Какая файловая система находится на компьютере. Файлы и файловая система

Запись информации о файлах производится в специальные области диска. Учитывая зависимость отаппаратных средств компьютера и возможностей установленной операционной системы для организации работы применяются различные файловые системы.

Файловая система (FAT (File Allocation Table) – таблица размещения файлов ) – общая структура, определяющая в операционной системе наименование, сохранение и размещение файлов. От файловой системы зависят правила именования файлов, способы обращения к файлам и способы работы с ними.

Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы зависит от операционной системы. Наиболее распространенный тип - табличный.

Диск представляется как набор поверхностей. У гибких дисков их всœего две (верхняя и нижняя), но жесткие диски - это на самом делœе ʼʼэтажеркиʼʼ, состоящие из нескольких пластин, в связи с этим количество поверхностей у них больше.

Каждая поверхность диска разделяется на кольцевые дорожки, а каждая дорожка - на секторы. Размеры секторов фиксированы и равны 512 байт.

Сектор - это наименьшая единица хранения данных, но для адресации она используется далеко не во всœех файловых системах. Для этого она чересчур мала. Такие операционные системы, как MS-DOS, Windows, OS/2, используют для адресации более крупную единицу хранения, называемую кластером . Кластер - это группа сосœедних секторов. Размер кластера зависит от размера жесткого диска. Чем больше диск, тем большим назначается размер кластера. Типовые значения: 8, 16, 32 или 64 сектора.

Кластер минимальный объём дискового пространства, который должна быть выделœен для размещения файла. Все файловые системы, используемые Windows для работы с жесткими дисками, основаны на кластерах, которые состоят из одного или нескольких смежных секторов. Чем меньше размер кластера, тем более эффективно используется дисковая память. В случае если при форматировании диска размер кластера не указан в явном виде, Windows выбирает одно из стандартных значений, исходя из размера тома. Стандартные значения подобраны таким образом, чтобы снизить потерю дискового пространства и степень возможной фрагментации тома. Размер кластера принято называть также единицей выделœения памяти.

В файловой системе FAT , данные о том, в каком кластере диска начинается тот или иной файл, хранятся в системной области диска в специальных таблицах размещения файлов (FAT -таблицах). Поскольку нарушение FAT -таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности, и она существует в двух экземплярах, идентичность которых регулярно контролируется средствами операционной системы.

Файловая система FAT16. Эта система существовала еще до MS-DOS. Максимальный размер поддерживаемого дискового пространства не превышает 4096 Мбайт, большие объёмы FAT16 не поддерживает. В FAT16 применяется 16-битная адресация и, соответственно, возможно использование до 2 адресов. Том памяти, отформатированный FAT 16, разделяется на кластеры. Размер кластера зависит от размера тома и колеблется от 512 байт до 64 Кбайт, принимая ряд определœенных значений. В том, организованный файловой системой FAT16, входят загрузочный диск, FAT16-оригинал, FAT16-копия, корневой каталог, каталоги и файлы. Отличием корневого каталога от всœех прочих подкаталогов является фиксированное число вхождений (обычно 512). Это число равно общему количеству подкаталогов и файлов, созданных в корневом каталоге.

Файловая система FAT32. Начиная с Windows 95, появилась FAT32, которая способна обслуживать тома до 2 Тбайт с размером кластера до 32 Кбайт. В целом размеры кластеров в FAT32 меньше соответствующих размеров в FAT16. Это приводит к более эффективному использованию дискового пространства. Вместе с тем, максимальное число вхождений в корневой каталог увеличено до 65 535. В FAT32 применяется 32-битная адресация, но первые четыре бита таблицы расположения файлов FAT32 необходимы для собственных нужд, в связи с этим

Файловая система NTFS. В состав Windows 2000 входит поддержка новой версии файловой системы NTFS (New Technology File System). Ключевое преимущество NTFS – возможность ограничения доступа к файлам и папкам. При формировании файловой системы NTFS создается файл MTF (Master File Table), в котором хранятся адреса копий данных. Полная копия загрузочного сектора располагается в конце тома. В MTF, кроме того, находится таблица имен атрибутов, корневой каталог и т. д. В случае если у файла чересчур большой набор атрибутов, то информация о нем хранится в нескольких записях, причем первая (базовая) запись хранит адреса других записей.

Сравнение файловых систем FAT16, FAT32 и NTFS. Цифры в названиях файловых систем FAT16 и FAT32 указывают на число бит, необходимых для хранения информации о номерах кластеров, используемых файлом, т. е. на разрядность адресации. Проведем сравнение этих файловых систем, указав их преимущества и недостатки.

FAT16 имеет следующие преимущества :

1) эта файловая система поддерживается всœеми ОС, входящими в линœейку программных продуктов Windows и некоторыми версиями ОС UNIX;

2) накоплено большое число программ для исправления ошибок в этой файловой системе и восстановления данных;

3) система должна быть загружена с системной дискеты;

4) эта файловая система весьма эффективна для томов памяти объёмом менее 256 Мбайт.

К недостаткам FAT16 можно отнести:

1) в системе не поддерживается резервная копия загрузочного сектора;

2) в FAT 16 не поддерживается встроенная защита файлов и их сжатие.

Преимущества FAT32 таковы:

1) для дисков большого объёма более эффективно используется выделœенное дисковое пространство;

2) корневой каталог в FAT32 занимает цепочку кластеров и может располагаться в любом месте диска, благодаря чему система не накладывает никаких ограничений на число элементов (вхождений) в корневом каталоге;

3) из-за меньшего размера кластеров занятое дисковое пространство на 10 – 15% меньше, чем у FAT 16;

4) FAT32 из-за возможности использования резервной копии FAT является более надежной системой, чем FAT 16.

Основные недостатки FAT32 :

1) размер тома памяти под Windows 2000 ограничен объёмом 32 Гбайт;

2) тома недоступны для других ОС кроме Windows 95 и Windows 98;

3) не поддерживается резервная копия загрузочного сектора;

4) не поддерживается встроенная защита файлов и их сжатие.

Файловая система NTFS имеет несколько возможностей, не реализованных в системах FAT16 и FAT32. По сравнению с этими файловыми системами она не имеет явных недостатков. Отметим лишь ее дополнительные возможности:

а) возможность восстановления информации. NTFS гарантирует сохранность данных за счёт ведения протокола и некоторых встроенных алгоритмов восстановления информации;

б) сжатие данных. При чтении файл автоматически распаковывается, при закрытии и сохранении файл снова упаковывается;

в) защита файлов и каталогов путем задания атрибутов доступа;

г) поддержка резервной копии загрузочного сектора (в конце тома памяти);

д) поддержка системы шифрования содержимого файлов.

Эта файловая система наиболее эффективно работает с файлами большого объёма, недостатком системы является тот факт, что она не поддерживается ОС MS-DOS, Windows 95 и Windows 98.

До появления операционной системы Windows 95 общепринятым способом именования файлов на компьютерах IBM PC было соглашение 8.3 . Согласно этому соглашению, принятому в MS-DOS, имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводилось 8 символов, а на его расширение - 3 символа. Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита.

Соглашение 8.3 не является стандартом, и потому в ряде случаев отклонения от правильной формы записи допускаются как операционной системой, так и ее приложениями. Так, к примеру, в большинстве случаев система ʼʼне возражаетʼʼ против использования некоторых специальных символов (восклицательный знак, символ подчеркивания, дефис, тильда и т. п.), а некоторые версии MS-DOS даже допускают использование в именах файлов символов русского и других алфавитов.

Сегодня имена файлов, записанные в соответствии с соглашением 8.3, считаются короткими.

Основным недостатком коротких имен является их низкая содержательность. Далеко не всœегда удается выразить несколькими символами характеристику файла, в связи с этим с появлением операционной системы Windows 95 было введено понятие длинного имени. Такое имя может содержать до 256 символов. Этого вполне достаточно для создания содержательных имен файлов. Длинное имя может содержать любые символы, кроме девяти специальных: \ / : * ? " < > |.В имени разрешается использовать пробелы и несколько точек. Расширением имени считаются всœе символы, идущие после последней точки.

Файловая система - понятие и виды. Классификация и особенности категории "Файловая система" 2017, 2018.

Рано или поздно начинающий пользователь компьютера сталкивается с таким понятием, как файловая система (ФС). Как правило, впервые знакомство с данным термином происходит при форматировании носителя информации: логические диски и подключаемые носители (флешки, карты памяти, внешний жесткий диск).

Перед форматированием операционная система Windows предлагает выбрать вид файловой системы на носителе, размер кластера, способ форматирования (быстрое или полное). Давайте разберемся, что же такое файловая система и для чего она нужна?

Вся информация записывается на носитель в виде , которые должны располагаться в определенном порядке, иначе операционная система и программы не смогут оперировать с данными. Этот порядок и организует файловая система с помощью определенных алгоритмов и правил размещения файлов на носителе.

Когда программе требуется файл, записанный на диске, ей нет необходимости знать, как и где он хранится. Все, что от программы требуется – это знать имя файла, его размер и атрибуты, чтобы передать эти данные файловой системе, которая обеспечит доступ к нужному файлу. То же самое происходит и при записи данных на носитель: программа передает информацию о файле (имя, размер, атрибуты) файловой системе, которая сохраняет его по своим определенным правилам.

