Как работает пульт дистанционного управления. Универсальный пульт для телевизора, как настроить

И пр. аудио- видеотехникой).

Энциклопедичный YouTube

  • 1 / 5

    Один из самых ранних образцов устройств для дистанционного управления придумал Никола Тесла в 1898 году . Механизм был запатентован и описан в Method of and Apparatus for Controlling Mechanism of Moving Vehicle or Vehicles . В 1898 году на электровыставке в Медисон-сквер-гарден он демонстрировал публике радиоуправляемую лодку под названием «телеавтомат» .

    Первый пульт ДУ для управления телевизором был разработан Юджином Полли , сотрудником американской компании Zenith Radio Corporation в начале 1950-х годов . Он был соединён с телевизором кабелем . В 1955 году был разработан беспроводной пульт Flashmatic , основанный на посылании луча света в направлении фотоэлемента . К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.

    К началу 2000-х годов количество бытовых электроприборов резко возросло. Для управления домашним кинотеатром может потребоваться пять-шесть пультов: от спутникового приёмника, видеомагнитофона, DVD-проигрывателя, телевизионного и звукового усилителя. Некоторые из них требуется использовать друг за другом, и, из-за разобщённости систем управления, это становится обременительным. Многие специалисты, включая известного специалиста по юзабилити Jakob Nielsen и изобретателя современного пульта ДУ Роберта Адлера, отмечают, сколь запутанно и неуклюже использование нескольких пультов.

    Появление КПК с инфракрасным портом позволило создавать универсальные пульты ДУ с программируемым управлением. Однако в силу высокой стоимости этот метод не стал слишком распространён. Не стали широко распространёнными и специальные универсальные обучаемые пульты управления в силу относительной сложности программирования и использования. Также возможно использование некоторых мобильных телефонов для дистанционного управления (по каналу Bluetooth) персональным компьютером.

    Типы ПДУ

    Пульты дистанционного управления различаются по:

    Питанию :

    • автономное;
    • получаемое по кабелю (проводу).

    Мобильности :

    • встроенный (стационарный);
    • носимый.

    Функциональности :

    • с фиксированным набором команд;
    • с переключаемым набором команд (универсальный);
    • с обучением набору команд (обучаемый).

    Каналу связи :

    • механический;

    Применение

    ПДУ используются для дистанционного управления бытовой электронной аппаратурой (телевизорами, муз. центрами, аудио- и видеопроигрывателями и тп.). Миниатюрные пульты ДУ имеют автомобильные сигнализации . Есть пульты ДУ и для управления роботами , авиамоделями и пр. Системами ДУ бывают оборудованы даже храмы . Вообще - пульт ДУ может быть применён в любом устройстве, имеющем электронное управление.

    ПДУ бытовой аппаратуры

    ПДУ для бытовой электронной аппаратуры обычно представляет собой небольшое устройство с кнопками , с питанием от батареек , посылающее команды посредством инфракрасного излучения с длиной волны 0,75-1,4 микрон . Этот свет невидим для человеческого глаза , но распознаётся приёмником принимающего устройства. В большинстве ПДУ применяется одна специализированная микросхема , корпусная либо бескорпусная (помещенная прямо на печатную плату и залитая компаундом для предотвращения повреждения).

    Ранее на пульт ДУ выносились только основные функции аппарата (переключение каналов , управления громкостью и т. п.), сейчас большинство образцов современной бытовой электроники на самом корпусе имеют ограниченный набор средств управления и полный набор их на пульте ДУ.

    Первым пультам для передачи одной функции, команды (одноканальный ПДУ, с одной кнопкой) было достаточно наличия/отсутствия самого передаваемого сигнала. Но и то только в том случае, если он передавался по помехозащищённому каналу (например, проводу), в противном случае внешние помехи (лучи Солнца и т. п.) приводили к ложному срабатыванию. Первые беспроводные ПДУ использовали ультразвуковой канал связи.

    Для пультов с несколькими функциями необходима более сложная система - частотная модуляция несущего сигнала (она применяется и для создания помехозащищённости канала) и кодирование передаваемых команд. Сейчас для этого используется цифровая обработка - микросхема передатчика (в пульте) модулирует и кодирует передаваемый сигнал, в приёмнике происходит его демодуляция и декодирование. После демодуляции полученного сигнала применяются соответствующие частотные фильтры для разделения сигналов.

    Для считывания кода нажатой кнопки обычно применяется метод сканирования линий матрицы кнопок (аналогичный метод применяется в компьютерных клавиатурах), но в пультах ДУ бытовой техники использование непрерывного сканирования требовало бы затрат энергии и батарейки бы быстро садились. Поэтому в режиме ожидания все линии сканирования устанавливаются в одинаковое состояние и процессор пульта переводится в режим «засыпания», отключая тактовый генератор и практически не потребляя энергию. При нажатии любой кнопки на входных линиях сканирования изменяется логический уровень, что вызывает «просыпание» процессора и запуск тактового генератора. После чего запускается полный цикл сканирования клавиатуры для определения вызвавшей просыпание кнопки. Метод «одна кнопка - одна линия» обычно не используется по причине большого числа кнопок на современных пультах ДУ. После определения нажатой кнопки пульт формирует посылку, содержащую код пульта и код кнопки.

    Бытовые пульты ДУ не имеют обратной связи , это означает, что пульт не может определить, достиг ли сигнал приёмника или нет. Поэтому сигнал, соответствующий нажатой кнопке, передаётся непрерывно до тех пор, пока кнопка не будет отпущена. При отпускании кнопки пульт переходит обратно в дежурное состояние.

    На приёмной стороне (например в телевизоре) принимаются данные: проверяется код пульта, и, если этот код соответствует заданному, выполняется команда, соответствующая нажатой кнопке. Передатчик и приёмник (пульта и аппарата) должны использовать одинаковые методы кодирования и частоту модуляции передаваемых данных, в противном случае приёмник окажется неспособен принять и обработать посланные ему данные.

    Модуляция

    Обычно в пультах используется одна частота модуляции несущей (то есть частоты излучения ИК-светодиода) - на неё настроен и пульт, и приёмник. Частоты модуляции обычно стандартны - это 36 кГц , 38 кГц, 40 кГц (Panasonic , Sony). Редкими считаются частоты 56 кГц (Sharp). Фирма Bang & Olufsen использует 455 кГц, что является большой редкостью. Использование приёмника с частотой модуляции, не точно совпадающего с частотой передатчика, не означает, что он не будет принимать - приём останется, но его чувствительность может очень сильно упасть.

    Передача сигнала осуществляется излучением ИК-светодиода с соответствующей частотой модуляции. Для частот от 30 до 50 кГц обычно используются светодиоды с длиной волны 950 нм, а для 455 кГц - специальные светодиоды с длиной волны 870 нм (на эту длину волны и высокую частоту модуляции ориентированы специализированные приёмники TSOP5700 и TSOP7000).

    Несколько таких модулированных передач и гашений (пачек импульсов ) формируют кодированную посылку (см. ниже). Приёмник ИК-сигнала состоит из нескольких каскадов усилителей и демодулятора (частотного детектора) и чувствителен к сигналу до −90 дБ (большинство радиолюбительских схем имеют чувствительность до −60 дБ). Также практически все производимые серийно ИК-приёмники имеют ИК-светофильтр (тёмно-красная линза или пластина). Сам модуль ИК-приёмника имеет всего три вывода: Питание , Земля , Выход данных .
    Пример фотоприёмников: TSOP1736 - настроен на частоту 36 кГц, TSOP1738 - 38 кГц (производитель Vishay Telefunken), BRM1020 - 38 кГц.
    Для приёма сигнала от пульта ДУ также существует демодулятор без встроенного ИК фотоприёмника - микросхема фирмы Sony CXA1511, по своей сути - высококачественный частотный детектор, позволяющий сделать пульт, например, на УФ-излучателях, а не на светодиодах ИК-диапазона.

    Кодирование

    Для распознавания множества различных команд пульта применяется кодирование передаваемых данных. Сейчас преимущественно используются следующие две схемы кодирования передаваемых данных:

    • Первая в пультах ДУ стала применяться фирмой Philips (протоколы RC4 и RC5, т. н. Манчестерское кодирование): Передача 0 дополнялась единицей, а передача 1 - нулём. То есть 001 передается как 01 01 10. Соответственно посылка считывается последовательно, и в эфир подаётся модулированный сигнал только когда встречается единица.
    • Авторство второй схемы кодирования приписывается фирме Sony. Сначала всегда передаётся «1» модулированным сигналом, затем «0» - пауза. Временной размер единицы всегда одинаковый, а временной размер 0 - это кодированные передаваемые данные. Длинная пауза - передача единицы, короткая пауза - передача нуля.

