Какие бывают конденсаторы? Типы конденсаторов, их характеристики (8 фото). Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры

Содержание:

Конденсатор - это прибор, способный накапливать электрические заряды. Он применяется в электрических и электронных схемах повсюду. Современная промышленность выпускает множество их видов, которые отличаются друг от друга по разным параметрам. Это емкость, принцип работы, тип разделения зарядных проводников, диапазон допустимых напряжений, компоновка, материалы, из которых устройство изготовлено.

Любой конденсатор состоит из двух проводников, разделенных изолятором. Так как зарядка конденсатора - это занесение заряженных частиц на эти проводники, причем на один проводник одного знака, на другой - другого, а удерживаться будут заряды силой взаимного притяжения, то эффективность и зависит от этой силы. Она тем больше, чем ближе проводники друг к другу и чем больше их «почти соприкасающаяся» площадь. Разделяющая проводники среда тоже дает свой вклад. Среда эта - диэлектрик, имеющий определенную диэлектрическую проницаемость.

d – толщина диэлектрика, разделяющего металлические пластины

Емкость конденсатора вычисляется по формуле

Где S – площадь обкладок, d – толщина диэлектрика (расстояние между обкладками), а ε – проницаемость используемого диэлектрика относительно вакуума, диэлектрическая проницаемость которого известна довольно точно:

Здесь она выражена через другие единицы системы СИ. Здесь и метры в кубе в знаменателе, и секунды в четвертой степени в числителе, что произошло от формулы, где в знаменателе стоит скорость света в квадрате. И тогда емкость C и измеряется в фарадах.

И из формулы видно, что емкость и зависит как раз от площади обкладок, расстояния между ними (которое заполнено диэлектриком) и материала диэлектрика, значение ε которого можно найти по таблицам. Классификация конденсаторов делается по виду использования, по типу компонент.

Классификация по принципу действия

Самый простой конденсатор еще называется сухим, или твердотельным, потому что все материалы его твердые и самые обыкновенные. Зная описание, его можно изготовить вручную. В качестве изолятора берется бумажная лента, но так как она гигроскопична, то ее пропитывают парафином или маслом.

Сухие конденсаторы

Сухие или мокрые конденсаторы - зависит от заполнения между пластинами. Для сухих это может быть бумага, керамика, слюда, пластик (полиэстер, полипропилен). У каждого из диэлектриков свои физические свойства. Наиболее прочные (керамика) хорошо сопротивляются физическому разрушению и пробою. Пластичные допускают наносить обкладки в виде металлического напыления прямо на слой диэлектрика, что позволяет идти по пути микроминиатюризации.

Типы конденсаторов с другими состояниями компонентов

Кроме твердого диэлектрика, бывают конденсаторы с диэлектриком:

  • жидким;

  • газообразным (наполненные инертным газом для защиты электродов);

  • вакуумным;

  • воздушным.

Однако и электроды бывают не всегда вполне твердые.

Электролитические конденсаторы

Для создания большой емкости используют методы сближения обкладок не механические, а химические. Пользуясь тем, что алюминиевая фольга всегда на воздухе покрывается слоем диэлектрика (Al 2 O 3), к алюминиевому электроду вплотную приближают жидкий электрод в виде электролита. Тогда толщина изолирующего промежутка исчисляется атомными расстояниями, и это резко увеличивает емкость.

d – толщина диэлектрика

Так как на нижней поверхности верхней обкладки имеется слой оксида, диэлектрика, то именно его толщину и следует считать d - толщиной диэлектрика. Нижним электродом является нижняя обкладка, плюс слой электролита, которым пропитана бумага.

В электролитических конденсаторах заряд создается не только свободными электронами металла, но еще и ионами электролита. Поэтому важна полярность подключения.

Кроме электролитических конденсаторов, использующих в качестве изоляции оксид металла, по такому же принципу работают полевые (МОП) транзисторы. Они в электронных схемах часто и используются в качестве конденсаторов, имеющих емкость в несколько десятков нанофарад.

Еще аналогичный принцип работы у конденсаторов оксидно-полупроводниковых, в которых вместо жидкого электролита - твердый полупроводник. Но этими типами не исчерпываются конденсаторы, слой диэлектрика у которых имеет микроскопическую толщину.

