Какие бывают raid массивы. Что такое «RAID»? Почему так сложилось в общем и целом

RAID массив (Redundant Array of Independent Disks) – подключение нескольких устройств, для повышения производительности и\или надежности хранения данных, в переводе - избыточный массив независимых дисков.

Согласно закону Мура, нынешняя производительность возрастает с каждым годом (а именно количество транзисторов на чипе удваивается каждые 2 года). Это можно заметить практически в каждой отрасли производства оборудования для компьютеров. Процессоры увеличивают количество ядер и транзисторов, уменьшая при этом тех процесс, оперативная память увеличивает частоту и пропускную способность, память твердотельных накопителей повышает износостойкость и скорость чтения.

Но вот простые жесткие диски (HDD) особо не продвинулись за последние 10 лет. Как была стандартной скорость 7200 об/мин, так она и осталась (не беря в расчет серверные HDD c оборотами 10.000 и более). На ноутбуках все еще встречаются медленные 5400 об/мин. Для большинства пользователей, чтобы повысить производительность своего компьютера будет удобнее купить SDD, но цена за 1 гигабайт такого носителя значительно больше, чем у простого HDD. «Как повысить производительность накопителей без сильной потери денег и объема? Как сохранить свои данные или повысить безопасность сохранности Ваших данных?» На эти вопросы есть ответ – RAID массив.

Виды RAID массивов

На данный момент существуют следующие типы RAID массивов:

RAID 0 или «Чередование» – массив из двух или более дисков для повышения общей производительности. Объем рейда будет общий (HDD 1 + HDD 2 = Общий объем), скорость считывания\записи будет выше (за счет разбиения записи на 2 устройства), но страдает надежность сохранности информации. Если одно из устройств выйдет из строя, то вся информация массива будет потеряна.

RAID 1 или «Зеркало» –несколько дисков копирующих друг друга для повышения надежности. Скорость записи остаётся на прежнем уровне, скорость считывания увеличивается, многократно повышается надежность (даже если одно устройство выйдет из строя, второе будет работать), но стоимость 1 Гигабайта информации увеличивается в 2 раза (если делать массив из двух hdd).

RAID 2 – массив, построенный на работе дисков для хранения информации и дисков коррекции ошибок. Расчет количества HDD для хранения информации выполняется по формуле «2^n-n-1», где n - количество HDD коррекции. Данный тип используется при большом количестве HDD, минимальное приемлемое число – 7, где 4 для хранения информации, а 3 для хранения ошибок. Плюсом этого вида будет повышенная производительность, по сравнению с одним диском.

RAID 3 – состоит из «n-1» дисков, где n – диск хранения блоков четности, остальные устройства для хранения информации. Информацию делится на куски меньше объема сектора (разбиваются на байты), хорошо подходит для работы с большими файлами, скорость чтения файлов малого объема очень мала. Характерен высокой производительностью, но малой надежностью и узкой специализацией.

RAID 4 – похож на 3й тип, но разделение происходит на блоки, а не байты. Этим решением получилось исправить малую скорость чтения файлов малого объема, но скорость записи осталось низкой.

RAID 5 и 6 – вместо отдельного диска для корреляции ошибок, как в прошлых вариантах, используются блоки, равномерно распределённые по всем устройствам. В этом случае повышается скорость чтения\записи информации за счет распараллеливания записи. Минусом данного типа является долговременное восстановление информации в случае выхода из строя одного из дисков. Во время восстановления идёт очень высокая нагрузка на другие устройства, что понижает надежность и повышает выход другого устройства из строя и потерю всех данных массива. Тип 6 повышает общую надежность, но понижает производительность.

Комбинированные виды RAID массивов:

RAID 01 (0+1) – Два Рейд 0 объединяются в Рейд 1.

RAID 10 (1+0) – дисковые массивы RAID 1, которые используются в архитектуре 0 типа. Считается самым надежным вариантом хранения данных, объединяя в себе высокую надежность и производительность.

Также можно создать массив из SSD накопителей . Согласно тестированию 3DNews, такое комбинирование не даёт существенного прироста. Лучше приобрести накопитель с более производительным интерфейсом PCI или eSATA

Рейд массив: как создать

Создается путем подключения через специальный RAID контроллер. На данный момент есть 3 вида контроллеров:

  1. Программный – программными средствами эмулируется массив, все вычисления производятся за счет ЦП.
  2. Интегрированный – в основном распространено на материнских платах (не серверного сегмента). Небольшой чип на мат. плате, отвечающий за эмуляцию массива, вычисления производятся через ЦП.
  3. Аппаратный – плата расширения (для стационарных компьютеров), обычно с PCI интерфейсом, обладает собственной памятью и вычислительным процессором.

