Как перевести в 10 систему счисления. Системы счисления

В данной статье я расскажу основы компьютерной техники - это двоичная система. Это самый низкий уровень, это числа по которым работает компьютер. И вы узнаете как переводить из одной системы

Таблица 1 - Представление чисел в различных системах
исчисление (начало)

Системы счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

двоично-десятичная

Для того чтобы перевести из десятичной в двоичную, можно использовать два варианта.

1) К примеру число 37 нужно перевести из десятичной системы в двоичную, то нужно его делить на два, а затем проверять остаток от деления. Если остаток нечетный, то в низу мы подписывает единицу и следующий цикл деления идет через четное число, если останок от деления четный, то пишим ноль. На конце обязательно должна получиться 1. А теперь полученный результат мы преобразуем в двоичный, причем число идет справа на лево.

Пошагово: 37 - это число нечетное, значит 1 , затем 36/2 = 18. Число четное, значит 0 . 18/2 = 9 число нечетное, значит 1 , затем 8/2 = 4. Число четное, зачит 0 . 4/2 = 2, число четное значит 0 , 2/2 = 1 .

Итак, мы получили число. Не забудьте счет идет справа налево: 100101 - вот мы получили число в двоичной системе. А вообще это записывается в виде деления в столбик, как вы видите ниже на рисунке:

2) Но есть второй способ. Он мне больше нравиться. Перевод из одной системы в другую идет в следующем виде:

где ai - i-я цифра числа;
k - количество цифр в дробной части числа;
m - количество цифр в целой части числа;
N - основание системы исчисления.

Основание системы счисления N показывает, во сколько раз "вес" i-го разряда больше "веса" (i-1) разряда. Целая часть числа отделяется от дробной части точкой (запятой).

Целая часть числа AN1, с основой N1, переводится в систему счисления с основанием N2 путем последовательного деления целой части числа AN1 на записанную в виде числа с основанием N1 основу N2, до получения остатка.Полученная доля снова делится на основание N2, и этот процесс необходимо повторять, пока частица не станет меньше делителя. Полученные остатки от деления и последняя часть записываются в порядке, обратном полученном при делении. Сформированное число и будет целым числом с основанием N2.

Дробная часть числа AN1, с основой N1, переводится в систему счисления с основанием N2 путем последовательного умножения дробной части числа AN1 на основание N2, записанную в виде числа с основанием N1. При каждом умножении целая часть произведения берется в виде очередной цифры соответствующего разряда, а дробная часть оставшейся принимается за новую умножений. Число умножений определяет разрядность полученного результата, представляющий дробную часть числа AN1 в системе счисления N2. Дробная часть числа при переводе часто представляется неточно.

Давайте это сделаем на примере:

Перевод с десятичной в двоичную

37 в десятичной нужно перевести в двоичную. Давайте поработаем со степенями:

2 0 = 1
2 1 = 2
2 2 = 4
2 3 = 8
2 4 = 16
2 5 = 32
2 6 = 64
2 7 = 128
2 8 = 256
2 9 = 512
2 10 = 1024 и так далее... до бесконечности

Значит: 37 - 32 = 5. 5 - 4 = 1. Ответ следующий в двоичной системе: 100101.

Давайте переведем число 658 из десятичной в двоичную:

658-512=146
146-128=18
18-16=2. В двоичной системе число будет иметь вид: 1010010010.

Перевод с десятичной в восмеричную

Если вам надо перевести с десятичной в восьмеричную, необходимо сначала перевести в двоичную, а затем с двоичной перевести в восьмеричную. То есть так проще, хотя можно и сразу перевести. По алгоритму подобному как в переводе в двоичную, см. выше.

Перевод с десятичной в шестнадцатеричной

Если вам надо перевести с десятичной в шестнадцатеричную, необходимо сначала перевести в двоичную, а затем с двоичной перевести в шестнадцатеричную. То есть так проще, хотя можно и сразу перевести. По алгоритму подобному как в переводе в двоичную, см. выше.

Перевод с двоичной в восмеричную

Чтобы перевести число из двоичной в восьмиричную систему нужно двоичное разбить по три числа.

К примеру полученное число 1010010010 разбивает по три числа, причем разбивка идет справа налево: 1 010 010 010 = 1222. Смотрите таблицу в самом начале.