Суперконденсатор, или ионистор

Возможен еще вариант создания слоя, играющего роль диэлектрика, в жидком электролите. Если залить им поверхность некоего пористого проводника (активированного угля), то при наличии на нем заряда ионы противоположного знака из электролита «прилипают» к проводнику. А к ним, в свою очередь, присоединяются другие ионы. И все вместе образует многослойную конструкцию, способную накапливать электрические заряды.

Процессы в жидком электролите особого состава для суперконденсаторов уже напоминают нечто, что происходит в электролитах аккумуляторов. Ионистор и по своим характеристикам приближается к аккумуляторам, кроме того, его зарядка проходит легче и быстрее. И в них в циклах зарядки/разрядки не происходит порчи электродов, как это обычно бывает в аккумуляторах. Ионисторы более надежные, долговечные, и ими как устройствами питания оснащают электротранспортные средства. А пористое вещество электродов дает просто колоссальную площадь поверхности. Вместе с наноскопически малой толщиной изолирующего слоя в электролите это и создает гигантскую емкость суперконденсаторов (ультраконденсаторов) - фарады, десятки и сотни фарад. Выпускается множество различных суперконденсаторов, некоторые по виду не отличаются от аккумуляторов.

Классификация по применению

Большинство конденсаторов изготовляются для использования в отлаженных, настроенных электрических схемах и цепях. Но во многих схемах производится настройка электрических или частотных параметров. Конденсаторы для этой цели очень удобны: можно менять емкость без изменения электрических контактов между обкладками.

По этому признаку конденсаторы бывают постоянными, переменными и подстроечными.

Подстроечные обычно исполняются в миниатюрном виде и предназначены для постоянной работы в схемах после небольшой предварительной оптимизирующей подстройки. Переменные имеют более широкие диапазоны параметров, чтобы проводить систематическую настройку (например, поиск волны в радиоприемнике).

По диапазону напряжений

Диапазон рабочих напряжений - очень важная характеристика конденсатора. В электронных схемах напряжения обычно небольшие. Верхняя граница - около 100 вольт. Но схемы электропитания, различные блоки питания, выпрямители, стабилизаторы приборов требуют установки конденсаторов, которые могли бы выдерживать напряжения до 400–500 вольт - с учетом возможных всплесков, и даже до 1000 вольт.

Но в сетях передачи электроэнергии напряжения бывают гораздо выше. Существуют высоковольтные конденсаторы специального исполнения.

Использование конденсатора вне его диапазона напряжений грозит пробоем. После пробоя устройство становится просто проводником и свои функции выполнять перестает. Особенно это опасно там, где конденсатор устанавливается для развязки схем по току, как отделяющий постоянное напряжение от переменной составляющей. В этом случае пробой грозит той части схемы, куда после этого хлынет постоянное напряжение: могут гореть другие элементы, может быть поражение электрическим током. Для электролитических конденсаторов это явление грозит еще и взрывом.

Слева – до 35 кВ, справа – до 4 кВ

Так как для пробоя на высоком напряжении нужен определенный минимум расстояния между проводниками, обычно для высоковольтного исполнения приборы и выполняются значительными по размерам. Или бывают изготовлены из определенных стойких к пробою материалов: керамические и … метало-бумажные. Разумеется, все в соответствующем по свойствам корпусе.

Маркировка конденсаторов

Существует несколько маркировок. Старая маркировка может состоять из трех или четырех цифр, в этом случае первые две (три) цифры означают мантиссу емкости (в пикофарадах), последняя цифра дает степень множителя-десятки.

Так выглядит трехзначная маркировка конденсаторов (обозначение емкостей)

Как видим, такая маркировка охватывает только емкость конденсаторов.

Кодовая маркировка содержит информацию и о материалах, и о напряжениях, и о допусках.

На больших конденсаторах обозначения располагают прямо на корпусе.

При отсутствии обозначений, касающихся напряжения, это низковольтный прибор. Встречаются условные буквенные обозначения напряжений.

Полярность обозначается «+ -» или канавкой кольцевого вида около минусового вывода. При наличии этого обозначения полярность соблюдать неукоснительно!