RAID массив hdd: Как сделать из 2 дисков через IRST


Восстановление данных

Некоторые варианты восстановления данных:

  1. В случае сбоя Рейд 0 или 5 может помочь утилита RAID Reconstructor , которая соберет доступную информацию накопителей и перезапишет на другое устройство или носитель в виде образа прошлого массива. Данный вариант поможет, если диски исправны и ошибка программная.
  2. Для Linux систем используется mdadm восстановление (утилита для управления программными Рейд-массивами).
  3. Аппаратное восстановление должно выполняться через специализированные сервисы, потому что без знания методики работы контроллера можно потерять все данные и вернуть их будет очень сложно или вообще невозможно.

Есть множество нюансов, которые нужно учитывать при создании Рейд на Вашем компьютере. В основном большинство вариантов используются в серверном сегменте, где важна и необходима стабильность и сохранность данных. Если у Вас есть вопросы или дополнения, Вы можете оставить их в комментариях.

Отличного Вам дня!

RAID (англ. redundant array of independent disks - избыточный массив независимых жёстких дисков) - массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации. Изначально, подобные массивы строились в качестве резерва носителям на оперативной (RAM) памяти, которая в то время была дорогой. Со временем, аббревиатура приобрела второе значение – массив уже был из независимых дисков, подразумевая использование нескольких дисков, а не разделов одного диска, а также дороговизну (теперь уже относительно просто нескольких дисков) оборудования, необходимого для построения этого самого массива.

Рассмотрим, какие бывают RAID массивы. Сперва рассмотрим уровни, которые были представлены учёными из Беркли, потом их комбинации и необычные режимы. Стоит заметить, что если используются диски разного размера (что не рекомендуется), то работать они буду по объёму наименьшего. Лишний объем больших дисков просто будет недоступен.

RAID 0. Дисковый массив с чередованием без отказоустойчивости/чётности (Stripe)

Является массивом, где данные разбиваются на блоки (размер блока можно задавать при создании массива) и затем записываются на отдельные диски. В простейшем случае – есть два диска, один блок пишется на первый диск, другой на второй, затем опять на первый и так далее. Также этот режим называется «чередование», поскольку при записи блоков данных чередуются диски, на которые осуществляется запись. Соответственно, читаются блоки тоже поочерёдно. Таким образом, происходит параллельное выполнение операций ввода/вывода, что приводит к большей производительности. Если раньше за единицу времени мы могли считать один блок, то теперь можем сделать это сразу с нескольких дисков. Основным плюсом данного режима как раз и является высокая скорость передачи данных.

Однако чудес не бывает, а если бывают, то нечасто. Производительность растёт всё же не в N раз (N – число дисков), а меньше. В первую очередь, увеличивается в N раз время доступа к диску, и без того высокое относительно других подсистем компьютера. Качество контроллера оказывает не меньшее влияние. Если он не самый лучший, то скорость может едва заметно отличаться от скорости одного диска. Ну и немалое влияние оказывает интерфейс, которым RAID контроллер соединён с остальной системой. Всё это может привести не только к меньшему, чем N увеличению скорости линейного чтения, но и к пределу количества дисков, установка выше которого прироста давать уже не будет вовсе. Или, наоборот, будет слегка снижать скорость. В реальных задачах, с большим числом запросов шанс столкнуться с этим явлением минимален, ибо скорость весьма сильно упирается в сам жёсткий диск и его возможности.

Как видно, в этом режиме избыточности нет как таковой. Используется всё дисковое пространство. Однако, если один из дисков выходит из строя, то, очевидно, теряется вся информация.

RAID 1. Зеркалирование (Mirror)

Суть данного режима RAID сводится к созданию копии (зеркала) диска с целью повышения отказоустойчивости. Если один диск выходит из строя, то работа не прекращается, а продолжается, но уже с одним диском. Для этого режима требуется чётное число дисков. Идея этого метода близка к резервному копированию, но всё происходит «на лету», равно как и восстановление после сбоя (что порой весьма важно) и нет необходимости тратить время на это.

Минусы – высокая избыточность, так как нужно вдвое больше дисков для создания такого массива. Ещё одним минусом является то, что отсутствует какой-либо прирост производительности – ведь на второй диск просто пишется копия данных первого.

RAID 2 Массив с использованием ошибкоустойчивого кода Хемминга.

Данный код позволяет исправлять и обнаруживать двойные ошибки. Активно используется в памяти с коррекцией ошибок (ECC). В этом режиме диски разбиваются на две группы – одна часть используется для хранения данных и работает аналогично RAID 0, разбивая блоки данных по разным дискам; вторая часть используется для хранения ECC кодов.

Из плюсов можно выделить исправление ошибок «на лету», высокую скорость потоковой передачи данных.