    Перед посылкой кодированных данных пульт всегда посылает одну или несколько синхропосылок для того, чтобы фотоприёмник настроил приёмную цепь (синхронизировался с пультом по чувствительности и фазе).

    • Протоколы RC5, Sony SIRC, Panasonic, JVC, Daewoo (англ.)

    Производители пультов не склонны придерживаться каких-либо общих стандартных протоколов кодирования данных и вправе разрабатывать и применять для своей техники всё новые и новые протоколы. Более полный список протоколов: NEC (repetitive pulse), NEC (repetitive data), RC5, RC6, RCMM, RECS-80, R-2000 (33 кГц), Thomson RCA (56,7 кГц), Toshiba Micom Format (similar NEC), Sony 12 Bit, Sony 15 Bit, Sony 20 Bit, Kaseikyo Matsushita (36,7 кГц), Mitsubishi (38 кГц, preburst 8 ms, 16 bit), Ruwido r-map, Ruwido r-step, Continuous transmission 4000 bps и Continuous transmission 1000 bps.

    Питание

    Бытовые пульты ДУ обычно питаются от 2-4 батареек типоразмера или AAA (реже от батарейки 9 В типа «Крона»). Это связано с тем, что для питания инфракрасного светодиода необходимо не менее 2,0-2,5 Вольта, и от одной батарейки (1,5 В) такого напряжения без усложнения схемы не получить. Для пультов рекомендуется покупать обыкновенные солевые или щелочные (Alkaline) батарейки, они прослужат дольше - дело в том, что аналогичные (типоразмера AA или AAA) аккумуляторы могут разрядиться уже за полгода только из-за высокого тока саморазряда у них, к тому же длительный срок эксплуатации одной зарядки не окупит стоимость аккумулятора.

    Неисправности беспроводных пультов ДУ

    • севшие батарейки (самая частая неисправность);
    • пульт залит какой-либо жидкостью и кнопки либо западают, либо не отпускаются;
    • от удара отвалился (или повреждён) кварцевый резонатор либо ИК-светодиод;
    • от частого использования проводящее напыление на самих кнопках (либо проводники под кнопками) истирается;
    • грязь от рук, попадающая внутрь пульта и скапливающаяся с течением времени.

    Наличие сигнала с пульта можно проверить, посмотрев на него через видеокамеру или цифровой фотоаппарат, при этом нажимая на пульте кнопки. ПЗС-матрицы бытовой фото- и видеоаппаратуры обычно видят инфракрасный диапазон.
    Также часто можно услышать сигналы, модулируемые инфракрасной несущей пульта, рядом со средневолновым радиоприёмником , не настроенным на станцию.

    Потеря или поломка ПДУ от телевизора - малоприятное событие. Если нет возможности восстановить или найти старый пульт, придется купить новый. Предварительно важно разобраться, как правильно подобать девайс к конкретной модели телевизора. В продаже присутствуют различные типы пультов, разница в стоимости которых может отличаться в 10 раз. Как определить какой именно пульт полноценно может заменить оригинальный? Разобраться с этим помогут советы и рекомендации по поиску и подбору.

    Выбор пульта в соответствии с маркировкой

    Каждый ПДУ, поставляемый в комплекте с , имеет свою маркировку. В зависимости от его устройства, найти ее можно:

    • на задней крышке корпуса;
    • на лицевой стороне корпуса;
    • под крышкой отсека для батареек.

    Внимание! Значение маркировки пульта не соответствует данному параметру телевизора, даже если они из одного комплекта. Поэтому, важно найти именно маркировку пульта.

    Случается, что маркировка на корпусе истерлась. В таком случае, стоит найти руководство к эксплуатации техники и найти информацию там. После обнаружения этих данных, остается пойти в специализированный магазин и купить соответствующее устройство.

    Выбор пульта методом подбора

    В случае, если пульт к утерян и нет шансов узнать его точную маркировку, можно прибегнуть к альтернативному способу подбора. Следует взять несколько пультов от других телевизоров, позаимствовав их у знакомых. Проверить различные пульты, на совместимость с конкретным телевизором. Данный метод основан на схожести микросхем, используемых в ПДУ разных марок. Вполне вероятно, что найдется прибор, полностью соответствующий телевизору. Если такой найден, следует просто купить аналогичный девайс.

    Также, можно ориентироваться на внешний вид прибора. Выбрать в каталоге или среди ассортимента в магазине визуально похожий. При этом следует уточнить у консультанта соответствие конкретной марке.

    Совет. Важно проверить все ли команды выполняет пульт.

    Купить универсальный пульт к телевизору

    В случаях, когда предыдущие методы, по какой-либо причине, реализовать не возможно, остается третий вариант - купить универсальный ПДУ. Принцип работы такого девайса основан на считывании и воспроизведении сигнала управляемого телевизора. Память ПДУ содержит несколько типов сигналов, что позволяет ему успешно взаимодействовать не с одной, а с многими моделями.

    Универсальные пульты многофункциональны имеют ряд преимуществ, перед специализированными:


    Оригинальные и не оригинальные пульты

    Выбирая ПДУ, приходится сталкиваться с понятиями оригинальности и не оригинальности устройства. К первой категории относятся пульты:

    • сделанные с соблюдением технологии производства;
    • под контролем качества;
    • поставляются в комплекте с телевизорами.

    Отличаются высоким качеством. Срок их действия может быть 7 лет и более. Недостатком является высокая стоимость, при необходимости замены. Также оригинальные модели имеют свойства терять актуальность. Для тех моделей телевизоров, которые вышли из производства, прекращают выпускать и комплектующие, в том числе ПДУ. Таким образом, спустя 10-15 лет, после покупки техники, оригинальные ПДУ или исчезают из продажи или продаются по очень завышенной цене.

    Ко второй категории относятся устройства, максимально похожие на оригинал. Однако, качество пластика и сборки платы, может быть не на высоком уровне. В зависимости от марки, такой ПДУ может прослужить от 1 года и более. Существенное преимущества такого девайса - стоимость. Учитывая, что с каждым годом технологии совершенствуются и качество таких ПДУ улучшается, все больше потребителей склонны выбирать именно аналоги, а не оригинальные устройства.

    При покупке ПДУ, не всегда следует ориентироваться на популярные модели. Такой выбор может оказаться просто красивым, но дорогостоящим дополнением к технике. Бюджетные модели, в большинстве случаев, обладают достаточной функциональностью.

    На что еще нужно обратить внимание, для правильной покупки:

    • характеристики устройства;
    • ширину диапазона действия;
    • возможность автоматизации;
    • наличие обучающего режима;
    • внешний вид и практичность (эти параметры можно оценить не только в магазине, но и после обзора видео и фото материалов о модели);
    • стоимость.

    Выбрать и купить ПДУ - задача не всегда простая. Если известен номер и марка девайса, вероятность быстро найти замену весьма велика. В иных случаях, придется приложить усилия для поиска подходящего устройства. В любом случае, всегда можно сделать выбор в пользу универсального устройства.

    Как отремонтировать пульт от телевизора: видео

    Современная стационарная и портативная бытовая аппаратура- фотоаппараты, видеокамеры, кондиционеры, телевизоры, музыкальные центры, домашние кинотеатры и др. для удобства, может управляться на расстоянии при помощи встроенных в технику систем дистанционного управления (СДУ). Небольшое распространение получили система беспроводного дистанционного управления на инфракрасных лучах принцип работы которой мы и рассмотрим в материале данной статьи.

    Подробно и детально рассмотреть вопрос как работает система беспроводного дистанционного управления на инфракрасных лучах нам поможет СДУ-15 которая использовалась в телевизорах 3го поколения 3УСЦТ. Ознакомиться с принципом работы пульта ду более современных моделей бытовой техники можно на странице - http://www.xn--b1agveejs.su/bytovoi-tehniki/statyi/250-pdu-saa1250.html

    СДУ-15 - система беспроводного дистанционного управления на инфракрасных лучах

    В состав системы дистанционного управления советских телевизоров 3го поколения 3УСЦТ входит автономный пульт управления ПДУ-15, а также приемник инфракрасного излучения ПИ-5 и модуль дистанционного управления, МДУ-15, встроенные в телевизор.