Для лучшего понимания представьте библиотекаря, который выдает клиенту книгу по ее названию. Или в обратном порядке: клиент сдает прочитанную книгу библиотекарю, который размещает ее обратно на хранение. Клиенту совсем нет необходимости знать, где и как хранится книга, это обязанность служащего заведения. Библиотекарь знает правила каталогизации библиотеки и согласно этим правилам разыскивает издание или размещает его обратно, т.е. выполняет свои служебные функции. В данном примере библиотека – это носитель информации, библиотекарь – файловая система, клиент – программа.

Основные функции файловой системы

Основными функциями файловой системы являются:

  • размещение и упорядочивание на носителе данных в виде файлов;
  • определение максимально поддерживаемого объема данных на носителе информации;
  • создание, чтение и удаление файлов;
  • назначение и изменение атрибутов файлов (размер, время создания и изменения, владелец и создатель файла, доступен только для чтения, скрытый файл, временный файл, архивный, исполняемый, максимальная длина имени файла и т.п.);
  • определение структуры файла;
  • организация каталогов для логической организации файлов;
  • защита файлов при системном сбое;
  • защита файлов от несанкционированного доступа и изменения их содержимого.

Информация, записываемая на жесткий диск или любой другой носитель, размещается в нем на основе кластерной организации. Кластер представляют собой своего рода ячейку определенного размера, в которую помещается весь файл или его часть.

Если файл имеет размер кластера, то он занимает только один кластер. Если размер файла превышает размер ячейки, то он размещается в нескольких ячейках-кластерах. Причем свободные кластеры могут находиться не рядом с другом, а быть разбросанными по физической поверхности диска. Такая система позволяет наиболее рационально использовать место при хранении файлов. Задача файловой системы — разложить файл при записи по свободным кластерам оптимальным образом, а также собрать его при чтении и выдать программе или операционной системе.

Виды файловых систем

В процессе эволюции компьютеров, носителей информации и операционных систем возникало и пропадало большое количество файловых систем. В процессе такого эволюционного отбора, на сегодня для работы с жесткими дисками и внешними накопителями (флешки, карты памяти, внешние винчестеры, компакт диски) в основном используются следующие виды ФС:

  1. FAT32
  2. ISO9660

Последние две системы предназначены для работы с компакт дисками. Файловые системы Ext3 и Ext4 работают с операционными системами на основе Linux. NFS Plus – это ФС для операционных систем OS X, используемых в компьютерах фирмы Apple.

Самое большое распространение получили файловые системы NTFS и FAT32 и это не удивительно, т.к. они предназначены для операционных систем Windows, под управлением которых работает подавляющее большинство компьютеров в мире.

Сейчас FAT32 активно вытесняется более продвинутой системой NTFS по причине ее большей надежности к сохранности и защите данных. К тому же последние версии ОС Windows просто не дадут себя установить, если раздел жесткого диска будет отформатирован в FAT32. Программа установки потребует отформатировать раздел в NTFS.

Файловая система NTFS поддерживает работу с дисками объемом в сотни терабайт и размером одного файла до 16 терабайт.

Файловая система FAT32 поддерживает диски до 8 терабайт и размер одного файла до 4Гб. Чаще всего данную ФС используют на флешках и картах памяти. Именно в FAT32 форматируют внешние накопители на заводе.

Однако ограничение на размер файла в 4Гб на сегодня уже является большим минусом, т.к. в связи с распространением высококачественного видео, размер файла с фильмом будет превышать это ограничение и его будет невозможно записать на носитель.

Поделиться.

Материал к обзорной лекции № 33

для студентов специальности

«Программное обеспечение информационных технологий»

доцента кафедры ИВТ, к.т.н. Ливак Е.Н.

СИСТЕМЫ УПРАВЛЕНИЯ ФАЙЛАМИ

Основные понятия, факты

Назначение. Особенности файловыхсистем FAT , VFAT , FAT 32, HPFS , NTFS . Файловые системы ОС UNIX (s5, ufs), ОС Linux Ext2FS.Системные области диска (раздела, тома). Принципы размещения файлов и хранения информации о расположении файлов. Организация каталогов. Ограничение доступа к файлам и каталогам.

Навыки и умения

Использование знаний о структуре файловой системы для защиты и восстановления компьютерной информации (файлов и каталогов). Организация разграничения доступа к файлам.

Файловые системы. Структура файловой системы

Данные на диске хранятся в виде файлов. Файл - это именованная часть диска.

Для управления файлами предназначены системы управления файлами.

Возможность иметь дело с данными, хранящимися в файлах, на логическом уровне предоставляет файловая система. Именно файловая система определяет способ организации данных на каком-либо носителе данных.

Таким образом, файловая система - это набор спецификаций и соответствующее им программное обеспечение, которые отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступом к файлам и за управлением ресурсами, которые используются файлами.

Система управления файлами является основной подсистемой в абсолютном большинстве современных ОС.

С помощью системы управления файлами

· связываются по данным все системные обрабатывающие программы;

· решаются проблемы централизованного распределения дискового пространства и управления данными;

· предоставляются возможности пользователю по выполнению операций над файлами (создание и т.п.), по обмену данными между файлами и различными устройствами, по защите файлов от несанкционированного доступа.

В некоторых ОС может быть несколько систем управления файлами, что обеспечивает им возможность работать с несколькими файловыми системами.

Постараемся различать файловую систему и систему управления файлами.

Термин «файловая система» определяет принципы доступа к данным, организованным в файлы.

Термин «система управления файлами» относится к конкретной реализации файловой системы, т.е. это комплекс программных модулей, обеспечивающих работу с файлами в конкретной ОС.

Итак, для работы с файлами, организованными в соответствии с некоторой файловой системой, для каждой ОС должна быть разработана соответствующая система управления файлами. Эта система УФ будет работать только в той ОС, для которой она создана.

Для семейства ОС Windows в основном используются файловые системы: VFAT , FAT 32, NTFS .

Рассмотрим структуру этих файловых систем.

В файловой системе FAT дисковое пространство любого логического диска делится на две области:

· системную область и

· область данных.

Системная область создается и инициализируется при форматировании, а впоследствии обновляется при манипулировании файловой структурой.

Системная область состоит из следующих компонентов:

· загрузочного сектора, содержащего загрузочную запись (boot record );

· зарезервированных секторов (их может и не быть);

· таблицыразмещенияфайлов (FAT, File Allocation Table);

· корневогокаталога (Root directory, ROOT).

Эти компоненты расположены на диске друг за другом.

Область данных содержит файлы и каталоги, подчиненные корневому.

Область данных разбивают на так называемые кластеры. Кластер - это один или несколько смежных секторов области данных. С другой стороны, кластер - это минимальная адресуемая единица дисковой памяти, выделяемая файлу. Т.е. файл или каталог занимает целое число кластеров. Для создания и записи на диск нового файла операционная системаотводит для него несколько свободных кластеров диска. Эти кластеры не обязательно должны следовать друг за другом. Для каждого файла хранится список всех номеров кластеров, которые предоставлены данному файлу.

Разбиение области данных на кластеры вместо использования секторов позволяет:

· уменьшить размер таблицы FAT ;

· уменьшить фрагментацию файлов;

· сокращается длина цепочек файла Þ ускоряется доступ к файлу.

Однако слишком большой размер кластера ведет к неэффективному использованию области данных, особенно в случае большого количества маленьких файлов (ведь на каждый файл теряется в среднем полкластера).

В современных файловых системах (FAT 32, HPFS , NTFS ) эта проблема решается за счет ограничения размера кластера (максимум 4 Кбайта)

Картой области данных являетсяТ аблица размещения файлов (File Allocation Table - FAT) Каждый элемент таблицы FAT (12, 16 или 32 бит) соответствует одному кластеру диска и характеризует его состояние: свободен, занят или является сбойным кластером (bad cluster).

· Если кластер распределен какому-либо файлу (т.е., занят), то соответствующий элемент FAT содержит номер следующего кластера файла;

· последний кластер файла отмечается числом в диапазоне FF8h - FFFh (FFF8h - FFFFh);

· если кластер является свободным, он содержит нулевое значение 000h (0000h);

· кластер, непригодный для использования (сбойный), отмечается числом FF7h (FFF7h).

Таким образом, в таблице FAT кластеры, принадлежащие одному файлу, связываются в цепочки.

Таблица размещения файлов хранится сразу после загрузочной записи логического диска, ее точное расположение описано в специальном поле в загрузочном секторе.

Она хранится в двух идентичных экземплярах, которые следуют друг за другом. При разрушении первой копии таблицы используется вторая.

В связи с тем, что FAT используется очень интенсивно при доступе к диску, она обычно загружается в ОП (в буфера ввода/вывода или кэш) и остается там настолько долго, насколько это возможно.

Основной недостаток FAT - медленная работа с файлами. При создании файла работает правило - выделяется первый свободный кластер. Это ведет к фрагментации диска и сложным цепочкам файлов. Отсюда следует замедление работы с файлами.

Для просмотра и редактирования таблицы FAT можно использовать утилиту Disk Editor .