Э лектрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин - обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68000 мкФ 1 мкФ до 16 мкФ
± 10 и ±20 ±10 и ±50 ±20
50 - 250 6,3 - 400 250 - 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты.

В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты.

В твердотельных оксидных конденсаторах жидкий диэлектрик заменен специальным токопроводящим полимером. Это позволяет увеличить срок службы(и надежность). Недостатками твердотельных оксидных конденсаторов являются более высокая цена и ограничения по напряжению(до 35 в).

Оксидные электролитические и твердотельные конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида - диэлектрика очень мала.

При включении оксидных конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, электролитические конденсаторы взрываются, твердотельные - просто выходят из строя. Что бы полностью избежать возможности взрыва(у электролитических конденсаторов), некоторые модели снабжаются предохранительными клапанами(отсутствуют у твердотельных). Область применения оксидных (электролитических и твердотельных) конденсаторов - разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока.

Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Таблица 2.
Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена.

Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Слюдяные конденсаторы изготавливаются путем прокладывания между обкладками из фольги слюдяных пластин, или наоборот - металлизацией слюдяных пластин. Слюдяные конденсаторы находят применение в звуковоспроизводящих устройствах, фильтрах высокочастотных помех и генераторах. Конденсаторы на основе полиэстера - это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Таблица 3.
Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала.

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 - 630 160 6,3 - 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Конденсаторы на основе поликарбоната используются в фильтрах, генераторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются тоже, во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.
В металлобумажных конденсаторах общего назначения, обкладки изготавливаются путем напыления металла на бумагу пропитанную специальным составом и покрытые тонким слоем лака.

Код Емкость(пФ) Емкость(нФ) Емкость(мкФ)
109 1,0(пФ) 0,001(нФ) 0,000001(мкФ)
159 1,5(пФ) 0,0015(нФ) 0,0000015(мкФ)
229 2,2(пФ) 0,0022(нФ) 0,0000022(мкФ)
339 3,3(пФ) 0,0033(нФ) 0,0000033(мкФ)
479 4,7(пФ) 0,0047(нФ) 0,0000047(мкФ)
689 6,8(пФ) 0,0068(нФ) 0,0000068(мкФ)
100 10(пФ) 0,01(нФ) 0,00001(мкФ)
150 15(пФ) 0,015(нФ) 0,000015(мкФ)
220 22(пФ) 0,022(нФ) 0,000022(мкФ)
330 33(пФ) 0,033(нФ) 0,000033(мкФ)
470 47(пФ) 0,047(нФ) 0,000047(мкФ)
680 68(пФ) 0,068(нФ) 0,000068(мкФ)
101 100(пФ) 0,1(нФ) 0,0001(мкФ)
151 150(пФ) 0,15(нФ) 0,00015(мкФ)
221 220(пФ) 0,22(нФ) 0,00022(мкФ)
331 330(пФ) 0,33(нФ) 0,00033(мкФ)
471 470(пФ) 0,47(нФ) 0,00047(мкФ)
681 680(пФ) 0,68(нФ) 0,00068(мкФ)
102 1000(пФ) 1(нФ) 0,001(мкФ)
152 1500(пФ) 1,5(нФ) 0,0015(мкФ)
222 2200(пФ) 2,2(нФ) 0,0022(мкФ)
332 3300(пФ) 3,3(нФ) 0,0033(мкФ)
472 4700(пФ) 4,7(нФ) 0,0047(мкФ)
682 6800(пФ) 6,8(нФ) 0,0068(мкФ)
103 10000(пФ) 10(нФ) 0,01(мкФ)
153 15000(пФ) 15(нФ) 0,015(мкФ)
223 22000(пФ) 22(нФ) 0,022(мкФ)
333 33000(пФ) 33(нФ) 0,033(мкФ)
473 47000(пФ) 47(нФ) 0,047(мкФ)
683 68000(пФ) 68(нФ) 0,068(мкФ)
104 100000(пФ) 100(нФ) 0,1(мкФ)
154 150000(пФ) 150(нФ) 0,15(мкФ)
224 220000(пФ) 220(нФ) 0,22(мкФ)
334 330000(пФ) 330(нФ) 0,33(мкФ)
474 470000(пФ) 470(нФ) 0,47(мкФ)
684 680000(пФ) 680(нФ) 0,68(мкФ)
105 1000000(пФ) 1000(нФ) 1,0(мкФ)


2. Второй вариант - маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.