    Система ДУ позволяет переключать телевизионные программы, регулировать яркость, контрастность и насыщенность изображения, а также изменять громкость звукового сопровождения, включать и выключать телевизор. Время регулировок от минимального до максимального значения (или наоборот) не превышает 12 секунд.

    Управление телевизором можно осуществлять с расстояния от 0,3 до 6 метров. Угол действия системы ДУ в горизонтальной и вертикальной плоскостях составляет ±30°, а угол зрения приемника в горизонтальной плоскости ±45°.

    На пульте управления передаваемые команды кодируются и модулируются в короткие импульсы инфракрасного (ИК) излучения. Команды поступают на приемник, откуда после соответствующей обработки - на модуль дистанционного управления. С модуля ДУ команды для переключения программ поступают на УСУ-1-15-1, а для выполнения оперативных регулировок - на блок управления.

    Для возможности включения и выключения телевизора с пульта ДУ его переводят в дежурный режим нажатием кнопки «Сеть». При этом напряжение сети поступает только на модуль СДУ-15. Указание о работе телевизора в дежурном режиме высвечивается индикатором на передней панели. Телевизор переводится в рабочий режим нажатием любой из восьми кнопок выбора программ на пульте ДУ или кнопки включения телевизора на передней панели. Нажатие кнопки 2 вызывает срабатывание реле в модуле ДУ, и через его контакты напряжение сети поступает на плату фильтра и импульсный блока питания телевизора 3УСЦТ .

    Пульт дистанционного управления ПДУ-15 для телевизоров 3УСЦТ, схема и принцип работы


    Рис. 2 Принципиальная схема пульта дистанционного управления ПДУ-15

    Пульт дистанционного управления ПДУ-15 предназначен для формирования в соответствии с командами управления электрических сигналов, их усиление и излучение в виде модулированных импульсов инфракрасного излучения. Короткие импульсы ифнракрасного излучения продолжительностью 10 мкс модулируются двоичным кодом таким образом, что интервал времени между их излучением меняется. Так логическому 0 (напряжению низкого уровня) соответствует основной интервал времени Т (например, Т = 100 мкс), а логической 1 (напряжение высокого уровня) - 2Т.


    Рис. 3.

    Требуемая информация, в соответствии с командой управления передается одиннадцатью импульсами (рис. 3). Кроме того, каждый сигнал системы ДУ содержит в своем составе запускающий и останавливающий импульсы. Временной интервал между первым и вторым равен ЗТ, между запускающим и первым информационным импульсом Т. Пять импульсов отводятся для передачи адреса и шесть - для передачи команды. Очевидно, что после нажатия соответствующей кнопки на пульте ДУ в зависимости от передаваемого адреса и команды длительность интервалов, Т или 2Т, будет изменяться. За последним информационным импульсом после интервала ЗТ следует останавливающий импульс. В пульте управления используется специально разработанная для этой цели ИС типа КР1506ХЛ1 (рис. 2). Работа ИС определяется тактовым генератором, частота импульсов которого задается внешними элементами R1, С1, подсоединенными между ее выводами 2 и 3. Резистор R2 уменьшает влияние, оказываемое колебаниями питающего напряжения на частоту генератора. Постоянную времени цепи R2, С1 выбирают в зависимости от частоты используемого в ПДУ-15 кварцевого резонатора.

    При нажатии одной из кнопок (S1 - S16) на пульте ДУ происходит подключение одного из выводов 10, 13, 15 к одному из выводов 16-23 ИС. Каждое такое соединение формирует в ИС определенную команду, т. е. последовательность импульсов, которые появляются на ее выводе 5 (см. таблицу ниже).

    Кнопка
    ПДУ
    Код
    данных
    Выполняемая функция Соединяемый
    вывод ИС
    S1 000001 Выключение питания 15-22
    S2 000011 Установка рабочих значений яркости и насыщенности 15-20
    S3 010000 Включение 1 программы/включение питания 13-23
    S4 010001 Включение 2 программы/включение питания 13-22
    S5 010010 Включение 3 программы/включение питания 13-21
    S6 010011 Включение 4 программы/включение питания 13-20
    S7 010100 Включение 5 программы/включение питания 13-19
    S8 010101 Включение 6 программы/включение питания 13-18
    S9 010110 Включение 7 программы/включение питания 13-17
    S10 010111 Включение 8 программы/включение питания 13-16
    S11 101000 Увеличение яркости 10-23
    S12 101001 Уменьшение яркости 10-22
    S13 101100 Увеличение насыщенности 10-19
    S14 101101 Уменьшение насыщенности 10-18
    S15 101110 Увеличение громкости 10-17
    S16 101111 Уменьшение громкости 10-16

    Кроме ИC D1 и кнопок S1 и S16 в цепи ее управляющих входов ПДУ-15 содержит усилитель мощности на транзисторах VT1, VT3, VT4, нагруженный диодами ИК излучения VD3 - VD5, и удвоитель напряжения на ключевом транзисторе VT2. Необходимость применения усилителя мощности вызывается тем, что выходной каскад ИC D1 способен отдавать в нагрузку ток не более 10 мА, а для получения требуемой дальности действия через излучающие диоды VD3 - VD5 необходим ток около 1 А.

    Характерной особенностью усилителя является то, что в отсутствие входного сигнала все его транзисторы закрыты. Ток, потребляемый усилителем в этом случае, определяется только токами утечки конденсаторов С2 и СЗ и не превышает 50 мкА. Это позволило отказаться от применения выключателя питания. Пока командные кнопки S1 - S16 не нажаты и в паузах между импульсами конденсаторы С2, СЗ заряжаются до напряжения, близкого к напряжению батареи G1 (9 В), соответственно через резисторы R4 и R8. При этом транзисторный ключ VT2 закрыт поданным через резисторы R4 и R5 на его базу положительным напряжением. При нажатии одной из кнопок на пульте ДУ положительные импульсы с вывода 5 ИС поступают на базу эмиттерного повторителя VT1 и открывают его. Это, в свою очередь, вызывает открывание транзистора VT3, на базу которого поступают положительные импульсы с эмиттера VT1.

    С эмиттера транзистора VT3 снимается положительный сигнал для управления источником тока, а с коллектора - отрицательный импульс для управления ключом VT2. Транзисторный ключ открывается, и конденсаторы С2 и СЗ оказываются подключенными последовательно через эмиттерный и коллекторный переходы VT2. В результате к выходному каскаду на транзисторе VT4 прикладывается почти удвоенное напряжение источника питания.

    Диод VD2 препятствует разрядке конденсатора СЗ через источник питания и резистор R4. Транзистор VT3 совместно со стабилитроном VD1 образует источник постоянного тока, рассчитанный на ток нагрузки в 1 А. При этом ток через диоды практически не зависит от разброса падения напряжения на них и от состояния батареи, что позволяет поддерживать постоянной мощность излучения.

    Рис. 4. Внешний вид пульта ДУ:

    1 - излучатель инфракрасных лучей; 2 - кнопки выбора программ и включения телевизора (8 шт.); 3 - кнопки регулировки громкости; 4 - кнопки регулировки яркости; 5 - кнопки регулировки насыщенности; 6 - кнопка «Норм» установки насыщенности и яркости в среднее положение; 7 - кнопка выключения телевизора (перевода в дежурный режим); 8 - крышка отсека питания.


    Рис. 5.

    Принципиальная схема приемника показана на рис. 5. Для приема инфракрасных сигналов используется фотодиод VD1 - фотогальванический приемник, обладающий односторонней проводимостью при воздействии на него лучистой энергии. Он представляет собой полупроводниковый приемник, состоящий из трех чередующихся областей проводимости p-n-p. База служит приемной площадкой излучения. При облучении фотодиода модулированным инфракрасным лучом через него протекает ток, совпадающий по форме с сигналом ИК излучения.

    Электрический сигнал усиливается предварительным усилителем на транзисторах VT2 - VT5. Транзистор VT1 является динамической нагрузкой фотодиода и предназначен для подавления постоянного фона окружающего излучения, создаваемого работой ламп накаливания, люминесцентных ламп и т. п.