Подробнаяинформация о самом файле хранится в другой структуре, которая называется корневым каталогом. Каждый логический диск имеет свой корневой каталог (ROOT, англ. - корень).

Корневой каталог описываетфайлы и другие каталоги. Элементом каталога является дескриптор (описатель) файла.

Дескриптор каждого файла и каталога включает его

· имя

· расширение

· дату создания или последней модификации

· время создания или последней модификации

· атрибуты (архивный, атрибут каталога, атрибут тома, системный, скрытый, только для чтения)

· длину файла (для каталога - 0)

· зарезервированное поле, которое не используется

· номер первого кластера в цепочке кластеров, отведенных файлу или каталогу; получив этот номер, операционная система, обращаясь к таблице FAT, узнает и все остальные номера кластеров файла.

Итак, пользователь запускает файл на выполнение. Операционная система ищет файл с нужным именем, просматривая описания файлов в текущем каталоге. Когда найден требуемый элемент в текущем каталоге, операционная система считывает номер первого кластера данного файла, а затем по таблице FAT определяет остальные номера кластеров. Данные из этих кластеров считываются в оперативную память, объединяясь в один непрерывный участок. Операционная система передает управление файлу, и программа начинает работать.

Для просмотра и редактирования корневого каталога ROOT можно также использовать утилиту Disk Editor .

Файловая система VFAT

Файловая система VFAT (виртуальная FAT ) впервые появилась в Windows for Workgroups 3.11 и была предназначена для файлового ввода/вывода в защищенном режиме.

Используется эта файловая система в Windows 95.

Поддерживается она также и в Windows NT 4.

VFAT - это «родная» 32-разрядная файловая система Windows 95. Ее контролирует драйвер VFAT .VXD .

VFAT использует 32-разрядный код для всех файловых операций, может использовать 32-разрядные драйверы защищенного режима.

НО, элементы таблицы размещения файлов остаются 12- или 16-разрядными, поэтому на диске используется та же структура данных (FAT ). Т.е. формат таблицы VFAT такой же , как и формат FAT .

VFAT наряду с именами «8.3» поддерживает длинные имена файлов . (Часто говорят, что VFAT - это FAT с поддержкой длинных имен).

Основной недостаток VFAT - большие потери на кластеризацию при больших размерах логического диска и ограничения на сам размер логического диска.

Файловая система FAT 32

Это новая реализация идеи использования таблицы FAT .

FAT 32 - это полностью самостоятельная 32-разрядная файловая система.

Впервые использовалась в Windows OSR 2 (OEM Service Release 2).

В настоящее время FAT 32 используется в Windows 98 и Windows ME .

Она содержит многочисленные усовершенствования и дополнения по сравнению с предыдущими реализациями FAT .

1. Намного эффективнее расходует дисковое пространство за счет того, что использует кластеры меньшего размера (4 Кб) - подсчитано, что экономится до 15%.

2. Имеет расширенную загрузочную запись, которая позволяет создавать копии критических структур данных Þ повышает устойчивость диска к нарушениям структур диска

3. Может использовать резервную копию FAT вместо стандартной.

4. Может перемещать корневой каталог, другими словами, корневой каталог может находиться в произвольном месте Þ снимает ограничение на размер корневого каталога (512 элементов, т.к. ROOT должен был занимать один кластер).

5. Усовершенствована структура корневого каталога

Появились дополнительные поля, например, время создания, дата создания, дата последнего доступа, контрольная сумма

По-прежнему для длинного имени файла используется несколько дескрипторов.

Файловая система HPFS

HPFS (High Performance File System ) - вы­сокопроизводительная файловая система.

HPFS впервые появилась в OS/2 1.2 и LAN Manager .

Перечислим основные особенности HPFS.

· Главное отличие - базовые принципы размещения файлов на диске и принципы хранения информации о местоположении файлов. Благодаря этим принципам HPFS имеет высокую производительность и отказоустойчивость, является надежной файловой системой.

· Дисковое пространство в HPFS выделяется не кластерами (как в FAT ), а блоками. В современной реализации размер блока взят равным одному сектору, но в принципе он мог бы быть и иного размера. (По сути дела, блок - это и есть кластер, только кластер всегда равен одному сектору). Размещениефайлов в таких небольших блоках позволяет более эффектив­но использовать пространство диска , так как непроизводительные потери сво­бодного места составляют в среднем всего (полсектора) 256 байт на каждый файл. Вспомним, что чем больше размер кластера, тем больше места на диске расходуется напрас­но.

· Система HPFS стремится расположить файл в смежных блоках, или, если такой возможности нет, разместить его на диске таким образом, чтобы экстенты (фрагменты) файла физически были как можно ближе друг к другу. Такой подход существенно уменьшает время позиционирова­ния головок записи/чтения жесткого диска и время ожидания (задержка между установкой головки чтения/записи на нужную дорожку). Напомним, что в FAT файлу просто выделяется первый свободный кластер.

Экстенты (extent ) - фрагменты файла, располагающиеся в смежных секторах диска. Файл имеет по крайней мере один экстент, если он не фрагментирован, а в противномслучае - несколько экстентов.

· Используется метод сбалансированных двоичных деревьев для хранения и поиска ин­формации о местонахождении файлов (каталоги хранятся в центре диска, кроме того, предусмотрена автоматиче­ская сортировка каталогов), что существенно повышает производительность HPFS (в сравнении с FAT ).

· В HPFS предусмотрены специальные расширенные атрибуты файлов, позволяющие управлять доступом к файлам и каталогам .

Расширенные атрибуты (extended attributes , EAs ) позволяют хранить дополнительную информацию о файле. Например, каждому файлу может быть сопоставлено его уникаль­ное графическое изображение (значок), описание файла, коммента­рий, сведения о владельце файла и т. д.

C труктура раздела HPFS


В начале раздела с установленной HPFS расположено три управляющих блока:

· загрузочный блок (boot block ),

· дополнительный блок (super block ) и

· запас­ной (резервный) блок (spare block ).

Они занимают 18 секторов.

Все остальное дис­ковое пространство в HPFS разбито на части из смежных секторов - полосы (band - полоса, лента). Каждая полоса занимает на диске 8 Мбайт.

Каждая полоса и имеет свою собственную битовую карту распределе­ния секторов .Битовая карта показывает, какие секторы данной полосы за­няты, а какие - свободны. Каждому сектору полосы данных соответствует один бит в ее битовой карте. Если бит = 1, то сектор занят, если 0 - свободен.

Битовые карты двух полос располагаются на диске рядом, так же располагаются и сами полосы. То есть последовательность полос и карт выглядит как на рис.

Сравним с FAT . Там на весь диск только одна «битовая карта» (таблица FAT ). И для работы с ней приходится перемещать головки чте­ния/записи в среднем через половину диска.

Именно для того, чтобы сократить время позиционирования головок чтения/записи жесткого диска, в HPFS диск разбит на полосы.

Рассмотрим управляющие блоки .

Загрузочный блок (boot block )

Содержит имя тома, его серийный номер, блок парамет­ров BIOS и программу начальной загрузки.

Программа начальной загрузки на­ходит файл OS 2 LDR , считывает его в память и передает управление этой про­грамме загрузки ОС, которая, в свою очередь, загружает с диска в память ядро OS/2 - OS 2 KRNL . И уже OS 2 KRIML с помощью сведений из файла CONFIG . SYS за­гружает в память все остальные необходимые программные модули и блоки дан­ных.

Загрузочный блок располагается в секторах с 0 по 15.

Супер Блок (super block )

Содержит

· указатель на список битовых карт (bitmap block list ). В этом списке перечислены все блоки на диске, в которых расположены би­товые карты, используемые для обнаружения свободных секторов;

· указатель на список дефектных блоков (bad block list ). Когда система обнаруживает поврежденный блок, он вносится в этот список и для хранения информации больше не используется;

· указатель на группу каталогов (directory band ),

· указатель на файловый узел (F -node ) корневого каталога,

· дату последней проверки раздела програм­мой CHKDSK ;

· информацию о размере полосы (в текущей реализации HPFS - 8 Мбайт).

Super block размещается в 16 секторе.

Резервный блок (spare block)

Содержит

· указатель на карту аварийного замеще­ния (hotfix map или hotfix -areas );

· указатель на список свободных запасных бло­ков (directory emergency free block list );

· ряд системных флагов и дескрипторов.

Этот блок разме­щается в 17 секторе диска.

Резервный блок обеспечивает высокую отказоустойчивость файловой системы HPFS и позволяет восстанавливать поврежденные данные на диске.

Принцип размещения файлов

Экстенты (extent ) - фрагменты файла, располагающиеся в смежных секторах диска. Файл имеет по крайней мере один экстент, если он не фрагментирован, а в противномслучае - несколько экстентов.

Для сокращения времени позиционирования головок чтения/записи жесткого диска система HPFS стремится

1)расположить файл в смежных блоках;

2)если такой возможности нет, то разместить экстенты фрагментированного файла как можно ближе друг к другу,

Для этого HPFS использует статистику, а также старается условно резервировать хотя бы 4 килобайта места в конце файлов, которые растут.

Принципы хранения информации о расположении файлов

Каждый файл и каталог диска имеет свой файловый узел F-Node . Это структура, в которой содержится информация о располо­жении файла и о его расширенных атрибутах.