Главным минусом является высокая избыточность (при малом числе дисков она почти двойная, n-1). При увеличении числа дисков удельное число дисков хранения ECC кодов становится меньше (снижается удельная избыточность). Вторым минусом является низкая скорость работы с мелкими файлами. Из-за громоздкости и высокой избыточности с малым числом дисков, данный уровень RAID в данное время не используется, сдав позиции более высоким уровням.

RAID 3. Отказоустойчивый массив с битовым чередованием и чётностью.

Данный режим записывает данные по блокам на разные диски, как RAID 0, но использует ещё один диск для хранения четности. Таким образом, избыточность намного ниже, чем в RAID 2 и составляет всего один диск. В случае сбоя одного диска, скорость практически не меняется.

Из основных минусов надо отметить низкую скорость при работе с мелкими файлами и множеством запросов. Связано это с тем, что все контрольные коды хранятся на одном диске и при операциях ввода/вывода их необходимо переписывать. Скорость этого диска и ограничивает скорость работы всего массива. Биты чётности пишутся только при записи данных. А при чтении – они проверяются. По причине этого наблюдается дисбаланс в скорости чтения/записи. Одиночное чтение небольших файлов также характеризуется невысокой скоростью, что связано с невозможностью параллельного доступа с независимых дисков, когда разные диски параллельно выполняют запросы.

RAID 4

Данные записываются блоками на разные диски, один диск используется для хранения битов чётности. Отличие от RAID 3 заключается в том, что блоки разбиваются не по битам и байтам, а по секторам. Преимущества заключаются в высокой скорости передачи при работе с большими файлами. Также высока скорость работы с большим числом запросов на чтение. Из недостатков можно отметить доставшиеся от RAID 3 – дисбаланс в скорости операций чтения/записи и существование условий, затрудняющих параллельный доступ к данным.

RAID 5. Дисковый массив с чередованием и распределённой чётностью.

Метод похож на предыдущий, но в нём для битов чётности выделяется не отдельный диск, а эта информация распределяется между всеми дисками. То есть, если используется N дисков, то будет доступен объём N-1 диска. Объём одного будет выделен под биты чётности, как и в RAID 3,4. Но они хранятся не на отдельном диске, а разделены. На каждом диске есть (N-1)/N объёма информации и 1/N объёма заполнено битами чётности. Если в массиве выходит из строя один диск, то он остаётся работоспособным (данные, хранившиеся на нём, вычисляются на основе чётности и данных других дисков «на лету»). То есть, сбой проходит прозрачно для пользователя и порой даже с минимальным падением производительности (зависит от вычислительной способности RAID контроллера). Из преимуществ отметим высокие скорости чтения и записи данных, как при больших объёмах, так и при большом числе запросов. Недостатки – сложное восстановление данных и более низкая, чем в RAID 4 скорость чтения.

RAID 6. Дисковый массив с чередованием и двойной распределённой чётностью.

Всё отличие сводится к тому, что используются две схемы чётности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи является чрезвычайно низкой.

Комбинированные (nested) уровни RAID.

Поскольку массивы RAID являются прозрачными для ОС, то вскоре пришло время и созданию массивов, элементами которых являются не диски, а массивы других уровней. Обычно они пишутся через плюс. Первая цифра означает то, массивы какого уровня входят в качестве элементов, а вторая цифра – то, какую организацию имеет верхний уровень, который объединяет элементы.

RAID 0+1

Комбинация, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объёма дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.

RAID 1+0

Также известен, как RAID 10. Является страйпом зеркал, то есть, массивом RAID 0, построенным из RAID 1 массивов. Практически аналогичен предыдущему решению.

RAID 0+3

Массив с выделенной чётностью над чередованием. Является массивом 3-го уровня, в котором данные блоками разбиваются и пишутся на массивы RAID 0. Комбинации, кроме простейших 0+1 и 1+0 требуют специализированных контроллеров, зачастую достаточно дорогих. Надёжность данного вида ниже, чем у следующего варианта.

RAID 3+0

Также известен, как RAID 30. Является страйпом (массивом RAID 0) из массивов RAID 3. Обладает весьма высокой скорость передачи данных, вкупе с неплохой отказоустойчивостью. Данные сначала разделяются на блоки (как в RAID 0) и попадают на массивы-элементы. Там они опять делятся на блоки, считается их чётность, блоки пишутся на все диски кроме одного, на который пишутся биты чётности. В данном случае, из строя может выйти один из дисков каждого из входящих в состав RAID 3 массива.

RAID 5+0 (50)

Создаётся путём объединения массивов RAID 5 в массив RAID 0. Обладает высокой скоростью передачи данных и обработки запросов. Обладает средней скоростью восстановления данных и хорошей стойкостью при отказе. Комбинация RAID 0+5 также существует, но больше теоретически, так как даёт слишком мало преимуществ.