    С коллектора транзистора VT1 электрический сигнал поступает на первый каскад - эмиттерный повторитель VT2, режим которого задается элементами R2, R5, VT1. Усиленный по току сигнал с эмиттера транзистора VT2 поступает в базу транзистора VT3 - второго каскада, усиливается по напряжению, инвертируется и поступает на третий каскад усилителя VT4. Режимы второго и третьего каскадов по постоянному току определяются резисторами R7, R4, R3 и RIO, R9, а по переменному току - резисторами R7, R6 и R10 соответственно. Коллекторными нагрузками каскадов служат резисторы R8 и R11.

    С эмиттера транзистора VT3 снимается сигнал отрицательной частотно-зависимой обратной связи для подавления фона окружающего излучения. Напряжение низкочастотного фона выделяется фильтром нижних частот R7, С2, R6 и R4, CI, R3 и поступает на базу инвертора VT1. Резистор R1 задает режим транзистора VT1 по току.

    Выделенный на нагрузке третьего каскада - резисторе R11 - импульсный кодовый сигнал через разделительный конденсатор С4 поступает на ограничитель VT5, VD2, необходимый для селекции сигнала на фоне шумов и помех с амплитудой ниже пороговой. С нагрузки транзистора VT5 - резистора R13 - усиленный инвертированный сигнал через контакт 3 соединителя XI подается в блок дистанционного управления А30.2. Резистор R12 служит для закрывания транзистора VT5 в отсутствие сигнала, а диод VD2 - для температурной стабилизации напряжения на его коллекторе.

    Модуль дистанционного управления МДУ-15


    Рис. 6. Принципиальная схема модуля дистанционного управления МДУ-15. (В знаменателе приведены напряжения при отсутствии команды.)

    С выхода приемника инфракрасного излучения сигнал через контакты 3 соединителей XI (АЗО.З) и Х2 модуля МДУ-15 поступает на вывод 16 микросхемы ИС D1 типа КР1506ХЛ2.

    Генерирование тактовой частоты производится кварцевым резонатором BQ1, включенным между выводом 23 микросхемы КР1506ХЛ2 и положительным полюсом источника питания. Четыре цифроаналоговых преобразователя (ЦАП) в КР1506ХЛ2 (DA1 - DA4) вырабатывают на выводах 2-5 ИС напряжение прямоугольной формы частотой примерно 17,3 кГц, скважность которого изменяется (скважность прямоугольных импульсов - отношение периода к длительности импульсов, а ступени - пределы изменения скважности). Выходы 2, 4, 5 ЦАП используются для управления уровнями яркости, насыщенности, громкости.

    При подаче команд увеличения или уменьшения уровня яркости, насыщенности или громкости начинает изменяться скважность напряжения прямоугольной формы на соответствующем выводе DA1, DA3, DA4 (выводы 2, 4, 5) ИС (см. осциллограммы 8а, 86, 8в на рис. 7). Полный цикл изменения скважности происходит примерно за 12 с. С вывода 2 ИС D1 при нажатой кнопке 11 или 12 на пульте ДУ (см. схему МДУ-15) через делитель R3, R7 импульсное напряжение поступает на RC фильтр R12C5 и далее - на вход операционного усилителя - вывод 2 И С D4. С выхода усилителя (вывод 13 ИС D4) окончательно сформированный сигнал через резистор R23, контакт 6 соединителей Х6 и Х7(А30), контакты кнопки S2 в блоке управления БУ-3-1, контакт 1 соединителя Х5 (А2) поступает в цепь управления яркостью модуля цветности.

    С вывода 4 ИС D1 (при нажатых кнопках S13 или S14 на пульте ДУ) через делитель R4, R14 импульсное напряжение поступает на RC фильтр R15, С6 и далее - на вход операционного усилителя - вывод 6 ИС D4. С выхода усилителя (вывод 9 ИС) окончательно сформированный сигнал через резистор R24, контакт 7 соединителя Х6 и Х7 (АЗО), контакты кнопки S2 в блоке управления, контакт 2 соединителя Х5 (А2) подается в цепь управления насыщенностью модуля цветности.

    С вывода 5 ИС D1 (при нажатых кнопках S15 или S16 на пульте ДУ) сигнал через делитель R5, R8, С7, контакт 1 соединителей Х6 и Х7(А30), контакты 13, 14 кнопки S2 в блоке управления, контакт 6 соединителя Х9(А1) поступает в цепь управления громкостью модуля радиоканала телевизора.

    Интегральная микросхема D4 типа К157УД2 предназначена для согласования большого выходного сопротивления ИС D1 с нагрузкой в цепях регулировки яркости и насыщенности. При подаче напряжения питания на ИС D1 внутренние ЦАП 1-4 устанавливаются в положение (см. осциллограмму 86 на рис. 7), которое соответствует среднему значению яркости и насыщенности.

    Команды переключения программ - нажатие кнопок S3 - S10 на пульте ДУ приводят к появлению на выводах 8-10 ИС D1 (выходы PA, РВ, PC регистра кода номера программы) импульсов напряжения, которые подаются на управляющие входы А0, A1, А2 (выводы И, 10, 9) ИС D2 типа К561КП2 (см. таблицу).

    Номер программы Напряжение на выводе, В
    8 (РА) 9 (РВ) 10 (РС)
    1 0 0 0
    2 12 0 0
    3 0 12 0
    4 12 12 0
    5 0 0 12
    6 12 0 12
    7 0 12 12
    8 12 12 12

    В зависимости от кода, т.е. комбинации этих импульсов, на соответствующем выходе ИС D2 появляется импульс напряжения 12 В, который через соединитель X1 (А10.Х2) поступает на устройство УСУ-1-15-1 и включает выбранную программу. При подаче питания в момент включения СДУ регистр кода номера программы находится в исходном состоянии и включается первая программа.

    Система ДУ для своей работы использует автономные источники питания: 9 вольтовую батарею типа "Крона" на пульте ДУ и стабилизированный выпрямитель в модуле МДУ-15, состоящий из элементов T1, VD1, СЗ, D3, R19, VD2, С11, С12. При включении напряжения сети кнопкой S1 на пульте ДУ телевизор переводится в дежурный режим. Напряжение сети через замкнутые контакты кнопки S1 в блоке управления А9, контакты 1, 3 соединителей Х17(А30) и Х4 (А9) поступает на первичную обмотку (выводы 1, 2) трансформатора Т1. Напряжение, снимаемое со вторичной обмотки (выводы 3, 4) трансформатора, выпрямляется блоком кремниевых диодов VD1, сглаживается конденсатором СЗ и подается на стабилизатор напряжения 12 В, выполненный на элементах D3 типа КР142ЕН8Б, R19, VD2. Соединение вывода 8 микросхемы стабилизатора напряжения D3 с корпусом позволяет получить двухполярный источник напряжений: 12 В и - 6,2 В. Стабилитрон VD2 обеспечивает получение стабилизированного напряжения - 6,2 В, резистор R19 определяет номинальный ток стабилитрона VD2. Конденсаторы С11, С12 устраняют возбуждение стабилизатора.

    Для управления устройством включения и выключения телевизора в дежурном режиме используется внутренний триггер ИС D1 (вывод 19). Включение телевизора осуществляется одним из двух способов, при каждом из которых триггер N (вывод 19) переводится в такое состояние, чтобы на выводе 19 ИС установилось напряжение 12 В. Первый способ - подача с пульта ДУ любой из восьми команд выбора программ; второй способ - нажатие кнопки S4 («Включение телевизора» на блоке управления). При втором способе на выводе 19 ИС D1 появляется напряжение 12 В на время не менее 10 секунд. Подсоединение источника 12 В к выводу 19 ИС D1 производится по цепи: вывод 2 ИС D3, контакты 4 соединителей Х5 и Х5 (АЗО.З), контакты 2 и 3 кнопки S4 в БУ, контакты 3 соединителей Х5 (АЗО.З) и Х5, резистор R27, контакт 19 ИС D1. Положительное напряжение с вывода 19 И С D1 через цепь R27, R29 поступает на базу транзистора VT4 и открывает его. Через обмотку реле KV1.2, включенного в коллекторную цепь этого транзистора, начинает протекать ток. Контакты реле KV1.2 замыкают цепь подачи сетевого напряжения на плату фильтра питания А12 блока питания телевизоров 3УСЦТ .

    При подаче команды на выключение телевизора нажатием кнопки S1 на пульте ДУ триггер N в ИС D1 опрокидывается, и на его выходе (вывод 19 ИС) устанавливается отрицательное напряжение, которое, поступая через резисторы R27, R29 на базу транзистора VT4, закрывает его. Ток через обмотку реле KV1 прекращается, контакты реле размыкаются и отключают напряжение сети от контактов соединителя Х7(А12). Телевизор выключается (переводится в дежурный режим).