Каждый F-Node занимает один сектор и всегда располагается поблизости от своего файла или каталога (обычно - непосредственно перед файлом или ка­талогом). Объект F-Node содержит

· длину,

· первые 15 символов имени файла,

· специальную служебную информацию,

· статистику по доступу к файлу,

· расши­ренные атрибуты файла,

· список прав доступа (или только часть этого списка, если он очень большой); если расширен­ные атрибуты слишком велики для файлового узла, то в него записывается ука­затель на них.

· ассоциативную информацию о расположении и подчине­нии файла и т. д.

Если файл непрерывен, то его размещение на диске описывается двумя 32-битными числами. Первое число представляет собой указатель на первый блок файла, а второе - длину экстента (число следующих друг за другом бло­ков, принадлежащих файлу).

Если файл фрагментирован, то размещение его экстентов описывается в файловом узле дополнительными парами 32-битных чисел.

В файловом узле можно разместить информацию максимум о восьми экстентах файла. Если файл имеет больше экстентов, то в его файловый узел записывается указатель на блок размещения (allocation block ), который может содержать до 40 указателей на экстенты или, по аналогии с блоком дерева каталогов, на другие блоки размещения.

Структура и размещение каталогов

Для хранения каталогов используется полоса, находящаяся в центре диска .

Эта полоса называетсяdirectory band .

Если она полностью заполнена, HPFS начинает располагать каталоги файлов в других полосах.

Расположение этой информаци­онной структуры в середине диска значительно сокращает среднее время пози­ционирования головок чтения/записи.

Однако существенно больший (по сравнению с размещением Directory Band в середине логического диска) вклад в производительность HPFS дает использо­вание метода сбалансированных двоичных деревьев для хранения и поиска ин­формации о местонахождении файлов.

Вспомним, что в файловой системе FAT каталог имеет линейную структуру, специальным образом не упорядоченную, поэтому при поиске файла требуется последовательно просматривать его с само­го начала.

В HPFS структура каталога представляет собой сбалансированное де­рево с записями, расположенными в алфавитном порядке.

Каждая за­пись, входящая в состав дерева, содержит

· атрибуты файла,

· указатель на соответствующий файловый узел,

· информацию о времени и дате создания фай­ла, времени и дате последнего обновления и обращения,

· длине данных, содержа­щих расширенные атрибуты,

· счетчик обращений к файлу,

· длине имени файла

· само имя,

· и другую информацию.

Файловая система HPFS при поиске файла в каталоге просматривает только не­обходимые ветви двоичного дерева. Такой метод во много раз эффек­тивнее, чем последовательное чтение всех записей в каталоге, что имеет место в системе FAT .

Размер каждого из блоков, в терминах которых выделяются каталоги в текущей реализации HPFS, равен 2 Кбайт. Размер записи, описывающей файл, зависит от размера имени файла. Если имя занимает 13 байтов (для формата 8.3), то блок из 2 Кбайт вмещает до 40 описателей файлов. Блоки связаны друг с другом по­средством списка.

Проблемы

При переименовании файлов может возникнуть так называемая перебаланси­ровка дерева. Создание файла, переименование или стирание может приводить к каскадированию блоков каталогов . Фактически, переименование может потер­петь неудачу из-за недостатка дискового пространства, даже если файл непо­средственно в размерах не увеличился. Во избежание этого «бедствия» HPFS поддерживает небольшой пул свободных блоков, которые могут использовать­ся при «аварии». Эта операция может потребовать выделения дополнительных блоков на заполненном диске. Указатель на этот пул свободных блоков сохраня­ется в SpareBlock ,

Принципы размещения файлов и каталогов на диске в HPFS :

· информация о местоположении файлов рассредоточена по всему дис­ку, при этом записи каждого конкретного файла размещаются (по возможно­сти) в смежных секторах и поблизости от данных об их местоположении;

· каталоги размещаются в середине дискового пространства;

· каталоги хранятся в виде бинарного сбалансированного дерева с записями, расположенными в алфавитном порядке.

Надежность хранения данных в HPFS

Любая файловая система должна обладать средствами исправления ошибок, возникаю­щих при записи информации на диск. Система HPFS для этого использует меха­низм аварийного замещения ( hotfix ).

Если файловая система HPFS сталкивается с проблемой в процессе записи дан­ных на диск, она выводит на экран соответствующее сообщение об ошибке. Затем HPFS сохраняет информацию, которая должна была быть записана в дефектный сектор, в одном из запасных секторов, заранее зарезервированных на этот слу­чай. Список свободных запасных блоков хранится в резервном блоке HPFS. При обнаружении ошибки во время записи данных в нормальный блок HPFS выби­рает один из свободных запасных блоков и сохраняет эти данные в нем. Затем файловая система обновляет карту аварийного замещения в резервном блоке.

Эта карта представляет собой просто пары двойных слов, каждое из которых является 32-битным номером сектора.

Первый номер указывает на дефектный сек­тор, а второй - на тот сектор среди имеющихся запасных секторов, который был выбран для его замены.

После замены дефектного сектора запасным карта ава­рийного замещения записывается на диск, и на экране появляется всплывающее окно, информирующее пользователя о произошедшей ошибке записи на диск. Каждый раз, когда система выполняет запись или чтение сектора диска, она просматривает карту аварийного замещения и подменяет все номера дефектных секторов номерами запасных секторов с соответствующими данными.

Следует заметить, что это преобразование номеров существенно не влияет на производительность системы, так как оно выполняется только при физическом обращении к диску, но не при чтении данных из дискового кэша.

Файловая система NTFS

Файловая система NTFS (New Technology File System) содержит ряд значительных усовер­шенствований и изменений, существенно отличающих ее от других файловых систем.

Заметим, что за редкими исключениями, с разделами NTFS можно работать напрямую только из Windows NT , хотя и имеются для ряда ОС соответствующие реализа­ции систем управления файлами для чтения файлов из томов NTFS.

Однако полноценных реализаций для работы с NTFS вне системы Windows NT пока нет.

NTFS не поддерживается в широко распространенных ОС Windows 98 и Windows Millennium Edition .

Основные особенности NT FS

· работа на дисках большого объема происходит эффективно (намного эффективнее, чем в FAT );

· имеются средства для ограничения доступа к файлам и катало­гам Þ раз­делы NTFS обеспечивают локальную безопасность как файлов, так и каталогов;

· введен механизм транзакций, при котором осуществляется журналирование файловых операций Þ существенное увеличение надежности;

· сняты многие ограничения на максимальное количество дисковых секто­ров и/или кластеров;

· имя файла в NTFS, в отличие от файловых систем FAT и HPFS , может содержать любые символы, включая полный набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла в NTFS - 255 символов.

· система NTFS также об­ладает встроенными средствами сжатия, которые можно применять к отдельным файлам, целым каталогам и даже томам (и впоследствии отменять или назначать их по своему усмотрению).

Структура тома с файловой системой NTFS

Раздел NTFS называется томом (volume ). Максимально возможные размеры тома (и размеры файла) составляют 16 Эбайт (экзабайт 2**64).

Как и другие системы, NTFS делит дисковое пространство тома на кластеры - блоки данных, адресуемые как единицы данных. NTFS поддержива­ет размеры кластеров от 512 байт до 64 Кбайт; стандартом же считается кластер размером 2 или 4 Кбайт.

Все дисковое пространство в NTFS делится на две неравные части.


Первые 12 % диска отводятся под так называемую MFT-зону - пространство, которое может занимать, увеличиваясь в размере, главный служебный метафайл MFT .

Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы MFT-файл по возможности не фрагментировался при своем росте.

Остальные 88 % тома представляют собой обычное пространство для хранения файлов.

MFT (master file table - общая таблица файлов) по сути - это каталог всех остальных файлов диска, в том числе и себя самого. Он предназначен для определения расположения файлов.

MFT состоит из записей фиксированного размера. Размер записи MFT (минимум 1 Кб и максимум 4 Кб) оп­ределяется во время форматирования тома.

Каждая запись соответ­ствует какому-либо файлу.

Первые 16 записей но­сят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT.

Эти первые 16 эле­ментов MFT - единственная часть диска, имеющая строго фиксированное поло­жение. Копия этих же 16 записей хранится в середине тома для надежности.

Остальные части MFT-файла могут располагаться, как и любой другой файл, в произвольных местах диска.

Метафайлы носят служебный характер - каждый из них отвечает за какой-либо аспект работы системы. Метафайлы нахо­дятся в корневом каталоге NTFS-тома. Все они начинаются с символа имени «$», хотя получить какую-либо информацию о них стандартными средствами сложно. В табл. приведены основные метафайлы и их назначение.

Имя метафайла

Назначение метафайла

$MFT

Сам Master File Table

$MFTmirr

Копия первых 16 записей MFT, размещенная посередине тома

$LogFile

Файл поддержки операций журналирования

$Volume

Служебная информация - метка тома, версия файловой системы и т. д.