RAID 5+1 (51)

Сочетание зеркалирования и чередования с распределённой четностью. Также вариантом является RAID 15 (1+5). Обладает очень высокой отказоустойчивостью. Массив 1+5 способен работать при отказе трех дисков, а 5+1 – пяти из восьми дисков.

RAID 6+0 (60)

Чередование с двойной распределённой четностью. Иными словами – страйп из RAID 6. Как уже говорилось применительно к RAID 0+5, RAID 6 из страйпов не получил распространения (0+6). Подобные приёмы (страйп из массивов с четностью) позволяют повысить скорость работы массива. Ещё одним преимуществом является то, что так можно легко повысить объём, не усложняя ситуации с задержками, необходимыми на вычисление и запись большего числа битов четности.

RAID 100 (10+0)

RAID 100, также пишущийся как RAID 10+0, является страйпом из RAID 10. По своей сути, он схож с более широким RAID 10 массивом, где используется вдвое больше дисков. Но именно такой «трехэтажной» структуре есть своё объяснение. Чаще всего RAID 10 делают аппаратным, то есть силами контроллера, а уже страйп из них делают программно. К такой уловке прибегают, чтобы избежать проблемы, о которой говорилось в начале статьи – контроллеры имеют свои ограничения по масштабируемости и если воткнуть в один контроллер двойное число дисков, прироста можно при некоторых условиях вообще не увидеть. Программный же RAID 0 позволяет создать его на базе двух контроллеров, каждый из которых держит на борту RAID 10. Так, мы избегаем «бутылочного горлышка» в лице контроллера. Ещё одним полезным моментом является обход проблемы с максимальным числом разъёмов на одном контроллере – удваивая их число, мы удваиваем и число доступных разъёмов.

Нестандартные режимы RAID

Двойная четность

Распространённым дополнением к перечисленным уровням RAID является двойная четность, порой реализованная и потому называемая «диагональной четностью». Двойная четность уже внедрена в RAID 6. Но, в отличие от нее, четность считается над другими блоками данных. Недавно спецификация RAID 6 была расширена, потому диагональная четность может считаться RAID 6. Если для RAID 6 четность считается как результат сложения по модулю 2 битов, идущих в ряд (то есть сумма первого бита на первом диске, первого бита на втором и т.д.), то в диагональной четности идет смещение. Работа в режиме сбоя дисков не рекомендуется (ввиду сложности вычисления утраченных битов из контрольных сумм).

Является разработкой NetApp RAID массива с двойной четностью и подпадает под обновленное определение RAID 6. Использует отличную от классической RAID 6 реализации схему записи данных. Запись ведется сначала на кеш NVRAM, снабжённый источником бесперебойного питания, чтобы предотвратить потерю данных при отключении электричества. Программное обеспечение контроллера, по возможности, пишет только цельные блоки на диски. Такая схема предоставляет большую защиту, чем RAID 1 и имеет более высокую скорость работы, нежели обычный RAID 6.

RAID 1,5

Был предложен компанией Highpoint, однако теперь применяется очень часто в контроллерах RAID 1, без каких-либо выделений данной особенности. Суть сводится к простой оптимизации – данные пишутся как на обычный массив RAID 1 (чем 1,5 по сути и является), а читают данные с чередованием с двух дисков (как в RAID 0). В конкретной реализации от Highpoint, применявшейся на платах DFI серии LanParty на чипсете nForce 2, прирост был едва заметным, а порой и нулевым. Связано это, вероятно, с невысокой скоростью контроллеров данного производителя в целом в то время.

Комбинирует в себе RAID 0 и RAID 1. Создаётся минимум на трёх дисках. Данные пишутся с чередованием на три диска, а со сдвигом на 1 диск пишется их копия. Если пишется один блок на три диска, то копия первой части пишется на второй диск, второй части – на третий диск. При использовании четного числа дисков лучше, конечно, использовать RAID 10.

Обычно при построении RAID 5 один диск оставляют свободным (spare), чтобы в случае сбоя система сразу стала перестраивать (rebuild) массив. При обычной работе этот диск работает вхолостую. Система RAID 5E подразумевает использование этого диска в качестве элемента массива. А объём этого свободного диска распределяется по всему массиву и находится в конце дисков. Минимальное число дисков – 4 штуки. Доступный объём равен n-2, объём одного диска используется (будучи распределенным между всеми) для четности, объем еще одного – свободный. При выходе из строя диска происходит сжатие массива до 3-х дисков (на примере минимального числа) заполнением свободного пространства. Получается обычный массив RAID 5, устойчивый к отказу ещё одного диска. При подключении нового диска, массив расжимается и занимает вновь все диски. Стоит отметить, что во время сжатия и распаковки диск не является устойчивым к выходу еще одного диска. Также он недоступен для чтения/записи в это время. Основное преимущество – большая скорость работы, поскольку чередование происходит на большем числе дисков. Минус – что нельзя данный диск назначать сразу к нескольким массивам, что возможно в простом массиве RAID 5.