3.Третий вариант.


У советских конденсаторов вместо латинской "р" ставилось "п".

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).



Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C) Буквенный код
100(+130....-49) A
33 N
0(+30....-47) C
-33(+30....-80) H
-75(+30....-80) L
-150(+30....-105) P
-220(+30....-120) R
-330(+60....-180) S
-470(+60....-210) T
-750(+120....-330) U
-500(-250....-670) V
-2200 K

Далее следует напряжение в вольтах, чаще всего - в виде обычного числа.
Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) - означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) - напряжение в вольтах.

Напряжение (В) Буквеный код
1 I
1,6 R
3,2 A
4 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 C
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
400 Y
450 U
500 V

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с (вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).


Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая - закодированным значением в пикоФарадах(мантиссой). Цифра - показатель степени(указывает сколько нулей необходимо добавить к мантиссе).
Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость - 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость - 1,6* 100000 = 0,1 микрофарад и.т.д.

Буква Мантисса.
A 1,0
B 1,1
C 1,2
D 1,3
E 1,5
F 1,6
G 1,8
H 2,0
J 2,2
K 2,4
L 2,7
M 3,0
N 3,3
P 3,6
Q 3,9
R 4,3
S 4,7
T 5,1
U 5,6
V 6,2
W 6,8
X 7,5
Y 8,2
Z 9,1
a 2,5
b 3,5
d 4,0
e 4,5
f 5,0
m 6,0
n 7,0
t 8,0


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Конденсатор , кондер , кондюк - так его называют бывалые” специалисты один из самых распространенных элементов применяемое в различных электрических цепях. Конденсатор способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейший конденсатор состоят из двух пластинчатых электродов, разделенных диэлектриком, на этих электродах накапливается электрический заряд разной полярности, на одной пластин будет положительный заряд на другой отрицательный.

Принцип работы конденсатора и его назначение - постараюсь кратко и предельно понятно ответить на эти вопросы. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это - конденсатор постоянной емкости, обозначается он так -

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть - металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Электролитический конденсатор

Следующий распространенный тип конденсаторов это - полярные электролитические конденсаторы , его изображение на электрической схеме выглядит так -

Электролитический конденсатор так же можно назвать постоянным конденсатором, потому, что их емкость не меняется.

Но электролитические конденсаторы имеют очень важно отличие, знак (+) возле одного из электродов конденсатора говорит о том, что это полярный конденсатор и при подключении его в цепь нужно соблюдать полярность. Плюсовой электрод необходимо подключить к плюсу источника питания, а минусовой (который без плюсика) соответственно к отрицательному - (на корпусе современных конденсаторов наносят обозначение минусового электрода, а вот плюсовой не обозначают никак).


Не соблюдение этого правила может привести к выходу конденсатора из строя и даже взрыву, сопровождающемуся разлетом бумаги фольги и нехорошим запахом (от конденсатора конечно…). Электролитические конденсаторы могут иметь очень большую емкость и соответственно накапливать, довольно большой потенциал. Поэтому электролитические конденсаторы даже после отключения питания таят в себе опасность, и при неосторожном обращении ты можешь получить сильный удар электрического тока. Поэтому после снятия напряжения для безопасной работы с электрическим устройством (ремонте электроники , настройке, и т.д.) электролитический конденсатор необходимо разрядить, замкнув накоротко его электроды, (делать это нужно специальным разрядником) особенно это касается конденсаторов большой емкости которые установлены на блоках питания, где есть высокое напряжение.

Конденсаторы переменной емкости.


Как ты понял из названия переменные конденсаторы могут изменять свою емкость - например при настройке радиоприемников. Еще совсем недавно для настройки радиоприемников на нужную станцию использовались только конденсаторы переменной емкости, вращая ручку настройки приемника тем самым изменяли емкость конденсатора. Переменные конденсаторы используются и посей день в простых недорогих моделях приемников и передатчиков. Конструкция переменного конденсатора очень простая. Конструктивно он состоит из статорных и роторных пластин, роторные пластины подвижные и входят в статорные е касаясь последних. Диэлектриком в таком конденсаторе является воздух. При входе статорных пластин в роторные емкость конденсатора увеличивается, при выходе роторных пластин емкость уменьшается. Обозначение переменного конденсатора выгляди так -

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях.
В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.


Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки - к ак прозванивать мультиметром , как и при проверке резисторов - что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом - Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.


Емкость конденсатора измеряется в Фарадах, 1 фарад - это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах (nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

Накопление и преобразование электрической энергии можно отнести к базовым задачам, которые решают вспомогательные элементы радиоаппаратуры. Конденсатор относится к пассивным компонентам и выступает своего рода емкостью для поступающего заряда. Конструкция стандартных устройств предусматривает наличие пластинчатых электродов, которые разделяются тонкими диэлектриками. Более сложные типы конденсаторов могут содержать несколько электродных слоев, формирующих цилиндрическую намотку. Есть и другие отличительные признаки, обуславливающие возможности применения элементов для той или иной аппаратуры.

Назначение конденсаторов

На сегодняшний день едва ли найдется область радиотехники, в которой бы не использовались данные устройства. Наиболее распространены комбинации конденсаторов с резисторами и катушками индуктивности, участвующие в построении электрических цепей. Такие узлы поддерживают функции частотных фильтров, колебательных контуров и линий с обратной связью. Еще одна их распространенная задача - сглаживание пульсаций напряжения, требуемое во вторичных источниках энергоснабжения. В лазерных установках, системах вспышки и магнитных ускорителях электрический конденсатор используется для выдачи разового заряда с большим показателем мощности. И напротив, электротехнические приборы оснащаются данными элементами с целью компенсации реактивной мощностной энергии. Хотя такие элементы нельзя рассматривать в качестве полноценных емкостных накопителей энергии, в некоторых системах они выступают и как носители информации.

Маркировка устройств

Для визуального определения принадлежности конденсатора к той или иной категории используются специальные обозначения. В первую очередь указывается емкостный потенциал, выражаемый микрофарадами (мкФ). Могут применяться и другие единицы измерения, о чем также будет свидетельствовать соответствующая маркировка. Не всегда отмечается тип используемого в конструкции материала - как правило, без маркировки выпускаются керамические и пленочные неполярные модели. В свою очередь, обозначение танталовых конденсаторов соответствует резисторам - за исключением наличия знака µ и цифр 104 или 107. Такие устройства могут иметь оранжевый, желтый или черный цвет. В знаковой маркировке также указываются размерные параметры и емкость. Высоковольтные и электролитические модели помечаются величиной максимального напряжения, а для переменных конденсаторов указывается диапазон емкости.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Керамические конденсаторы

Это устройства, базирующиеся на дисковых керамических элементах с диэлектриками из титаната бария. Такой конденсатор можно использовать в системах с напряжением до 50 000 В, но важно учитывать, что он имеет минимальную температурную стабильность и широкий спектр изменения емкости. Среди достоинств можно отметить небольшие утечки тока, скромные размеры (при большой емкости заряда) и способность работать на высокой частоте. Что касается назначения, то керамические конденсаторы применяются в цепях с пульсирующим, переменным и постоянным током. Чаще всего используют модели емкостью до 0,5 мкФ. В процессе работы конденсатор этого типа хорошо справляется с внешними нагрузками, среди которых механические удары. Нельзя сказать, что керамический корпус отличается большим эксплуатационным сроком и долговечностью, однако в заявленный период технические свойства поддерживает стабильно.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Конденсатор на основе полипропилена

Тоже вариант относительно недорогого накопителя электрического заряда, который при этом отличается низким коэффициентом потерь и высокой диэлектрической прочностью. К плюсам можно отнести и оптимальную гигроскопичность. То есть один из главных врагов радиоэлементов в виде влажности полипропиленовым конденсаторам не страшен. В качестве изоляторов применяется металлизированная пленка или полоски фольги. В новейших версиях используют и технологию самовосстанавливающейся оболочки, что повышает надежность и долговечность конденсатора.