$AttrDef

Список стандартных атрибутов файлов на томе

Корневой каталог

$Bitmap

Карта свободного места тома

$Boot

Загрузочный сектор (если раздел загрузочный)

$Quota

Файл, в котором записаны права пользователей на использование дискового пространства (этот файл начал работать лишь в Windows 2000 с системой NTFS 5.0)

$Upcase

Файл - таблица соответствия заглавных и прописных букв в именах файлов. В NTFS имена файлов записываются в Unicode (что составляет 65 тысяч различных символов) и искать большие и малые эквиваленты в данном случае - нетривиальная задача

В соответствующей записи MFT хранится вся информация о файле:

· имя файла,

· размер;

· атрибуты файла;

· положение на диске отдельных фрагментов и т. д.

Если для информации не хватает одной записи MFT, то используется несколько записей, причем не обязательно идущих подряд.

Если файл имеет не очень большой размер, то данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT.

Файл в томе с NTFS идентифицируется так называемой файловой ссылкой (File Reference ), которая представляется как 64-разрядное число.

· номера файла, который соответствует номеру записи в MFT,

· и номера последовательности. Этот номер увеличивается всякий раз, когда данный номер в MFT используется повторно, что позволяет файловой системе NTFS выполнять внутренние проверки целостности.

Каждый файл в NTFS представлен с помощью потоков (streams ), то есть у него нет как таковых «просто данных», а есть потоки.

Один из потоков - это и есть данные файла.

Большинство атрибутов файла - это тоже потоки.

Таким об­разом, получается, что базовая сущность у файла только одна - номер в MFT, а все остальное, включая и его потоки, - опционально.

Данный подход может эффективно использоваться - например, файлу можно «прилепить» еще один поток, записав в него любые данные.

Стандартные атрибуты для файлов и каталогов в томе NTFS имеют фиксиро­ванные имена и коды типа.

Каталог в NTFS представляет собой специальный файл, хранящий ссылки на другие файлы и каталоги.

Файл каталога разделен на блоки, каждый из которых содержит

· имя файла,

· базовые атрибуты и

Корневой каталог диска ничем не отличается от обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

Внутренняя структура каталога представляет собой бинарное дерево, как в HPFS.

Количество файлов в корневом и некорневом каталогах не ограни­чено.

Файловая система NTFS поддерживает объектную модель безопасности NT : NTFS рассматривает каталоги и файлы как разнотипные объекты и ведет отдельные (хотя и перекры­вающиеся) списки прав доступа для каждого типа.

NTFS обеспечивает безопасность на уровне файлов; это означает, что права доступа к томам, каталогам и файлам могут зависеть от учетной записи пользователя и тех групп, к которым он принадлежит. Каждый раз, когда пользователь обращается к объекту файловой системы, его права доступа проверяются по списку разреше­ний данного объекта. Если пользователь обладает достаточным уровнем прав, его запрос удовлетворяется; в противном случае запрос отклоняется. Эта модель безопасности применяется как при локальной регистрации пользователей на компьютерах с NT , так и при удаленных сетевых запросах.

Система NTFS также обладает определенными средствами самовосстановления. NTFS поддерживает различные механизмы проверки целостности системы, вклю­чая ведение журналов транзакций, позволяющих воспроизвести файловые опе­рации записи по специальному системному журналу.

При журналировании файловых операций система управления файлами фиксирует в специальном служебном файле происходящие изменения. В начале операции, связанной с изменением файловой структуры, делается соответствующая пометка. Если во время операций над файлами происходит какой-нибудь сбой, то упомянутая отметка о начале операции остается указанной как незавершенная. При выполнении процедуры проверки целостности файловой системы после перезагрузки машины эти незавершенные опера­ции будут отменены и файлы будут приведены к исходному состоянию. Если же опера­ция изменения данных в файлах завершается нормальным образом, то в этом самом служебном файле поддержки журналирования операция отмечается как завершенная.

Основной недостаток файловой системы NTFS - служебные данные занимают много места (например, каждый элемент каталога занимает 2 Кбайт) - для малых раз­делов служебные данные могут занимать до 25% объема носителя.

Þ система NTFS не может использоваться для форматирования флоппи-дисков. Не стоит пользоваться ею для форматирования разделов объемом менее 100 Мбайт.

Файловая система ОС UNIX

В мире UNIX существует несколько разных видов файловых систем со своей структурой внешней памяти. Наиболее известны традиционная файловая система UNIX System V (s5) и файловая система семейства UNIX BSD (ufs).

Рассмотрим s 5.

Файл в системе UNIX представляет собой множество символов с произвольным доступом.

Файл имеет такую структуру, которую налагает на него пользователь.

Файловая система Unix, это иерархическая, многопользовательская файловая система.

Файловая система имеет древовидную структуру. Вершинами (промежуточными узлами) дерева являются каталоги со ссылками на другие каталоги или файлы. Листья дерева соответствуют файлам или пустым каталогам.

Замечание. На самом деле файловая система Unix не является древообразной. Дело в том, что в системе имеется возможность нарушения иерархии в виде дерева, так как имеется возможность ассоциировать несколько имен с одним и тем же содержимым файла .

Структура диска

Диск разделен на блоки. Размер блока данных определяется при форматировании файловой системы командой mkfs и может быть установлен 512, 1024, 2048, 4096 или 8192 байтов.

Считаем по 512 байт (размер сектора).

Дисковое пространство делится на следующие области (см. рис.):

· загрузочный блок;

· управляющий суперблок;

· массив i -узлов;

· область для хранения содержимого (данных) файлов;

· совокупность свободных блоков (связанных в список);

Блокначальной загрузки

Суперблок

i - узел

. . .

i - узел

Замечание. Для файловой системы UFS - все это для группы цилиндров повторяется (кроме Boot -блока) + выделена специальная область для описания группы цилиндров

Блок начальной загрузки

Блок размещен в блоке №0. (Вспомним, что размещение этого блока в нулевом блоке системного устройства определяется аппаратурой, так как аппаратной загрузчик всегда обращается к нулевому блоку системного устройства. Это последний компонент файловой системы, который зависит от аппаратуры.)

Boot -блок содержит программу раскрутки, которая служит для первоначального запуска ОС UNIX . В файловых системах s 5 реально используется boot -блок только корневой файловой системы. В дополнительных файловых системах эта область присутствует, но не используется.

Суперблок

Он содержит оперативную информацию о состоянии файловой системы, а также данные о параметрах настройки файловой системы.

В частности суперблок содержит следующую информацию

· количество i -узлов (индексных дескрипторов);

· размер раздела???;

· список свободных блоков;

· список свободных i -узлов;

· и другое.

Обратим внимание! Свободное пространство на диске образует связанный список свободных блоков . Этот список хранится в суперблоке.

Элементами списка являются массивы из 50 элементов(если блок = 512 байт, то элемент = 16 бит):

· в элементах массива №№1-48 записаны номера свободных блоков пространства блоков файлов с 2 до 49.

· в №0 элементе содержится указатель на продолжение списка, а

· в последнем элементе (№49) содержится указатель на свободный элемент в массиве.

Если какому-то процессу для расширения файла требуется свободный блок, то система по указателю (на свободный элемент) выбирает элемент массива, и блок с №, хранящимся в данном элементе, предоставляется файлу. Если происходит сокращение файла, то высвободившиеся номера добавляются в массив свободных блоков и корректируется указатель на свободный элемент.

Так как размер массива - 50 элементов, то возможны две критические ситуации:

1. Когда мы освобождаем блоки файлов, а они не могут поместиться в этом массиве. В этом случае из файловой системы выбирается один свободный блок и заполненный полностью массив свободных блоков копируется в этот блок, после этого значение указателя на свободный элемент обнуляется, а в нулевой элемент массива, который находится в суперблоке, записывается номер блока, который система выбрали для копирования содержимого массива . В этот моментсоздается новый элемент списка свободных блоков (каждый по 50 элементов).

2. Когда содержимое элементов массива свободных блоков исчерпалось (в этом случае нулевой элемент массива равен нулю) Если этот элемент нулю не равен, то это означает, что существует продолжение массива. Это продолжение считывается в копию суперблока в оперативной памяти.

Список свободных i -узлов . Это буфер, состоящий из 100 элементов. В нем находится информация о 100 номерах i -узлов, которые свободны в данный момент.

Суперблок всегда находится в ОЗУ

Þ все операции (освобождение и занятие блоков и i -узлов происходят в ОЗУ Þ минимизация обменов с диском.

Но! Если содержимое суперблока не будет записано на диск и выключено питание, то возникнут проблемы (несоответствие реального состояния файловой системы и содержимого суперблока). Но это уже требование к надежности аппаратуры системы.

Замечание . В файловых системах UFS для повышения устойчивости поддерживается несколько копий суперблока (по одной копии на группу цилиндров)

Область индексных дескрипторов

Это массив описаний файлов, называемых i -узлами (i - node ) .(64-х байтные?)

Каждый индексный описатель (i -узел) файла содержит:

· Тип файла (файл/каталог/специальный файл/fifo/socket)

· Атрибуты (права доступа) - 10

· Идентификатор владельца файла

· Идентификатор группы-владельца файла

· Время создания файла

· Время модификации файла

· Время последнего доступа к файлу

· Длина файла

· Количество ссылок к данному i -узлу из различных каталогов

· Адреса блоков файла

! Обратите внимание . Здесь нет имени файла

Рассмотрим подробнее как организована адресация блоков , в которых размещен файл. Итак, в поле с адресами находятся номера первых 10 блоков файла.