RAID 5EE

Отличается от предыдущего только тем, что области свободного места на дисках не зарезервированы одним куском в конце диска, а чередуются блоками с битами четности. Такая технология значительно ускоряет восстановление после сбоя системы. Блоки можно записать прямо на свободное место, без необходимости перемещения по диску.

Аналогично с RAID 5E использует дополнительный диск для повышения скорости работы и распределения нагрузки. Свободное место разделяется между другими дисками и находится в конце дисков.

Данная технология является зарегистрированной торговой маркой фирмы Storage Computer Corporation. Массив, основывающийся на RAID 3, 4, оптимизированный для повышения производительности. Основное преимущество заключается в использовании кеширования операций чтения/записи. Запросы на передачу данных осуществляются асинхронно. При построении используются диски SCSI. Скорость выше решений RAID 3,4 приблизительно в 1,5-6 раз.

Intel Matrix RAID

Является технологией, представленной Intel в южных мостах, начиная с ICH6R. Суть сводится к возможности комбинации RAID массивов разных уровней на разделах дисков, а не на отдельных дисках. Скажем, на двух дисках можно организовать по два раздела, два из них будут хранить на себе операционную систему на массиве RAID 0, а другие два – работая в режиме RAID 1 – хранить копии документов.

Linux MD RAID 10

Это RAID драйвер ядра Linux, предоставляющий возможность создания более продвинутой версии RAID 10. Так, если для RAID 10 существовало ограничение в виде чётного числа дисков, то этот драйвер может работать и с нечетным. Принцип для трех дисков будет тем же, что в RAID 1E, когда происходит чередование дисков по очереди для создания копии и чередования блоков, как в RAID 0. Для четырех дисков это будет эквивалентно обычному RAID 10. Помимо этого, можно задавать, на какой области диска будет храниться копия. Скажем, оригинал будет в первой половине первого диска, а его копия – во второй половине второго. Со второй половиной данных – наоборот. Данные можно дублировать несколько раз. Хранение копий на разных частях диска позволяет достичь большей скорости доступа в результате разнородности жесткого диска (скорость доступа меняется в зависимости от расположения данных на пластине, обычно разница составляет два раза).

Разработан компанией Kaleidescape для использования в своих медиа устройствах. Схож с RAID 4 с использованием двойной четности, но использует другой метод отказоустойчивости. Пользователь может легко расширять массив, просто добавляя диски, причём в случае, если он содержит данные, данные будут просто добавлены в него, вместо удаления, как это требуется обычно.

Разработка компании Sun. Самой большой проблемой RAID 5 является потеря информации в результате отключения питания, когда информация из дискового кеша (который является энергозависимой памятью, то есть не хранит данные без электричества) не успела сохраниться на магнитные пластины. Такое несовпадение информации в кеше и на диске называют некогерентностью. Сама организация массива связана с файловой системой Sun Solaris – ZFS. Используется принудительная запись содержимого кеш-памяти дисков, восстанавливать можно не только весь диск, но и блок «на лету», когда контрольная сумма не совпала. Ещё немаловажным аспектом является идеология ZFS – она не меняет данные при необходимости. Вместо этого она пишет обновлённые данные и потом, убедившись, что операция прошла уже удачно, меняет указатель на них. Таким образом, удаётся избежать потери данных при модификации. Мелкие файлы дублируются вместо создания контрольных сумм. Это тоже делается силами файловой системы, поскольку она знакома со структурой данных (массивом RAID) и может выделять место под эти цели. Существует также RAID-Z2, которая, подобно RAID 6 способна выдержать отказ двух дисков с помощью использования двух контрольных сумм.

То, что не является RAID в принципе, но часто вместе с ним употребляется. Дословно переводится как «просто набор дисков» (just a bunch of disks) Технология объединяет все диски, установленные в системе в один большой логический диск. То есть, вместо трех дисков будет виден один крупный. Используется весь суммарный объем дисков. Ускорения ни надежности, ни производительности нет.

Drive Extender

Функция, заложенная в Window Home Server. Совмещает в себе JBOD и RAID 1. При необходимости создания копии, она не дублирует сразу файл, а ставит NTFS разделе метку, указывающую на данные. При простое система копирует файл так, чтобы место на дисках было максимальным (использовать можно диски разного объема). Позволяет достичь многих преимуществ RAID – отказоустойчивости и возможности простой замены вышедшего из строя диска и его восстановления в фоновом режиме, прозрачности местонахождения файла (вне зависимости от того, на каком диске он находится). Также можно проводить параллельный доступ с разных дисков с помощью вышеуказанных меток, получая сходную с RAID 0 производительность.