    Для индикации работы устройства ДУ используется одновибратор, собранный на транзисторах VT2, VT3. В дежурном режиме после включения напряжения сети транзистор VT2 закрыт, так как потенциал его базы ниже потенциала на эмиттере, а транзистор VT3 открыт. Транзистор VT3 замыкает цепь: источник 12 В, резистор R26, переход коллектор-эмиттер транзистора VT3, диод VD3, контакт 10 соединителя Х6 (А9) и Х7(А30), индикаторный светодиод HL3 в блоке управления А9, корпус. Свечение индикатора HL3 в БУ сигнализирует, что телевизор находится в дежурном режиме.

    При включении телевизора транзистор VT4 открывается, потенциал на его коллекторе становится близким к нулю и опрокидывает одновибратор: транзистор VT2 открывается, a VT3 закрывается, индикатор HL3 на БУ не светится.

    Любая команда, переданная пультом ДУ и поступившая на ИС D1, появляется на выводе 17 ИС D1 в виде последовательности отрицательных импульсов (см. осциллограмму 7 на рис. 10.8), которые с делителя R17, R22 поступают на вход запуска одновибратора - базу транзистора VT2. Первый же отрицательный импульс опрокидывает одновибратор, при этом транзистор VT2 закрывается, VT3 открывается, замыкая цепь питания индикатора HL3 на БУ. Длительность импульса одновибратора задается цепью положительной обратной связи С10, R18 совместно с входным делителем R17, R22 и равна 1/16 с. Одновибратор работает все время, пока с вывода 17 ИС D1 на базу VT2 поступают отрицательные импульсы, т. е. пока нажата любая кнопка на пульте ДУ. Этим обеспечивается прерывистое свечение индикатора HL3.

    С эмиттерной цепи одновибратора через резистор R21 сигналы управления поступают на базу транзистора VT1, который совместно с элементами R16, R4 образует интегратор, предназначенный для поддерживания нулевого потенциала на входе V (выводе 6) ИС D2 во время подачи команд ДУ. Когда команды ДУ не подаются, транзистор VT1 закрыт и на входе микросхемы устанавливается положительный потенциал зарядки конденсатора С4 через R16, что позволяет переключать программы вручную с передней панели телевизора.

    Рис. 7. Форма импульсов и осциллограммы на элементах системы ДУ. (Осциллограммы 2-5 приведены при нажатии кнопки S3 при приеме первой программы; осциллограмма 8 приведена для трех уровней.)

    Пульт ДУ для бытовой электронной аппаратуры обычно представляет собой небольшое устройство с кнопками, и питанием от батареек, посылающее команды посредством инфракрасного излучения с длиной волны 0,75-1,4 микрон. Этот спектр невидим для человеческого глаза, но распознаётся приёмником принимающего устройства. В большинстве ПДУ применяется одна специализированная микросхема-формирователь команд с кварцевым резонатором, корпусная либо бескорпусная (помещенная прямо на печатную плату и залитая компаундом, для предотвращения повреждения), усилитель сигналов, состоящий из одного или двух транзисторов, и излучающий диод (или два) ИК диапазона. Дополнительно в некоторых ПДУ еще устанавливают светодиод для индикации посылки команд.


    Схема пульта EUR51971 для ТВ.

    Схема пульта IP-Q 1 на Микросхеме SAA /7 со своим протоколом команд (количество 448), разработаны фирмой Thomson при содействии Philips, эти телевизоры можно отнести к группе Saba T6301/FF345. ТС342/365/440/460, Telefunken Chassis 418A, FB-180, Thomson Chassis ICC7.


    Во всем мире для бытовой радиоаппаратуры наибольшее распространение получила система ДУ RC-5. Эта система была разработана фирмой Philips для нужд управления бытовой аппаратурой и используется во многих телевизорах. Для пультов ДУ выпускается специализированная микросхема передатчика SAA3010 (ПО «Интеграл» выпускает аналог INA3010 ). Применение специализированной микросхемы передатчика резко уменьшает необходимое количество компонентов, и позволяет поместить ИК передатчик в корпус небольшого размера. Кроме того, в таких микросхемах решен вопрос низкого потребления в режиме ожидания, что делает эксплуатацию пульта очень удобной: нет необходимости в отдельном выключателе питания. Схема переходит в активный режим при нажатии любой кнопки и возвращается в режим микропотребления при ее отпускании. В настоящее время разными производителями выпускается большое количество модификаций пультов ДУ RC-5, причем некоторые модели имеют, вполне приличный дизайн. Промышленные пульты, как правило, предназначены для управления телевизорами. Поэтому они используют систему 0 кода RC-5. Совсем несложно перейти на другой номер системы, и тогда взаимное влияние разных пультов будет исключено.

    Когда мы нажимаем кнопку пульта, микросхема передатчика активизируется и генерирует последовательность импульсов, которые имеют заполнение частотой 36 КГц. Светодиоды преобразуют эти сигналы в ИК-излучение. Излученный сигнал принимается фотодиодом, который снова преобразует ИК-излучение в электрические импульсы. Эти импульсы усиливаются и демодулируются микросхемой приемника. Затем они подаются на декодер. Декодирование обычно осуществляется программно с помощью микроконтроллера. Код RC5 поддерживает 2048 команд. Эти команды составляют 32 группы (системы) по 64 команды в каждой. Каждая система используется для управления определенным устройством, таким как телевизор, видеомагнитофон и т.д. Одной из наиболее распространенных микросхем передатчика является микросхема SAA3010. Микросхема передатчика SAA3010 допускает питание напряжением +5V .

    · Напряжение питания – 2...7V

    · Потребляемый ток в ждущем режиме – не более 10 мка

    · Максимальный выходной ток - ±10 мА

    · Максимальная тактовая частота – 450 КГц

    Структурная схема микросхемы SAA3010 показана на рисунке 1.

    Рисунок 1. Структура ИС SAA3010.

    Описание выводов микросхемы SAA3010 приведено в таблице:

    Обозначение

    Входные линии матрицы кнопок

    Вход выбора режима работы

    Входные линии матрицы кнопок

    Модулированные выходные данные

    Выходные данные

    Выходы сканирования

    Выходы сканирования

    Вход генератора

    Тестовый вход 2

    Тестовый вход 1

    Входные линии матрицы кнопок

    Напряжение питания

    Микросхема передатчика является основой пульта дистанционного управления. На практике один и тот же пульт может использоваться для управления несколькими устройствами. Микросхема может адресовать 32 системы в двух различных режимах: комбинированном и в режиме одной системы. В комбинированном режиме сначала выбирается система, а затем команда. Номер выбранной системы (адресный код) хранится в специальном регистре и происходит передача команды, относящейся к этой системе. Таким образом, для передачи любой команды требуется последовательное нажатие двух кнопок. Это не совсем удобно и оправдано только при работе одновременно с большим количеством систем. На практике передатчик чаще используется в режиме одной системы. При этом вместо матрицы кнопок выбора системы монтируется перемычка, которая и определяет номер системы. В этом режиме для передачи любой команды требуется нажатие только одной кнопки. Применив переключатель, можно работать с несколькими системами. И в этом случае для передачи команды требуется нажатие только одной кнопки. Передаваемая команда будет относиться к той системе, которая в данное время выбрана с помощью переключателя.

    Для включения комбинированного режима на вывод передатчика SSM (Single System Mode ) нужно подать низкий уровень. В этом режиме микросхема передатчика работает следующим образом: во время покоя X и Z-линии передатчика находятся в состоянии высокого уровня с помощью внутренних p-канальных подтягивающих транзисторов. Когда нажата кнопка в матрице X-DR или Z-DR, запускается цикл подавления дребезга клавиатуры. Если кнопка замкнута на протяжении 18 тактов, фиксируется сигнал "разрешение генератора". В конце цикла подавления дребезга DR-выходы выключаются и запускаются два цикла сканирования, включающие по очереди каждый выход DR. В первом цикле сканирования обнаруживается Z-адрес, во втором - X-адрес. Когда Z-вход (матрица системы) или X-вход (матрица команды) обнаруживается в состоянии нуля, происходит фиксация адреса. При нажатии кнопки в матрице системы передается последняя команда (т.е. все биты команды равны единице) в выбираемой системе. Эта команда передается до тех пор, пока кнопка выбора системы не будет отпущена. При нажатии кнопки в матрице команды передается команда вместе с адресом системы, хранимом в регистре-фиксаторе. Если кнопка отпущена до начала передачи, происходит сброс. Если же передача началась, то независимо от состояния кнопки, она будет выполнена полностью. Если одновременно нажато более одной Z или X кнопки, то генератор не запускается.