Если файл превышает десять блоков, то начинает работать следующий механизм: 11-й элемент поля содержит номер блока, в котором размещены 128(256) ссылок на блоки данного файла. В том случае, если файл еще больше - то используется 12й элемент поля- он содержит номер блока, в котором содержится 128(256) номеров блоков, где каждый блок содержит 128(256) номеров блоков файловой системы. А если файл еще больше, то используется 13 элемент - где глубина вложенности списка увеличена еще на единицу.

Таким образом мы можем получить файл размером (10+128+128 2 +128 3)*512.

Это можно представить в следующем виде:

Адрес 1-го блока файла

Адрес 2-го блока файла

Адрес 10-го блока файла

Адрес блока косвенной адресации (блока с 256 адресами блоков)

Адрес блока 2-й косвенной адресации (блока с 256 адресами блоков с адресами)

Адрес блока 3-й косвенной адресации (блока с адресами блоков с адресами блоков с адресами)

Защита файла

Теперь обратим внимание на идентификаторы владельца и группы и биты защиты.

В ОС Unix используется трехуровневая иерархия пользователей :

Первый уровень - все пользователи.

Второй уровень - группы пользователей. (Все пользователи подразделены на группы.

Третий уровень - конкретный пользователь (Группы состоят из реальных пользователей). В связи с этой трехуровневой организацией пользователей каждый файл обладает тремя атрибутами:

1) Владелец файла. Этот атрибут связан с одним конкретным пользователем, который автоматически назначается системой владельцем файла. Владельцем можно стать по умолчанию, создав файл, а также есть команда, которая позволяет менять владельца файла.

2) Защита доступа к файлу. Доступ к каждому файлу ограничивается по трем категориям:

· права владельца (что может делать владелец с этим файлом, в общем случае - не обязательно все, что угодно);

· права группы, которой принадлежит владелец файла. Владелец сюда не включается (например, файл может быть закрыт на чтение для владельца, а все остальные члены группы могут свободно читать из этого файла;

· все остальные пользователи системы;

По этим трем категориям регламентируются три действия: чтение из файла, запись в файл и исполнение файла (в мнемонике системы R,W,X, соответственно). В каждом файле по этим трем категориям определено - какой пользователь может читать, какой писать, а кто может запускать его в качестве процесса.

Организация каталогов

Каталог с точки зрения ОС - это обычный файл, в котором размещены данные о всех файлах, которые принадлежат каталогу.

Элемент каталога состоит из двух полей:

1)номер i -узла (порядковый номер в массиве i -узлов)и

2)имя файла:

Каждый каталог содержит два специальных имени: ‘.’ - сам каталог; ‘..’ - родительский каталог.

(Для корневого каталога родитель ссылается на него же самого.)

В общем случае, в каталоге могут неоднократно встречаться записи, ссылающиеся на один и тот же i -узел, но в каталоге не могут встречаться записи с одинаковыми именами. То есть с содержимым файла может быть связано произвольное количество имен. Это называется связыванием . Элемент каталога, относящийся к одному файлу называется связью .

Файлы существуют независимо от элементов каталогов, а связи в каталогах указывают действительно на физические файлы. Файл «исчезает» когда удаляется последняя связь, указывающая на него.

Итак, чтобы получить доступ к файлу по имени, операционная система

1. находит это имя в каталоге, содержащем файл,

2. получает номер i -узла файла,

3. по номеру находит i- узел в области i-узлов,

4. из i-узла получает адреса блоков, в которых расположены данные файла,

5. по адресам блоков считывает блоки из области данных.

Структура дискового раздела в EXT 2 FS

Все пространство раздела делится на блоки. Блок может иметь размер от 1, 2 или 4 килобайта. Блок является адресуемой единицей дискового пространства.

Блоки, в свою область объединяются в группы блоков. Группы блоков в файловой системе и блоки внутри группы нумеруются последовательно, начиная с 1. Первый блок на диске имеет номер 1 и принадлежит группе с номером 1. Общее число блоков на диске (в разделе диска) является делителем объема диска, выраженного в секторах. А число групп блоков не обязано делить число блоков, потому что последняя группа блоков может быть не полной. Начало каждой группы блоков имеет адрес, который может быть получен как ((номер группы - 1)* (число блоков в группе)).

Каждая группа блоков имеет одинаковое строение. Ее структура представлена в таблице.

Первый элемент этой структуры (суперблок) - одинаков для всех групп, а все остальные - индивидуальны для каждой группы. Суперблок хранится в первом блоке каждой группы блоков (за исключением группы 1, в которой в первом блоке расположена загрузочная запись). Суперблок является начальной точкой файловой системы. Он имеет размер 1024 байта и всегда располагается по смещению 1024 байта от начала файловой системы. Наличие нескольких копий суперблока объясняется чрезвычайной важностью этого элемента файловой системы. Дубликаты суперблока используются при восстановлении файловой системы после сбоев.

Информация, хранимая в суперблоке, используется для организации доступа к остальным данным на диске. В суперблоке определяется размер файловой системы, максимальное число файлов в разделе, объем свободного пространства и содержится информация о том, где искать незанятые участки. При запуске ОС суперблок считывается в память и все изменения файловой системы вначале находят отображение в копии суперблока, находящейся в ОП, и записываются на диск только периодически. Это позволяет повысить производительность системы, так как многие пользователи и процессы постоянно обновляют файлы. С другой стороны, при выключении системы суперблок обязательно должен быть записан на диск, что не позволяет выключать компьютер простым выключением питания. В противном случае, при следующей загрузке информация, записанная в суперблоке, окажется не соответствующей реальному состоянию файловой системы.

Вслед за суперблоком расположено описание группы блоков (Group Descriptors). Это описание содержит:

Адрес блока, содержащего битовую карту блоков (block bitmap) данной группы;

Адрес блока, содержащего битовую карту индексных дескрипторов (inode bitmap) данной группы;

Адрес блока, содержащего таблицу индексных дескрипторов (inode table) данной группы;

Счетчик числа свободных блоков в данной группе;

Число свободных индексных дескрипторов в данной группе;

Число индексных дескрипторов в данной группе, которые являются каталогами

и другие данные.

Информация, которая хранится в описании группы, используется для того, чтобы найти битовые карты блоков и индексных дескрипторов, а также таблицу индексных дескрипторов.

Файловая система Ext 2 характеризуется:

  • иерархической структурой,
  • согласованной обработкой массивов данных,
  • динамическим расширением файлов,
  • защитой информации в файлах,
  • трактовкой периферийных устройств (таких как терминалы и ленточные устройства) как файлов.

Внутреннее представление файлов

Каждый файл в системе Ext 2 имеет уникальный индекс. Индекс содержит информацию, необходимую любому процессу для того, чтобы обратиться к файлу. Процессы обращаются к файлам, используя четко определенный набор системных вызовов и идентифицируя файл строкой символов, выступающих в качестве составного имени файла. Каждое составное имя однозначно определяет файл, благодаря чему ядро системы преобразует это имя в индекс файла.Индекс включает в себя таблицу адресов расположения информации файла на диске. Так как каждый блок на диске адресуется по своему номеру, в этой таблице хранится совокупность номеров дисковых блоков. В целях повышения гибкости ядро присоединяет к файлу по одному блоку, позволяя информации файла быть разбросанной по всей файловой системе. Но такая схема размещения усложняет задачу поиска данных. Таблица адресов содержит список номеров блоков, содержащих принадлежащую файлу информацию.

Индексные дескрипторы файлов

Каждому файлу на диске соответствует индексный дескриптор файла, который идентифицируется своим порядковым номером - индексом файла. Это означает, что число файлов, которые могут быть созданы в файловой системе, ограничено числом индексных дескрипторов, которое либо явно задается при создании файловой системы, либо вычисляется исходя из физического объема дискового раздела. Индексные дескpиптоpы существуют на диске в статической форме и ядро считывает их в память прежде, чем начать с ними работать.

Индексный дескриптор файла содержит следующую информацию:

- Тип и права доступа к данному файлу.

Идентификатор владельца файла (Owner Uid).

Размер файла в байтах.

Время последнего обращения к файлу (Access time).

Время создания файла.

Время последней модификации файла.

Время удаления файла.

Идентификатор группы (GID).

Счетчик числа связей (Links count ).

Число блоков, занимаемых файлом.

Флагифайла (File flags)

Зарезервировано для ОС

Указатели на блоки, в которых записаны данные файла (пример прямой и косвенной адресации на рис.1)

Версия файла (для NFS)

ACL файла

ACL каталога

Адресфрагмента (Fragment address)

Номерфрагмента (Fragment number)

Размер фрагмента (Fragment size )

Каталоги

Каталоги являются файлами.

Ядро хранит данные в каталоге так же, как оно это делает в файле обычного типа, используя индексную структуру и блоки с уровнями прямой и косвенной адресации. Процессы могут читать данные из каталогов таким же образом, как они читают обычные файлы, однако, исключительное право записи в каталог резервируется ядром, благодаря чему обеспечивается правильность структуры каталога.).