Разработана компанией Lime technology LLC. Эта схема отличается от обычных RAID массивов тем, что позволяет смешивать диски SATA и PATA в одном массиве и диски разных объема и скорости. Для контрольной суммы (четности) используется выделенный диск. Данные не чередуются между дисками. В случае отказа одного диска, теряются только файлы, на нём хранящиеся. Однако, с помощью четности они могут быть восстановлены. UNRAID внедрен как добавление к Linux MD (multidisk).

Большинство видов RAID массивов не получило распространения, часть используется в узких сферах применения. Наиболее массовыми, от простых пользователей до серверов начального уровня стали RAID 0, 1, 0+1/10, 5 и 6. Нужен ли вам рейд-массив для ваших задач – решать вам. Теперь вы знаете, в чём их отличия друг от друга.

Сегодня мы узнаем интересную информацию о том, что такое RAID массив и какую роль эти массивы играют в жизни жестких дисков, да-да, именно в них.

Сами жесткие диски играют довольно важную роль в компьютере, так как, при помощи них мы запускаем систему и храним множество информации на них.

Проходит время и любой жесткий диск может отказать, это могут быть любые , о которых мы сегодня не говорим.

Я надеюсь, что многие слышали о так называемых raid массивах , которые позволяют не только ускорить работу жестких дисков, но и с в случае чего, спасти важные данные от исчезновения, возможно, навсегда.

Также, данные массивы имеют порядковые номера, чем и отличаются. Каждый выполняет разные функции. Например, есть RAID 0, 1, 2, 3, 4, 5 и т. д. Вот об этих самых массивах мы сегодня и будем говорить, а потом я напишу статью, как использовать некоторые из них.

Что такое RAID массив?

RAID – это технология, которая позволяет объединить несколько устройств, а именно, жестких дисков, в нашем случае идет что-то вроде их связки. Таким образом, мы повышаем надежность хранения данных и скорость чтения/записи. Возможно и что-то одно из этих функций.

Так что, если вы хотите или ускорить свой диск или просто обезопасить информацию зависит лишь от вас. Точнее сказать, зависит от выбора нужной конфигурации «Рейда», эти конфигурации и отмечены порядковыми номерами 1, 2, 3…

Рейды очень полезная функция и я ее рекомендую использовать всем. Например, если использовать 0-вую конфигурацию, то вы ощутите прирост в скорости жесткого диска, все-таки, жестких диск, это почти самое низкоскоростное устройство.

Если вы спросите почему, то тут, я думаю, все ясно. с каждым годом становятся все мощнее, их обзаводят и более высокой частотой, большим количеством ядер, и многим другим. То же самое с и . А жесткие диски растут пока что только в объеме, а скорость оборота как была 7200, так и осталась. Конечно есть и более редкие модели. Ситуацию пока что спасают так называемые , которые ускоряют систему в несколько раз.

Допустим, вы заходили построить RAID 1 , в этом случае вы получите высокую гарантию защиты ваших данных, так как, они будут дублироваться на другое устройство (диск) и, если один жесткий диск откажет, вся информация останется на другом.

Как видите из примеров, рейды очень важны и полезны, их нужно использовать.

Итак, RAID-массив физически представляет собой связку от двух жестких дисков, подключенных к системной плате, можно и три, и четыре. Кстати говоря, тоже должна поддерживать создание RAID-массивов. Подключение жестких дисков проводиться по стандарту, а создание рейдов проходит на программном уровне.

Когда мы программно создали рейд, на глаз особо ничего не изменилось, вы всего лишь поработаете в BIOS, а все остальное как было, так и останется, то есть, заглянув в Мой компьютер, вы увидите все те же подключённые диски.

Чтобы создать массив нужно не так много: материнская плата с поддержкой RAID, два идентичных жестких диска (это важно ). Они должны быть одинаковы не только в объеме, но и по кэшу, интерфейсу и т. д. Желательно, чтобы и производитель был один и тот же. Теперь включаем компьютер и , там ищем параметр SATA Configuration и ставим на RAID . После перезагрузки компьютера должно появится окно в которой мы увидим информацию о дисках и рейдах. Там мы должны нажать CTRL+I , чтобы начать настройку рейда, то есть, добавлять или удалять из него диски. Потом начнется и ее настройка.

Сколько всего этих рейдов? Их несколько, а именно RAID 1 , RAID 2 , RAID 3 , RAID 4 , RAID 5 , RAID 6 . Более подробно я расскажу только о двух из них.