    Для включения режима одной системы на выводе SSM должен быть высокий уровень, а адрес системы должен быть задан соответствующей перемычкой или переключателем. В этом режиме во время покоя X-линии передатчика находятся в состоянии высокого уровня. В то же время Z-линии выключены для предотвращения потребления тока. В первом из двух циклов сканирования определяется адрес системы и сохраняется в регистре-фиксаторе. Во втором цикле определяется номер команды. Эта команда передается вместе с адресом системы, хранимом в регистре-фиксаторе. Если нет перемычки Z-DR, то никакие коды не передаются.

    Если кнопка была отпущена между посылками кода, то происходит сброс. Если кнопка была отпущена во время процедуры подавления дребезга или во время сканирования матрицы, но до обнаружения нажатия кнопки, то также происходит сброс. Выходы DR0 – DR7 имеют открытый сток, в состоянии покоя транзисторы открыты.

    В коде RC-5 имеется дополнительный управляющий бит, который инвертируется при каждом отпускании кнопки. Этот бит информирует декодер о том, удерживается кнопка или произошло новое нажатие. Бит управления инвертируется только после полностью завершенной посылки. Циклы сканирования производятся перед каждой посылкой, поэтому даже если во время передачи посылки сменить нажатую кнопку на другую, все равно номер системы и команды будут переданы правильно.

    Вывод OSC представляет собой вход/выход 1-выводного генератора и предназначен для подключения керамического резонатора на частоту 432 КГц. Последовательно с резонатором рекомендуется включать резистор сопротивлением 6,8 Ком.

    Тестовые входы TP1 и TP2 в нормальном режиме работы должны быть соединены с землей. При высоком логическом уровне на TP1 повышается частота сканирования, а при высоком уровне на TP2 – частота работы сдвигового регистра.

    В состоянии покоя выходы DATA и MDATA находятся в Z-состоянии. Генерируемая передатчиком на выходе MDATA последовательность импульсов имеет заполнение частотой 36 кГц (1/12 частоты тактового генератора) со скважностью 25%. На выходе DATA генерируется такая же последовательность, но без заполнения. Этот выход используется в том случае, когда микросхема передатчика выполняет функции контроллера встроенной клавиатуры. Сигнал на выходе DATA полностью идентичен сигналу на выходе микросхемы приемника дистанционного управления (но в отличие от приемника он не имеет инверсии). Оба этих сигнала могут обрабатываться одним и тем же декодером.

    Передатчик генерирует 14-битное слово данных, формат которого следующий:

    · 2 стартовых бита.

    · 1 управляющий бит.

    · 5 бит адреса системы.

    · 6 бит команды.

    Рисунок 2. Формат слова данных кода RC-5.

    Стартовые биты предназначены для установки АРУ в IC приемника. Управляющий бит является признаком нового нажатия. Длительность такта составляет 1.778 мс. Пока кнопка остается нажатой, слово данных передается с интервалом 64 такта, т.е. 113.778 мс (рис. 2). Для обеспечения хорошей помехоустойчивости применяется двухфазное кодирование (рис. 3).

    Рисунок 3. Кодирование «0» и «1» в коде RC-5.

    При использовании кода RC-5 может понадобиться вычислить средний потребляемый ток. Сделать это достаточно просто, если воспользоваться рис. 4, где показана подробная структура посылки.

    Рисунок 4. Подробная структура посылки RC-5.

    Для обеспечения одинакового реагирования оборудования на команды RC-5, коды распределены вполне определенным образом. Такая стандартизация позволяет конструировать передатчики, позволяющие управлять различными устройствами. С одними и теми же кодами команд для одинаковых функций в разных устройствах передатчик с относительно небольшим числом кнопок одновременно может управлять, например, аудиокомплексом , телевизором и видеомагнитофоном.

    Номера систем для некоторых видов бытовой аппаратуры приведены ниже:

    0 - Телевизор (TV)
    2 - Телетекст
    3 - Видеоданные
    4 - Видеопроигрыватель (VLP)
    5 - Кассетный видеомагнитофон (VCR)
    8 - Видео тюнер (Sat.TV )
    9 - Видеокамера
    16 - Аудио предусилитель
    17 - Тюнер
    18 - Магнитофон
    20 - Компакт-проигрыватель (CD)
    21 - Проигрыватель (LP)
    29 - Освещение

    Остальные номера систем зарезервированы для будущей стандартизации или для экспериментального использования. Стандартизировано также соответствие некоторых кодов команд и функций.

    Коды команд для некоторых функций приведены ниже:

    0-9 - Цифровые величины 0-9
    12 - Дежурный режим
    15 - Дисплей
    13 - mute
    16 - громкость +
    17 - громкость -
    30 - поиск вперед
    31 - поиск назад
    45 - выброс
    48 - пауза
    50 - перемотка назад
    51 - перемотка вперед
    53 - воспроизведение
    54 – стоп
    55 - запись

    Для того чтобы на основе микросхемы передатчика получить законченный пульт ИК ДУ, необходим еще драйвер светодиода, который способен обеспечивать большой импульсный ток. Современные светодиоды работают в пультах ДУ при импульсных токах около 1А.

    Драйвер светодиода очень удобно строить на низкопороговом (logic level ) МОП-транзисторе , например, КП505А.

    Пример принципиальной схемы пульта приведен на рис. 5.

    Рисунок 5. Принципиальная схема пульта RC-5.

    Номер системы задается перемычкой между выводами Zi и DRj .

    Номер системы при этом будет следующим: SYS = 8i + j

    Код команды, который будет передаваться при нажатии кнопки, которая замыкает линию Xi с линией DRj , вычисляется следующим образом: COM = 8i + j


    Часто встречающиеся неисправности.

    Неисправности беспроводных пультов ДУ

    • севшие батарейки (самая частая неисправность);
    • пульт залит какой-либо жидкостью и кнопки либо западают, либо не отпускаются;
    • от удара отвалился (или повреждён) кварцевый резонатор либо ИК-светодиод;
    • от частого использования проводящее напыление на самих кнопках (либо проводники под кнопками) истирается;
    • грязь от рук, попадающая внутрь пульта и скапливающаяся с течением времени.


    Отсутствует сигнал с ПДУ.

    Сначала проверяют исправность элементов питания. Если напряжение на элементе менее 1,3V , его необходимо заменить. Амперметром измеряют ток "короткого замыкания" элемента. Если он меньше 300 мА, элемент также необходимо заменить.

    Проверить работоспособность ПДУ можно любым фотодиодом ИК диапазона. Под действием ИК излучения на выводах фотодиода появляется напряжение, которое регистрируют осциллографом. Фотодиод располагают напротив окошка ПДУ. При нажатии кнопок пульта на осциллографе должны появиться импульсы размахом 0,2...0,5V .

    Проверка пульта без специальных средств.
    Можно, включить приёмник на диапазон "AM" и нажав кнопку на пульте, поднести близко к приёмнику, из динамика будут отчётливо слышны звуки (пакетов импульсов)
    Другой простой способ, с помощью которого можно проверить работоспособность пульта дистанционного управления заключается в следующем: включаем на мобильном телефоне камеру, направляем ПДУ на камеру и нажимаем любую кнопку, если пульт исправен на дисплее телефона будет видно свечение инфракрасного излучателя.

    Если сигнал отсутствует, пульт неисправен. Его вскрывают. Эта операция требует определенных навыков и аккуратности, чтобы не оставить царапин на корпусе и не сломать защелки.

    Осматривают печатную плату, и контакты клавиатуры следы высохшей жидкости в виде белесого налета удаляют с печатной платы и контактного поля ватным тампоном, смоченным спиртом. Трещины на печатных проводниках устраняют, напаивая сверху перемычки из луженого провода.

    Контролируют качество паек, и отсутствие обрыва выводов деталей в первую очередь это касается излучающего ИК диода и кварцевого резонатора. Затем проверяют режимы работы.