Когда какой-либо пpоцесс использует путь к файлу, ядpо ищет в каталогах соответствующий номеp индексного дескpиптоpа. После того, как имя файла было пpеобpазовано в номеp индексного дескpиптоpа, этот дескpиптоp помещается в память и затем используется в последующих запpосах.

Дополнительные возможности EXT2 FS

В дополнение к стандаpтным возможностям Unix, EXT2fs пpедоставляет некотоpые дополнительные возможности, обычно не поддеpживаемые файловыми системами Unix.

Файловые атpибуты позволяют изменять pеакцию ядpа пpи pаботе с набоpами файлов. Можно установить атpибуты на файл или каталог. Во втоpом случае, файлы, создаваемые в этом каталоге, наследуют эти атpибуты.

Во вpемя монтиpования системы могут быть установлены некотоpые особенности, связанные с файловыми атpибутами. Опция mount позволяет администpатоpу выбpать особенности создания файлов. В файловой системе с особенностями BSD, файлы создаются с тем же идентификатоpом гpуппы, как и у pодительского каталога. Особенности System V несколько сложнее. Если у каталога бит setgid установен, то создаваемые файлы наседуют идентификатоp гpуппы этого каталога, а подкаталоги наследуют идентификатоp гpуппы и бит setgid. В пpотивном случае, файлы и каталоги создаются с основным идентификатоpом гpуппы вызывающего пpоцесса.

В системе EXT2fs может использоваться синхpонная модификация данных, подобная системе BSD. Опция mount позволяет администpатоpу указывать чтобы все данные (индексные дескpиптоpы, блоки битов, косвенные блоки и блоки каталогов) записывались на диск синхpонно пpи их модификации. Это может быть использовано для достижения высокой потности записи инфоpмации, но также пpиводит к ухудшению пpоизводительности. В действительности, эта функция обычно не используется, так как кpоме ухудшения пpоизводительности, это может пpивести к потеpе данных пользователей, котоpые не помечаются пpи пpовеpке файловой системы.

EXT2fs позволяет пpи создании файловой системы выбpать pазмеp логического блока. Он может быть pазмеpом 1024, 2048 или 4096 байт. Использование блоков большого объема пpиводит к ускоpению опеpаций ввода/вывода (так как уменьшается количество запpосов к диску), и, следовательно, к меньшему пеpемещению головок. С дpугой стоpоны, использование блоков большого объема пpиводит к потеpе дискового пpостpанства. Обычно последний блок файла используется не полностью для хpанения инфоpмации, поэтому с увеличением объема блока, повышается объем теpяемого дискового пpостpанства.

EXT2fs позволяет использовать ускоpенные символические ссылки. Пpи пpименении таких ссылок, блоки данных файловой системы не используются. Имя файла назначения хpанится не в блоке данных, а в самом индексном дескpиптоpе. Такая стpуктуpа позволяет сохpанить дисковое пpостpанство и ускоpить обpаботку символических ссылок. Конечно, пpостpанство, заpезеpвиpованное под дескpиптоp, огpаничено, поэтому не каждая ссылка может быть пpедставлена как ускоpенная. Максимальная длина имени файла в ускоpенной ссылке pавна 60 символам. В ближайшем будующем планиpуется pасшиpить эту схему для файлов небольшого объема.

EXT2fs следит за состоянием файловой системы. Ядpо использует отдельное поле в супеpблоке для индикации состояния файловой системы. Если файловая система смонтиpована в pежиме read/write, то ее состояние устанавливается как "Not Clean". Если же она демонтиpована или смонтиpована заново в pежиме read-only, то ее состояние устанавливается в "Clean". Во вpемя загpузки системы и пpовеpке состояния файловой системы, эта инфоpмация используется для опpеделения необходимости пpовеpки файловой системы. Ядpо также помещает в это поле некотоpые ошибки. Пpи опpеделении ядpом несоответствия, файловая система помечается как "Erroneous". Пpогpамма пpовеpки файловой системы тестиpует эту инфоpмацию для пpовеpки системы, даже если ее состояние является в действительности "Clean".

Длительное игноpиpование тестиpования файловой системы иногда может пpивести к некотоpым тpудностям, поэтому EXT2fs включает в себя два метода для pегуляpной пpовеpки системы. В супеpблоке содеpжится счетчик монтиpования системы. Этот счетчик увеличивается каждый pаз, когда система монтиpуется в pежиме read/write. Если его значение достигает максимального (оно также хpанится в супеpблоке), то пpогpамма тестиpования файловой системы запускает ее пpовеpку, даже если ее состояние является "Clean". Последнее вpемя пpовеpки и максимальный интеpвал между пpовеpками также хpанится в супеpблоке. Когда же достигается максимальный интеpвал между пpовеpками, то состояние файловой системы игноpиpуется и запускается ее пpовеpка.

Оптимизация пpоизводительности

Система EXT2fs содеpжит много функций, оптимизиpующих ее пpоизводительность, что ведет к повышению скоpости обмена инфоpмацией пpи чтении и записи файлов.

EXT2fs активно использует дисковый буфеp. Когда блок должен быть считан, ядpо выдает запpос опеpации ввода/вывода на несколько pядом pасположенных блоков. Таким обpазом, ядpо пытается удостовеpиться, что следующий блок, котоpый должен быть считан, уже загpужен в дисковый буфеp. Подобные опеpации обычно пpоизводятся пpи последовательном считывании файлов.

Система EXT2fs также содеpжит большое количество оптимизаций pазмещения инфоpмации. Гpуппы блоков используются для объединения соответствующих индексных дескpиптоpов и блоков данных. Ядpо всегда пытается pазместить блоки данных одного файла в одной гpуппе, так же как и его дескpиптоp. Это пpедназначено для уменьшения пеpемещения головок пpивода пpи считывании дескpиптоpа и соответствующих ему блоков данных.

Пpи записи данных в файл, EXT2fs заpанее pазмещает до 8 смежных блоков пpи pазмещении нового блока. Такой метод позволяет достичь высокой пpоизводительности пpи сильной загpуженности системы. Это также позволяет pазмещать смежные блоки для файлов, что укоpяет их последующее чтение.

Операционная система, которая является основой работы любой компьютерной техники, организует работу с электронными данными, следуя определенному алгоритму, в цепочке которого файловая система не является невостребованной. Что собой представляет вообще файловая система, и какие ее виды применимы в современное время и попытаемся изложить в этой статье.

Описание общих характеристик файловой системы

ФС - это, как уже указано выше, часть операционной системы, которая связана непосредственно с размещением, удалением, перемещением электронной информации на определенном носителе, а также безопасностью ее дальнейшего использования в будущем. Именно это ресурс также применим в случаях, когда требуется восстановление утерянной информации по причине программного сбоя, как такового. То есть это основной инструмент работы с электронными файлами.

Виды файловой системы

На каждом компьютерном устройстве применим особый тип ФС. Особо распространенные следующие ее типы:

Предназначенная для жестких дисков;
- предназначенная для магнитных лент;
- предназначенная для оптических носителей;
- виртуальная;
- сетевая.

Естественно, что основной логической единицей работы с электронными данными является файл, под которым подразумевается документ с систематизированной в нем информацией определенного характера, который имеет свое наименование, что облегчает работу пользователя с большим потоком электронных документов.
Итак, абсолютно вся, используемая операционкой инфа, трансформируется в файлы, независимо от того текст это или изображения, или звук, или видео, или фото. Помимо всего прочего драйвера и программные библиотеки, тоже имеют транскрипцию оных.

У каждой информационной единицы есть имя, определенное расширение, размер, свойственные характеристики, тип. А вот ФС – это их совокупность, а также принципы работы со всеми ними.

В зависимости от того какие свойственные особенности присущи системе, с такими данными она и будет эффективно работать. А это и есть предпосылкой классификации ее на типы и виды.

Взгляд на файловую систему с точки зрения программирования

Изучая понятие ФС, следует понимать, что это многоуровневая составляющая, на первом из которых преобладает трансформатор файловых систем, обеспечивающий эффективное взаимодействие между самой системой и определенным программным приложением. Именно он отвечает за преобразование запроса к электронным данным в определенный формат, который и распознается драйверами, что влечет за собой эффективную работу с файлами, то есть к ним открывается доступ.

У современных приложений, которые имеют стандарт работы клиент-сервер, требования к ФС очень высоки. Ведь современные системы просто обязаны обеспечивать самый эффективнейший доступ ко всем имеющимся типам электронных единиц, а также оказывать колоссальную поддержку носителей больших объемов, а также устанавливать защиту всех данных от нежелательного доступа иными пользователями, а также обеспечивать целостность информации, хранимой в электронном формате.

Ниже мы рассмотрим все существующие на сегодня ФС и их достоинства и недостатки.

FAT
Это самый древний тип файловой системы, который был разработан еще в далеком 1977 году. Она работала с операционкой ОС 86-DOS и не способна работать с жесткими носителями информации, и рассчитана на гибкие их типы и хранение информации до одного мегабайта. Если ограничение размера инфы сегодня не актуально, то иные показатели остались востребованными в неизменном виде.