  1. RAID 0 – позволяет создавать дисковый массив для того, чтобы увеличить скорость чтения/записи.
  2. RAID 1 – позволяет создавать зеркальные дисковые массивы для защиты данных.

RAID 0, что это такое?

Массив RAID 0 , который еще называют «Striping» использует от 2 до 4 жестких дисков, редко больше. Работая совместно, они повышают производительность. Таким образом, данные при таком массиве разбивается на блоки данных, а потом записываются сразу на несколько дисков.

Производительность повышается из-за того, что на один диск записывается один блок данных, на другой диск, другой блок и т. д. Думаю понятно, что 4 диска больше увеличат производительность, чем два. Если говорить о безопасности, то она страдает на всем массиве. Если один из дисков выйдет из строя, то в большинстве случаев, вся информация пропадет безвозвратно.

Дело в том, что в массиве RAID 0 информация располагается на всех дисках, то есть, байты какого-то файла, расположены на нескольких дисках. Поэтому, при выходе из строя одного диска, пропадет и какое-то количество данных, восстановление при этом невозможно.

Из этого следует, что необходимо делать постоянные на внешние носители.

RAID 1, что это такое?

Массив RAID 1 , его еще называют Mirroring – зеркало. Если говорить о недостатке, то в RAID 1 объем одного из жестких дисков вам как-бы «недоступен», потому что, он используется для дублирования первого диска. В RAID 0 это место доступно.

Из преимуществ, как вы, наверное, уже догадались, следует, что массив предоставляет высокую надежность данных, то есть, если выйдет из строя один диск, все данные останутся на втором. Выход из строя сразу двух дисков маловероятен. Такой массив часто используется на серверах, но это не мешает использовать его и на обычных компьютерах.

Если вы выбрали RAID 1, то знайте, что производительность упадет, но если данные вам важны, то используйте данных подход.

RAID 2-6, что это такое?

Сейчас вкратце опишу остальные массивы, так сказать, для общего развития, а все потому, что они не такие популярные, как первые два.

RAID 2 – нужен для массивов, которые используют код Хемминга (не интересовался, что за код). Принцип работы примерно, как в RAID 0, то есть информация также разбивается на блоки и поочередно записываются на диски. Остальные диски используются для хранения кодов коррекции ошибок, при помощи которых, в случае выхода из строя одного из дисков, можно восстановить данные.

Правда, для данного массива лучше использовать 4 диска, что довольно затратно, да и как выяснилось, при использовании стольких дисков, прирост производительности довольно спорный.

RAID 3, 4, 5, 6 – про эти массивы я не буду здесь писать, так как, необходимая информация уже есть на Википедии , если хотите узнать о данных массивах, то читаем.

Какой выбрать RAID массив?

Допустим, что вы часто устанавливаете различные программы, игры и копируете много музыки или фильмов, тогда вам рекомендуется к использованию RAID 0. При выборе жестких дисков будьте внимательные, они должные быть очень надежными, чтобы не потерять информацию. Обязательно делайте резервные копии данных.

Есть важная информация, которая должна быть в целости и сохранности? Тогда на помощь приходит RAID 1. При выборе жестких дисков, также их характеристики должны быть идентичными.

Вывод

Вот мы и разобрали для кого-то новую, а для кого-то старую информацию по RAID-массивам. Надеюсь, что информация для вас окажется полезной. Скоро буду писать о том, как эти массивы создавать.

Технология RAID позволяет объединять несколько физических дисковых устройств (жёстких дисков или разделов на них) в дисковый массив. Диски, входящие в массив, управляются централизованно и представлены в системе как одно логическое устройство, подходящее для организации на нем единой файловой системы.

Существует два способа реализации RAID:

  • аппаратный;
  • программный.

Аппаратный дисковый массив состоит из нескольких жёстких дисков, управляемых при помощи специальной платы контроллера RAID-массива.

Плюсы аппаратного RAID-массива:

  • более высокая надежность (по сравнению с программным);
  • минимальная нагрузка на процессор и системную шину;

Программный RAID реализуется при помощи специального драйвера. В программный массив организуются дисковые разделы, которые могут занимать как весь диск, так и его часть, а управление осуществляется посредством специальных утилит.

Плюсы программного RAID-массива:

  • более высокая скорость работы с данными;
  • независимость от форматов данных на диске (совместимость с различными типами и размерами разделов);
  • экономия на покупке дополнительного оборудования.

Уровни RAID

Существует несколько разновидностей RAID-массивов, так называемых уровней.

RAID0

Для создания массива этого уровня понадобится как минимум два диска одинакового размера. Запись осуществляется по принципу чередования : данные делятся на порции данных одинакового размера, и поочерёдно распределяются по всем дискам, входящим в массив. Поскольку запись ведётся на все диски, при отказе одного из них будут утрачены все хранившиеся на массиве данные. Это цена выбора в пользу увеличения скорости работы с данными: запись и чтение на разных дисках происходит параллельно и, соответственно, быстрее.