Перевод с двоичной в шестнадцатеричную

Чтобы перевести число из двоичной в шестнадцатеричное, надо разбить на тетрады (по четыре)

10 1001 0010 = 292

Привожу несколько примеров, для того, чтобы вы просмотрели:

Перевод осуществляется из двоичной в восьмиричную, затем в шестнадцатеричную, а затем из двоичной десятичную

(2) = 11101110
(8) = 11 101 110 = 276
(16) = 1110 1110 = EE
(10) = 1*128+ 1*64+ 1*32+ 0 +1*8 + 1*4 + 1*2+ 0= 238
3) (8) = 657

Перевод осуществляется из шестнадцатеричной в двоичную, затем в восьмиричную, а затем из двоичной десятичную

(16) = 6E8
(2) = 110 1110 1000
(8) = 11 011 101 000 = 2250
(10) = 1*1024+1*512+ 0 +1*128+ 1*64+ 1*32+ 8 = 1768

Запишите число в двоичной системе счисления, а степени двойки справа налево. Например, мы хотим преобразовать двоичное число 10011011 2 в десятичное. Сначала запишем его. Затем запишем степени двойки справа налево. Начнем с 2 0 , что равно "1". Увеличиваем степень на единицу для каждого следующего числа. Останавливаемся, когда число элементов в списке равно числу цифр в двоичном числе. Наше число для примера, 10011011, включает в себя восемь цифр, поэтому список из восьми элементов будет выглядеть так: 128, 64, 32, 16, 8, 4, 2, 1

Запишите цифры двоичного числа под соответствующими степенями двойки. Теперь просто запишите 10011011 под числами 128, 64, 32, 16, 8, 4, 2, и 1, с тем чтобы каждая двоичная цифра соответствовала своей степени двойки. Самая правая "1" двоичного числа должна соответствовать самой правой "1" из степеней двоек, и так далее. Если вам удобнее, вы можете записать двоичное число над степенями двойки. Самое важное – чтобы они соответствовали друг другу.

Соедините цифры в двоичном числе с соответствующими степенями двойки. Нарисуйте линии (справа налево), которые соединяют каждую последующую цифру двоичного числа со степенью двойки, находящейся над ней. Начните построение линий с соединения первой цифры двоичного числа с первой степенью двойки над ней. Затем нарисуйте линию от второй цифры двоичного числа ко второй степени двойки. Продолжайте соединять каждую цифру с соответствующей степенью двойки. Это поможет вам визуально увидеть связь между двумя различными наборами чисел.

Запишите конечное значение каждой степени двойки. Пройдитесь по каждой цифре двоичного числа. Если эта цифра 1, запишите соответствующую степень двойки под цифрой. Если эта цифра 0, запишите под цифрой 0.

  • Так как "1" соответствует "1", она остается "1". Так как "2" соответствует "1", она остается "2". Так как "4" соответствует "0", она становится "0". Так как "8" соответствует "1", она становится "8", и так как "16" соответствует "1" она становится "16". "32" соответствует "0" и становится "0", "64" соответствует "0" и поэтому становится "0", в то время как "128" соответствует "1" и становится 128.
  • Сложите получившиеся значения. Теперь сложите получившиеся под линией цифры. Вот что вы должны сделать: 128 + 0 + 0 + 16 + 8 + 0 + 2 + 1 = 155. Это десятичный эквивалент двоичного числа 10011011.

    Запишите ответ вместе с нижним индексом, равным системе счисления. Теперь все, что вам осталось сделать – это записать 155 10 , чтобы показать, что вы работаете с десятичным ответом, который оперирует степенями десятки. Чем больше вы будете преобразовывать двоичные числа в десятичные, тем проще вам будет запомнить степени двойки, и тем быстрее вы сможете выполнять данную задачу.

  • Используйте данный метод, чтобы преобразовать двоичное число с десятичной точкой в десятичную форму. Вы можете использовать данный метод даже если вы хотите преобразовать двоичное число, такое как 1.1 2 в десятичное. Все, что вам необходимо знать – это то, что число в левой части десятичного числа – это обычное число, а число в правой части десятичного числа – это число "делений надвое", или 1 x (1/2).

    • "1" слева от десятичного числа соответствует 2 0 , или 1. 1 справа от десятичного числа соответствует 2 -1 , или.5. Сложите 1 и.5 и вы получите 1.5, которое является эквивалентом 1.1 2 в десятичном виде.
  • Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

    епозиционные системы счисления.

    Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

    К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

    I 1 (один)
    V 5 (пять)
    X 10 (десять)
    L 50 (пятьдесят)
    C 100 (сто)
    D 500 (пятьсот)
    M 1000 (тысяча)

    Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

    IL 49 (50-1=49)
    VI 6 (5+1=6)
    XXI 21 (10+10+1=21)
    MI 1001 (1000+1=1001)

    озиционные системы счисления.

    Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

    Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

    Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

      Например:
    • Двоичная - позиционная система счисления с основанием 2.
    • Четверичная - позиционная система счисления с основанием 4.
    • Пятиричная - позиционная система счисления с основанием 5.
    • Восьмеричная - позиционная система счисления с основанием 8.
    • Шестнадцатиричная - позиционная система счисления с основанием 16.

    Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

    10 с/с 2 с/с 8 с/с 16 с/с
    0 0 0 0
    1 1 1 1
    2 10 2 2
    3 11 3 3
    4 100 4 4
    5 101 5 5
    6 110 6 6
    7 111 7 7
    8 1000 10 8
    9 1001 11 9
    10 1010 12 A
    11 1011 13 B
    12 1100 14 C
    13 1101 15 D
    14 1110 16 E
    15 1111 17 F
    16 10000 20 10

    Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

    К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

    Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

    Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

    Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

    равила перевода из одной системы счисления в другую.

    1 Перевод целых десятичных чисел в любую другую систему счисления.

    Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

    Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


    Таким образом, 173 10 =255 8

    2 Перевод правильных десятичных дробей в любую другую систему счисления.

    Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

    Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

    Результат уже получен!

    Системы счисления

    Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

    Тогда число 6372 можно представить в следующем виде:

    6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

    Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

    Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

    Тогда число 1287.923 можно представить в виде:

    1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

    В общем случае формулу можно представить в следующем виде:

    Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

    где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

    Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

    Таблица 1
    Система счисления
    10 2 8 16
    0 0 0 0
    1 1 1 1
    2 10 2 2
    3 11 3 3
    4 100 4 4
    5 101 5 5
    6 110 6 6
    7 111 7 7
    8 1000 10 8
    9 1001 11 9
    10 1010 12 A
    11 1011 13 B
    12 1100 14 C
    13 1101 15 D
    14 1110 16 E
    15 1111 17 F

    Перевод чисел из одной системы счисления в другую

    Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

    Перевод чисел из любой системы счисления в десятичную систему счисления

    С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

    Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

    1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

    Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

    Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

    Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

    Перевод чисел из десятичной системы счисления в другую систему счисления

    Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

    Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

    Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

    159 2
    158 79 2
    1 78 39 2
    1 38 19 2
    1 18 9 2
    1 8 4 2
    1 4 2 2
    0 2 1
    0

    Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

    159 10 =10011111 2 .

    Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

    615 8
    608 76 8
    7 72 9 8
    4 8 1
    1

    При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

    615 10 =1147 8 .

    Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

    19673 16
    19664 1229 16
    9 1216 76 16
    13 64 4
    12

    Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

    Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

    Рассмотрим вышеизложенное на примерах.

    Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

    0.214
    x 2
    0 0.428
    x 2
    0 0.856
    x 2
    1 0.712
    x 2
    1 0.424
    x 2
    0 0.848
    x 2
    1 0.696
    x 2
    1 0.392

    Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

    Следовательно можно записать:

    0.214 10 =0.0011011 2 .

    Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

    0.125
    x 2
    0 0.25
    x 2
    0 0.5
    x 2
    1 0.0

    Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

    0.125 10 =0.001 2 .

    Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

    0.214
    x 16
    3 0.424
    x 16
    6 0.784
    x 16
    12 0.544
    x 16
    8 0.704
    x 16
    11 0.264
    x 16
    4 0.224

    Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

    0.214 10 =0.36C8B4 16 .

    Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

    0.512
    x 8
    4 0.096
    x 8
    0 0.768
    x 8
    6 0.144
    x 8
    1 0.152
    x 8
    1 0.216
    x 8
    1 0.728

    Получили:

    0.512 10 =0.406111 8 .

    Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

    159.125 10 =10011111.001 2 .

    Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

    Замечание 1

    Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

    Правила перевода чисел из любой системы счисления в десятичную

    В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

      При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

      $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

    Рисунок 1. Таблица 1

    Пример 1

    Число $11110101_2$ перевести в десятичную систему счисления.

    Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

    $11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

      Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

      $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

    Рисунок 2. Таблица 2

    Пример 2

    Число $75013_8$ перевести в десятичную систему счисления.

    Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

    $75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

      Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

      $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

    Рисунок 3. Таблица 3

    Пример 3

    Число $FFA2_{16}$ перевести в десятичную систему счисления.

    Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

    $FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

    Правила перевода чисел из десятичной системы счисления в другую

    • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

    Пример 4

    Число $22_{10}$ перевести в двоичную систему счисления.

    Решение:

    Рисунок 4.

    $22_{10} = 10110_2$

    • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

    Пример 5

    Число $571_{10}$ перевести в восьмеричную систему счисления.

    Решение:

    Рисунок 5.

    $571_{10} = 1073_8$

    • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

    Пример 6

    Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

    Решение:

    Рисунок 6.

    $7467_{10} = 1D2B_{16}$

      Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

      Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

      В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

    Правила перевода чисел из двоичной системы счисления в другую

    • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

    Рисунок 7. Таблица 4

    Пример 7

    Число $1001011_2$ перевести в восьмеричную систему счисления.

    Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

    $001 001 011_2 = 113_8$

    • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

    cddiski.ru - Ответы на вопросы. Лайфхаки и обзоры новинок