Эта файловая система использовалась ведущей компанией разработчиком программных приложений – Майкрософт для такой операционки, как ОС MS-DOS 1.0.
Файлы этой системы имеют ряд характерных свойств:

Имя информационной единицы должно содержать в своем начале букву или цифру, а дальнейшее содержание наименование может включать различные символы клавиатуры компа;
- имя файла не должно превышать восьми символов, в конце имени ставится точка, после которой следует расширение из трех букв;
- для создания имени файла может использоваться любой регистр раскладки клавиатуры.

С самого начала разработки файловая система FAT была направлена на работу с операционкой ОС DOS, она не была заинтересована в сохранении данных о пользователе или владельце информации.

Благодаря всевозможным модификациям этой ФС, она стала самой востребованной в современное время и на ее основе работают самые инновационные операционные системы.

Именно данная файловая система способна сохранять файлы в неизменном виде, если компьютерная техника выключилась неверно в силу, например, отсутствия зарядки батареи или выключения света.

Во многих операционных системах, с которыми работает FAT, лежат определенные программные утилиты, корректирующие и проверяющие само дерево содержания ФС и файлы.

NTFS
С операционкой ОС Windows NT работает современная файловая система NTFS, в принципе на нее она и была нацелена. В ее составе действует утилита convert, которая отвечает за конвертацию томов с формата HPFS или FAT, в формат томов NTFS.

Она более модернизирована по сравнению с первым описанным выше вариантом. В этой версии расширены возможности касаемо непосредственного управления доступом ко всем информационным единицам. Здесь можно пользоваться множеством полезных атрибутов, динамическим сжатием файлов, отказоустойчивостью. Одним из преимуществ оной является и поддержка требований POSIX стандарта.

Эта файловая система позволяет создавать информационные файлы с именами длинной в 255 символов.

Если операционка, которая работает с данной файловой системой, дает сбой, то не нужно переживать за сохранность всех файлов. Они остаются в целостности и невредимости, поскольку этот тип файловой системы имеет свойство самовосстанавливаться.

Особенностью ФС NTFS является ее структура, которая представлена в виде определенной таблицы. Первые шестнадцать записей в реестре - это содержание самой файловой системы. Каждая отдельная электронная единица тоже имеет вид таблицы, которая содержит информацию о таблице, зеркальный файл в формате MFT, файл регистрации, используемый при необходимости восстановления информации и последующие данные – это информация о самом файле и его данные, которые были сохранены непосредственно на жестком диске.

Все выполняемые команды с файлами имеют свойство сохраняться, что помогает впоследствии восстанавливаться системе самостоятельно после сбоя операционной системы, с которой она работает.

EFS
Очень распространенной является файловая система EFS, которая считается шифрованной. Она работает с операционкой Windows. Эта система обуславливает сохранение файлов на жестком диске в зашифрованном виде. Это самая действенная защита всех файлов.
Шифрование устанавливается в свойствах файла с помощью галочки напротив вкладки, говорящей о возможности шифровки. Воспользовавшись этой функцией можно указывать, кому доступны для просмотра файлы, то есть, кому разрешено с ними работать.

RAW
Файловые элементы – это самые уязвимые единицы программирования. Ведь именно они и являются информацией, которая хранится на дисках компьютерной техники. Они могут повреждаться, удаляться, скрываться. В общем, работа пользователя только и нацелена на создание, сохранение и перемещение оных.
Операционная система не всегда показывает идеальные свойства своей работы и имеет характерность выходить из строя. Происходит это по многим причинам. Но сейчас не об этом.

Очень многие пользователи сталкиваются с уведомлением о том, что повреждена система RAW. Это действительно ФС или нет? Таким вопросом задаются многие. Оказывается, это не совсем так. Если объяснять на уровне языка программирования, то RAW – это ошибка, а именно логическая ошибка, которая внедрена уже в операционку Windows в целях обезопасить ее от выхода из строя. Если техника выдает какие-то сообщения по поводу RAW, значит нужно иметь в виду, что под угрозой структура файловой системы, которая работает неверно либо ей грозит постепенное разрушение.

Если такая проблема на лицо, то вы не сможете получить доступ ни к одному файлу в компе, а также он откажется выполнять и иные операционные команды.

UDF
Это файловая система для оптических дисков, котрая имеет свои особенности:

Наименования файлов не должны превышать 255 символов;
- именной регистр может быть как нижним, так и верхним.

Работает она с операционкой Windows XP.

EXFAT
И еще одна современная файловая система – EXFAT, которая является неким посредническим звеном между Windows и Linux, обеспечивающим эффективную трансформацию файлов из одной системы в иную, поскольку файлообменники у них разные. Используется она на переносных накопителях информации, таких как флешки.

Из выше написанного, можно сделать верный вывод. Каждая охарактеризованная ФС отличается своими особенностями, создает определенные форматы файлов. Вот почему иногда не получается получить доступ к каким-то файлам, значит они созданы совсем в иной файловой системе, которую ваша распознать не может.

Надеемся, что изложенная в этой статье информация поможет вам избежать многих проблем во время работы с информационными файлами. Теперь вы самостоятельно можете определить, с какой и ФС работает ОС вашего компьютера, и с какими данными вам приходится работать ежедневно в потоке их систематической оперативной обработки.

Файловая система – это та система, которая используется в работе операционной системой Windows. Она необходима для упорядочивания и хранения данных на каком-либо диске. Именно она в ответе за хранение данных на винчестере. Давайте рассмотрим, что такое файловая система, и какие виды таких систем существуют.

Зачем нужна файловая система

Понять, какая же файловая система используется на вашем компьютере, можно, зайдя в папку под названием «Мой компьютер». Затем необходимо щелкнуть правой кнопкой мыши и выбрать пункт «свойства». В появившемся окне с информацией вы сможете прочесть следующую надпись: Файловая система: (название).

Совершенно не обязательно, что на каждом диске будет стоять одна и та же система файлов. Чтобы это узнать, необходимо просмотреть каждый диск.

Именно от правильного выбора файловой системы и будет зависеть безопасность вашего персонального компьютера, а операционная система не будет сбиваться и терять данные. Давайте рассмотрим, какие файловые системы могут находиться в Windows.

Виды файловых систем

FAT

Первое, что мы рассмотрим – это файловая система под названием FAT. Сегодня она встречается крайне редко, поэтому подробно останавливаться на ней не стоит. Самый большой её недостаток – это максимальный объём диска, который составляет всего 2 Гб, что в современных "железках" практически не встречается. Таким образом, если ваш диск имеет больший объём, то она перестаёт работать. Несколько лет тому назад 2 Гб – это был стандартный объём винчестера, и эта файловая система прекрасно там использовалась. Но сегодня она изжила себя и заняла почетное место на помойке истории.

Следующая файловая система – это знаменитый FAT 32. 32 – это разрядность системы. Данная версия является обновленной разновидностью предыдущей файловой системы. Если вы пользуетесь более ранней версией Windows, то у вас могут возникнуть некоторые проблемы при форматировании диска. Однако данная система гораздо стабильнее, чем её предшественница, а работа с файлами будет протекать намного быстрее.

NTFS

Теперь давайте рассмотрим, что такое файловая система NTFS. Данная система хранения файлов появилась сравнительно недавно и является более современной, чем две предыдущие. Однако, несмотря на огромное количество достоинств, она не обделена и недостатками. Большинство дисков, выпускаемых сегодня коммерческими фирмами, имеют именно такую файловую систему. Она хранит данные намного лучше, однако достаточно требовательна к ресурсам вашего компьютера.

Кроме того, в случае, когда логический диск имеет полную загрузку до 90 процентов, работа файловой системы резко понижается. Также, если операционная система окажется старше, чем Windows XP, то на ней такая файловая система работать просто откажется. Засунув диск в дисковод, ваш компьютер просто не сможет распознать его или будет отмечен как неизвестный раздел. Говоря о достоинствах, можно отметить, что работа такой файловой системы с малыми файлами проходит намного быстрее и качественнее. Самый большой размер, который может иметь диск – это 18 Тб. Здесь же имеется такое понятие, как фрагментация файлов. При ней работа файловой системы не будет замедляться, а продолжит работу в обычном режиме. Также при использовании NTFS вы можете быть целиком и полностью уверены, что порча файла не произойдет. Система очень экономно расходует пространство на диске и позволяет сжимать файлы до минимального размера, совершенно не портя их. Кстати, именно благодаря данной системе стало возможно восстановление данных в случае их потери. Соответственно, если сравнивать эту систему с FAT, то все преимущества налицо. Самое главное, что она вам сможет предложить - это безопасность.

UDF

Теперь пришел черед рассмотреть, что такое файловая система UDF. Эта файловая система, которая независима от операционной системы компьютера и используется для сохранения данных, размещенных на оптических носителях. В отличие от предыдущих систем, UDF позволяет дополнительно записывать информацию на уже заполненную дискету. Также эта файловая система может выборочно стирать определенные файлы на диске, не повреждая остальную информацию. Такие метаданные как корневая территория, располагаются внутри диска хаотично, но основа этих данных имеет три места: 256 сектор, 257 и N-1, в данном случае N – это размер дорожки.

Для дисков в формате DVD, именно UDF является наиболее удачной файловой системой, потому что не имеет совершенно никаких ограничений в размерах файлов. Вы можете записывать, как большие, так и малые видеоролики.

Именно благодаря UDF мы узнали, что такое конечная файловая система, и как её правильно подобрать к своему компьютеру.