значениях показания были так же ниже.

Совершенно случайно мы обнаружили, что измерения проведенные с помощью передний и задней камеры показывают различные значения. В дополнение к этому, некоторые приложения никогда не показывают 0 лк, даже если на камеру не попадает никакой свет, и она закрыта «заглушкой».

Заключение

Результаты доказывают, что серьезные измерения освещенности возможны только с помощью профессионального оборудования. Оно оснащено откалиброванным датчиком, который гарантирует, что оценка освещенности будет проведена в соответствии с чувствительность человеческого глаза.

Кроме того, приборы позволяют провести оценку освещенности в зависимости от угла падения луча. Смартфоны не могут сделать ни того, ни другого, так как в противном случае они не смогут выполнять свои функции.

Несмотря на то что разработчики утверждают, что они могут заменить профессиональные приборы, поскольку в их приложениях есть различные умные функции типа калибровки, но колибровка не позволяет установить точные значения. А если это и возможно, то все равно возникают отклонения при измерениях. Даже при использовании одного и того же приложения и идентичных смартфонов получаются разные результаты измерений.

Поэтому, к сожалению, приложения на самом деле бесполезны – даже просто для того что бы получить общее представление о освещенности.

from Thomas Pittner and Jaqueline Goldschmidtabout