    Измеряют напряжение питания (обычно +3V ) на микросхеме. Осциллографом контролируют работу генератора при замыкании пары контактов кнопок. Если генерация отсутствует, проверяют постоянное напряжение +1...1.5V на кварцевом резонаторе. Если напряжение имеется, заменяют резонаторы. В случае отсутствия постоянного напряжения проверяют исправность микросхемы (заменой).

    При наличии генерации возможны следующие неисправности:

    1. Появление утечки в одной из пар контактов клавиатуры. Проверяют омметром. Сопротивление между контактами исправной пары должно быть не менее 100 кОм. В ином случае контакты протирают ватным тампоном, смоченным спиртом.

    2. Возникла утечка с графитовых перемычек на печатные проводники, проходящие под перемычками. Для поиска неисправности поочередно отпаивают выводы микросхемы, соединенные с контактами клавиатуры. Если при отпайке очередного вывода генерация прекратилась, проверяют цепи, подходящие к этому выводу. Печатный проводник, находящийся под графитовой перемычкой, обрезают с обеих сторон и восстанавливают отрезком изолированного провода.

    3. Попадание пыли, грязи, частиц олова и канифоли между выводами микросхемы. Кисточкой с жестким ворсом и спиртом промывают плату между выводами.

    4.Дефект микросхемы. Если после отпайки ее выводов сопротивление пары контактов возросло до нормы, неисправна микросхема. Её необходимо заменить.

    Сигнал с ПДУ отсутствует, на выходе микросхемы импульсный сигнал имеется.

    1. Отсутствует напряжение питания усилителя.

    2. Неисправен один из транзисторов усилителя или диод ИК излучения.

    Поиск неисправности начинают с проверки осциллографом наличия импульсного сигнала на катоде диода ИК излучения. Если сигнал отсутствует, а постоянное напряжение равно нулю, проверяют исправность диода. Если он исправен, и имеется постоянное напряжение, но сигнал отсутствует, проверяют прохождение сигнала с выхода микросхемы до диода ИК излучения, исправность транзисторов, наличие напряжения питания.

    Наиболее часто встречаются дефекты: неисправность выходного транзистора усилителя, нарушение паек выводов элементов.

    Сигнал с ПДУ отсутствует. На диоде ИК излучения присутствует постоянное напряжение. Происходит быстрая разрядка элементов питания.

    Характер неисправности указывает на то, что диод ИК излучения постоянно открыт, через него протекает значитель­ный ток, приводящий к разрядке эле­ментов.

    Возможные причины неисправности:

    Пробой одного из транзисторов усилителя. Проверяют омметром.

    Наличие двух или более пар замк­нутых контактов клавиатуры. Проверяют омметром.

    Дефектна микросхема. Проверяют заменой.

    При не нажатых кнопках клавиатуры с ПДУ постоянно поступает команда.

    Возможные причины неисправно­сти:

    1. Уменьшение сопротивления изоляции между выводами микросхемы или контактами контактного поля. Устраняют промывкой спиртом.

    2. Утечка с графитовой перемычки на печатный проводник, проходящий под ней. Дефектный проводник с обоих концов обрезают и припаивают сверху отрезок изолированного провода.

    3.Дефектна микросхема. Проверяют заменой.

    С ПДУ не поступает одна или несколько команд.

    Причиной дефекта может быть увеличение сопротивления замыкающих контактов клавиатуры, грязь на контакт ном поле, трещины на плате, неисправность микросхемы.

    Омметром проверяют сопротивление контактов из токопроводящей резины на клавиатуре. У исправных контактов оно должно находиться в пределах от 2 до 5 кОм. Если сопротивление превышает 10кОм, контакты неисправны. Прежде чем менять "резину" целиком, можно попытаться восстановить неисправные контакты. Для этого резиновую клавиатуру вначале очищают от грязи, для чего промывают ее под струей горячей воды с мылом и щеткой. Затем неисправный контакт прикладывают к листу писчей бумаги и с небольшим усилием проводят по нему. За счет шероховатости бумаги с контакта снимается тонкий слой грязи и окислов. Возможно использование мелкозернистой наждачной бумаги.

    Другой способ восстановления работоспособности состоит в наклеивании на неисправные контакты кружков из токопроводящей резины. Они входят в специальные ремонтные комплекты для ПДУ, имеющиеся в продаже. Неплохие результаты дает наклеивание кружков из металлической фольги (от сигарет). Фольга на бумажной основе обеспечивает надежное клеевое соединение с резиной. Разрывы на проводниках устраняют напаиванием перемычек. Трещины на контактном поле устраняют нанесением слоя токопроводящего клея (имеется в продаже).

    ПДУ команду излучает, однако телевизор на нее не реагирует. Телевизор исправен.

    Возможные причины неисправности: дефект кварцевого резонатора или микросхемы.

    Проверяют заменой.

    Распространенные микросхемы П ДУ

    8U5800

    М3005А8

    М708

    RC005HC

    SAF1039

    U327

    С LA 3117

    M3006LAB

    М709

    SAA1 124

    SKC5401

    UM400

    DMC6003

    М50115

    М710

    SAA1 250

    SL490

    mPD660

    DYC-R02

    М50119

    МС144105

    SAA3004

    SN76881

    IX0733PA

    М50460

    МС14497

    SAA3006

    STV3021

    KS51800

    М50461

    MN6027

    SAA3007

    Т8909

    KS51810

    М50462

    MN6030B

    SAA3008

    Т8813

    LC7462

    М50560

    NEC1986

    SAA3010

    TC9012F-011

    М3004АВ

    N58484P

    РСА8521

    SM3021

    U321


    История

    Одно из самых ранних устройств для дистанционного управления придумал и запатентовал Никола Тесла в 1893 году.
    В 1903 году испанский инженер и математик Leonardo Torres Quevedo представил в Парижской академии наук Telekino - устройство, представлявшее собой робота, выполняющего команды, переданные посредством электромагнитных волн.


    Пульт ДУ Zenith Space Commander 500, 1958 год
    Первый пульт ДУ для управления телевизором был разработан американской компанией Zenith Radio Corporation в начале 1950-х годов. Он был соединён с телевизором кабелем. В 1955 году был разработан беспроводной пульт Flashmatic, основанный на посылании луча света в направлении фотоэлемента. К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.

    Пульт ДУ Zenith Space Commander 600
    В 1956 году американец австрийского происхождения Роберт Адлер разработал беспроводной пульт Zenith Space Commander. Он был механическим и использовал ультразвук для задания канала и громкости. Когда пользователь нажимал кнопку, она щёлкала и ударяла пластину. Каждая пластина извлекала шум разной частоты, и схема телевизора распознавала этот шум. Изобретение транзистора сделало возможным производство дешёвых электрических пультов, которые содержат пьезоэлектрический кристалл, питающийся электрическим током и колеблющийся с частотой, превышающей верхний предел слуха человека (хотя слышимой собаками). Приёмник содержал микрофон, подсоединённый к схеме, настроенной на ту же частоту. Некоторыми проблемами этого способа были возможность приёмника сработать от естественного шума и то, что некоторые люди, могли слышать пронзительные ультразвуковые сигналы.

    В 1974 году фирмы GRUNDIG и MAGNAVOX выпустили первый цветной телевизор с микропроцессором управления на ИК-лучах. Телевизор имел экранную индикацию (OSD) - в углу экрана отображался номера канала.
    Толчок к появлению более сложных типов пультов ДУ появился в конце 1970-х, когда компанией Би-би-си был разработан телетекст. Большинство продаваемых пультов ДУ в то время имели ограниченный набор функций, иногда только четыре: следующий канал, предыдущий канал, увеличить или уменьшить громкость. Эти пульты не отвечали нуждам телетекста, где страницы были пронумерованы трёхзначными числами. Пульт, позволяющий выбирать страницу телетекста, должен был иметь кнопки для цифр от 0 до 9, другие управляющие кнопки, например для переключения между текстом и изображением, а также обычные телевизионные кнопки для громкости, каналов, яркости, цветности. Первые телевизоры с телетекстом имели проводные пульты для выбора страниц телетекста, но рост использования телетекста показал необходимость в беспроводных устройствах. И инженеры Би-Би-Си начали переговоры с производителями телевизоров, что привело в 1977-1978 к появлению опытных образцов, имевших гораздо больший набор функций. Одной из компаний была ITT, её именем был позже назван протокол инфракрасной связи.
    В 1980-х Стивен Возняк из компании Apple основал компанию CL9. Целью компании было создание пульта ДУ, который мог бы управлять несколькими электронными устройствами. Осенью 1987 года был представлен модуль CORE. Его преимуществом была возможность «обучаться» сигналам от разных устройств. Он также имел возможность выполнять определённые функции в назначенное время благодаря встроенным часам. Также это был первый пульт, который мог быть подключён к компьютеру и загружен обновлённым программным кодом. CORE не оказал большого влияния на рынок. Для среднего пользователя было слишком сложно программировать его, но он получил восторженные отзывы от людей, которые смогли разобраться с его программированием. Названные препятствия привели к роспуску CL9, но один из её работников продолжил дело под маркой Celadon.
    К началу 2000-х количество бытовых электроприборов резко возросло. Для управления домашним кинотеатром может потребоваться пять-шесть пультов: от спутникового приёмника, видеомагнитофона, DVD-проигрывателя, телевизионного и звукового усилителя. Некоторые из них требуется использовать друг за другом, и, из-за разобщённости систем управления, это становится обременительным. Многие специалисты, включая известного специалиста по юзабилити Jakob Nielsen и изобретателя современного пульта ДУ Роберта Адлера, отмечают, сколь запутанно и неуклюже использование нескольких пультов.
    Появление КПК с инфракрасным портом позволило создавать универсальные пульты ДУ с программируемым управлением. Однако в силу высокой стоимости этот метод не стал слишком распространён. Не стали широко распространёнными и специальные универсальные обучаемые пульты управления в силу относительной сложности программирования и использования.