Устройство может работать на повышенных частотах с сохранением достаточной мощности. Это качество позволяет использовать конденсаторы в системах индукционного обогрева, дополненных водяным охлаждением. Распространено и применение таких элементов в оснастке электромоторов на 220 В. В данном случае они выступают как пусковые компоненты. Эту функцию лучше всего реализуют модели с рабочей емкостью в диапазоне 1-100 мкФ и напряжением в 440 В. Но и это не единственные накопители на синтетической основе. Какие бывают конденсаторы из термопластиков? Внимания заслуживают полисульфоновые и поликарбонатные элементы. Первые отличаются низким влагопоглощением и способностью поддерживать высокое напряжение при температурных перепадах, а вторые в процессе работы демонстрируют оптимальную электротехническую стабильность.

Танталовые конденсаторы

Основу устройства формирует пентоксид тантала с оксидным электролитическим наполнением. Конденсатор отличается высоким отношением емкости к объему, широким спектром поддерживаемых температур и компактностью. Используют такие компоненты в мелком приборостроении, компьютерах и другой вычислительной технике. В этом семействе можно выделить следующие типы конденсаторов: полярные и неполярные, твердотельные, жидкостные. Наиболее привлекательные по эксплуатационным качествам именно твердотельные устройства, так как они характеризуются способностью поддерживать большое напряжение. Однако в условиях критического превышения допустимой величины тока они могут выходить из строя. Емкость танталовых моделей составляет 1000 мкФ, но по сравнению с электролитическими аналогами их собственная индуктивность гораздо ниже, что допускает возможность применения элемента на высоких частотах.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая - порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Многослойные и однослойные конструкции

Обычно данную классификацию применяют в отношении конденсаторов, выполненных из керамики. Так, однослойные конденсаторы (дисковые) имеют простое устройство, но это не сказывается на уменьшении размеров. В большинстве случаев они массивнее, чем многослойные аналоги. В итоге увеличивается емкость устройства, но крупные размеры все же ограничивают их распространение в отдельных областях.

Что касается многослойных элементов, то они по эксплуатационным качествам в целом схожи с дисковыми, но потенциал накопителей еще выше. Также существенное преимущество заключается в надежности и долговечности. Форм-фактор, в котором выполняются многослойные конденсаторы, делает их менее чувствительными к агрессивным средам, что расширяет область применения. Такие компоненты преимущественно используют в дорогой профессиональной аппаратуре.

Масляные конденсаторы с пропитками

Это отдельная группа радиотехнических элементов, в основе которых находятся бумажные наполнители. Они обрабатываются специальными растворами наподобие воска и эпоксидных смол. Какие бывают конденсаторы масляного типа? Принципиально отличаются модели для постоянного и переменного тока. Первые используются в целях частотной фильтрации, повышения напряжения и устранения электрической дуги. Конденсаторы на масляной пропитке для систем с переменным током применяют в промышленности. Такое устройство располагает большой емкостью и может справляться с большими пиковыми нагрузками. Как правило, его используют в качестве пускового компонента для электромоторов. К дополнительным функциям можно отнести разделение фаз, коррекцию мощности и выравнивание напряжения.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Заключение

И простейшие однослойные, и многослойные высоковольтные модели конденсаторов выполняют важные для радиоаппаратуры задачи. Как минимум они корректируют параметры тока, что при схожих размерах не может обеспечить ни один другой технический компонент. В то же время электрический конденсатор вовсе не является идеальным решением, что обуславливает постоянные поиски новых форматов его исполнения. Производители сложной аппаратуры экспериментируют с конструкциями, наполнителями и физическими свойствами, стараясь предлагать оптимальные потребительские качества данного устройства. Среди наиболее важных целевых параметров в этом плане можно назвать устойчивость конденсатора к нагрузкам, широкие рабочие диапазоны, минимальное радиационное воздействие и высокий срок службы.

В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.

Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор . Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.

В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.

У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.


Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS

В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.

Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.

Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).

Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.

Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.

Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.

Перед повторным применением стоит тщательно проверить конденсатор , ранее бывший в употреблении.

Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.

В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.


Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD - привода

Также существуют миниатюрные танталовые конденсаторы . Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.


Танталовые электролитические конденсаторы на печатной плате MP-3 плеера

Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.


Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода

В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.

Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода . Плюсовым выводом – анодом - в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.

На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.

Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.

Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.


Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт

Среди электролитических конденсаторов есть и неполярные . Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.