    Источники.

    Практически у каждого человека дома куча различной умной техники — это разнообразные телевизоры, аудиосистемы, CD-плееры, кондиционеры, стиральные машины, микроволновые печи и многое другое. Большинство из этих устройств имеют пульты дистанционного управления. Пульты когда-то были задуманы для помощи людям, чтобы они могли не вставая с места управлять всей электроникой в своём доме. Однако, помощников иногда скапливается столько, что поиск нужного становится довольно раздражающей проблемой. К счастью можно купить универсальный пульт ДУ, и навсегда разрешить неудобство управления техникой. Итак, на что стоит обратить внимание в первую очередь при выборе надёжного универсального пульта дистанционного управления, чтобы не жалеть о покупке и остаться довольным.

    Зачем нужен универсальный пульт ДУ

    1. Просто потерян один из старых, или он пришел в негодность. Чаще это пульт для телевизора. Человек приходит в магазин, покупает самый расхваленный универсальный пульт ДУ, приходит домой, и… У него не вызывается меню в телевизоре, и не работает настройка. А дело в том, что не каждый может подходить для его телевизора.
    2. Человек хочет иметь один пульт на все устройства в доме. Это — совсем другое дело. С помощью родных пультов всегда можно настроить новый пульт ДУ на любую технику, если только он поддерживает функцию обучения.

    О возможностях универсального пульта ДУ

    • Универсальный пульт ДУ с предустановкой имеет базу данных с кодами к различным устройствам и моделям. Когда нужно управлять вентилятором пользователь вводит один код, когда телевизором – другой. Коды берутся из списка, предоставляемого производителем.
    • Модели с настройкой через компьютер можно подключить к ноутбуку или компьютеру, и управляя специальными программами, скачать с сервера производителя нужные настройки под вашу технику. Эта процедура очень похожа на обновление драйверов в операционной системе компьютера. Просто указываете на сайте модели своей техники, и сохраняете на пульт предложенные вам настройки. Также на сайте производителя универсального пульта ДУ, перед покупкой можно посмотреть и список брендов техники, с которой он совместим. По хорошему соотношению — цена-качество, среди всех представленных на рынке моделей, пульты этой категории встречаются чаще всего.
    • Модель с возможностью обучения — весьма удобный гаджет. Обучение происходит таким образом. Вы берете родной пульт, и функцию каждой кнопки с него регистрируете на нужной вам кнопке универсального и через некоторое время он выполняет функции лучше старого. Очень удобно, если производитель не внес в его базу данных сигналы для телевизора (или любого другого устройства) вашей марки. Стоит отметить, что при выборе такого пульта нужно обращать внимание на его диапазон сигналов, уточнять у продавца в случае необходимости или проконсультироваться со специалистом. Поскольку есть редкие устройства, сигналы которых не воспринимаются некоторыми устройствами с функцией обучения.

    Какую модель выбрать

    На различных тематических форумах можно встретить жаркие споры приверженцев той или иной модели пульта, поскольку каждый девайс имеет свои плюсы и минусы. Там же есть возможность получить совет по выбору надежного универсального пульта ДУ. Есть пульты, совмещающие в себе все три вида моделей, у них высокий рейтинг в интернет магазинах, они дороже всех остальных. Решите, нужен ли Вам такой, или может просто купить недорогой но хороший.

    Фирма производитель

    Некоторые покупатели выбирают себе пульт исходя из предпочтения устройств любимого производителя. Но полагать что компания, изготавливающая отличные стиральные машины, делает качественные пульты - это заблуждение. Некоторые популярные бренды выпускают такие устройства, не отличающиеся особым качеством — «для галочки», просто облачая их в красивые упаковки. Следует доверять только тем маркам, которые занимаются производством «универсалок» давно и профессионально. У них большая база кодов для техники, достойная тех-поддержка и опытные специалисты. Самые популярные фирмы производители пультов управления — это:

    • Philips
    • Rolsen

    Дополнительный функционал

    Каждая функция в новенькой модели имеет свою цену. Чем больше функций, тем он дороже. Мало-функциональный, но дешевый пульт может быть для Вас лучшим решением, если вся Ваша техника одного производителя. Однако способ настройки - это еще не все критерии выбора. Универсальные пульты ДУ различаются по количеству устройств, с которыми они могут работать. Так, если в вашем доме 15 устройств, а вы купите пульт для управления восемью, придется выбирать этих 8-ми счастливчиков.

    Обращайте внимание на такие дополнительные функции, как возможность перепрограммирования, различные встроенные макрокоманды. Иногда пульты с одинаковой ценой, необоснованно имеют совершенно разный функционал. Редко кто думает о том, что их новая игрушка может и сломаться, поэтому позаботьтесь заранее о доступности сервиса устройств. Будет очень обидно, если потом такого, или подобного пульта в магазине не будет и Вы в ожидании замены будете ругать себя за недальновидность.

    Внешний вид

    Внешний вид современного универсального пульта ДУ весьма разнообразен.Так устройство может быть:

    • С клавишами. Это различные кнопки изменения уровня звука, цифры с обозначением каналов, парные клавиши переключения каналов, кнопки настройки самого устройства, и джойстики для перемещения по меню категорий управляемых устройств.
    • С клавишами и экраном. К кнопкам из вышеописанных моделей добавляется небольшой экран, на котором отображаются время, настройки, комнатная температура и операции управления. Такие устройства дороже.
    • Сенсорным. Все кнопки программные и взаимодействие с универсальным пультом ДУ происходит как в современном смартфоне. Самые дорогие модели — не всегда удобные в пользовании, и лучше ими самому попробовать переключать при покупке.

    Самый удобный на сегодня по всем характеристикам это второй вариант — с клавишами и экраном. На экране хорошо просматриваются все выполняемые действия, а на кнопки всегда можно назначить дополнительные действия и назначить каждой свою функцию. Или даже назначить последовательность операций. Обратите внимание на то, что идет в комплекте с универсальным пультом ДУ, лучше если в комплект входит подставка для него. Такие подставки часто имеют подсветку и подзарядку.

    Проблемы с управлением

    Эксперты по установке и настройке домашней техники, при консультациях на тему универсальным пультом ДУ, часто предупреждают о возможных проблемах при настройке управления кондиционером. Если в пульте нет нужного кода для определенного кондиционера, то ничего не выйдет. Так происходит потому, что сигналы пульта кондиционера отличаются от сигналов посылаемых другой техникой (телевизорами, DVD-проигрывателями) своим пультам. У кондиционера на каждый уровень температуры сигнал разный, поэтому даже обучение универсального пульта будет довольно нудной задачей.

    На что обратить внимание перед покупкой

    Внимательно осмотрите будущую покупку. Иногда клавиш на ней может быть излишне много, это добавит неудобств, а вовсе не возможностей. Хорошим советом — как выбрать универсальный пульт ДУ, может быть проверка в магазине, а еще лучше у себя дома. Возможно есть приятель на работе или друг, который уже приобрел такое устройство. Можно попросить его одолжить гаджет на время, для проверки в реальных условиях.