RAID1

Массивы этого уровня построены по принципу зеркалирования , при котором все данные, записанные на одном диске, дублируются на другом. Для создания такого массива потребуется два или более дисков одинакового размера. Избыточность обеспечивает отказоустойчивость массива: в случае выхода из строя одного из дисков, данные на другом остаются неповреждёнными. Расплата за надёжность — фактическое сокращение дискового пространства вдвое. Скорость чтения и записи остается на уровне обычного жесткого диска.

RAID4

В массивах RAID4 реализован принцип чётности , объединяющий технологии чередования и зеркалирования. Один из трёх (или из большего числа) дисков задействуется для хранения информации о чётности в виде блоков с контрольными суммами блоков данных, последовательно распределённых на остальных дисках (как в RAID0).

Достоинства этого уровня — отказоустойчивость уровня RAID1 при меньшей избыточности (из скольких бы дисков не состоял массив, под контрольную информацию задействуется лишь один из них). При отказе одного из дисков утраченные данные можно будет восстановить из контрольных блоков, причем, если в составе массива есть резервный диск, реконстукция данных начнется автоматически. Очевидным недостатком, однако, является снижение скорости записи, поскольку информацию о чётности приходится высчитывать при каждой новой записи на диск.

RAID5

Этот уровень аналогичен RAID4, за тем исключением, что блоки с информацией о чётности располагаются не на отдельном диске, а равномерно распределяются по всем дискам массива вместе с блоками данных. Как результат — повышение скорости работы с данными и высокая отказоустойчивость.

RAID – аббревиатура, расшифровываемая как Redundant Array of Independent Disks – “отказоустойчивый массив из независимых дисков” (раньше иногда вместо Independent использовалось слово Inexpensive). Концепция структуры, состоящей из нескольких дисков, объединенных в группу, обеспечивающую отказоустойчивость родилась в 1987 году в основополагающей работе Паттерсона, Гибсона и Катца.

Исходные типы RAID-массивов

RAID-0
Если мы считаем, что RAID это “отказоустойчивость”(Redundant…), то RAID-0 это “нулевая отказоустойчивость”, отсутствие ее. Структура RAID-0 это “массив дисков с чередованием”. Блоки данных поочередно записываются на все входящие в массив диски, по порядку. Это повышает быстродействие, в идеале во столько раз, сколько дисков входит в массив, так как запись распараллеливается между несколькими устройствами.
Однако во столько же раз снижается надежность, поскольку данные будут потеряны при выходе из строя любого из входящих в массив дисков.

RAID-1
Это так называемое “зеркало”. Операции записи производятся на два диска параллельно. Надежность такого массива выше, чем у одиночного диска, однако быстродействие повышается незначительно (или не повышается вовсе).

RAID-10
Попытка объединить достоинства двух типов RAID и лишить их присущих им недостатков. Если взять группу RAID-0 с повышенной производительностью, и придать каждому из них (или массиву целиком) “зеркальные” диски для защиты данных от потери в результате выхода из строя, мы получим отказоустойчивый массив с повышенным, в результате использования чередования, быстродействием.
На сегодняшний день “в живой природе” это один из наиболее популярных типов RAID.
Минусы – мы платим за все вышеперечисленные достоинства половиной суммарной емкости входящих в массив дисков.

RAID-2
Остался полностью теоретическим вариантом. Это массив, в котором данные кодируются помехоустойчивым кодом Хэмминга, позволяющим восстанавливать отдельные сбойные фрагменты за счет его избыточности. Кстати различные модификации кода Хэмминга, а также его наследников, используются в процессе считывания данных с магнитных головок жестких дисков и оптических считывателей CD/DVD.

RAID-3 и 4
“Творческое развитие” идеи защиты данных избыточным кодом. Код Хэмминга незаменим в случае “постоянно недостоверного” потока, насыщенного непрерывными слабопредсказуемыми ошибками, такого, например, как зашумленный эфирный канал связи. Однако в случае жестких дисков основная проблема не в ошибках считывания (мы считаем, что данные выдаются жесткими дисками в том виде, в каком мы их записали, если уж он работает), а в выходе из строя целиком диска.
Для таких условий можно скомбинировать схему с чередованием (RAID-0) и для защиты от выхода из строя одного из дисков дополнить записываемую информацию избыточностью, которая позволит восстановить данные при потере какой-то ее части, выделив под это дополнительный диск.
При потере любого из дисков данных мы можем восстановить хранившиеся на нем данные путем несложных математических операций над данными избыточности, в случае выходя из строя диска с данными избыточности мы все равно имеем данные, считываемые с дискового массива типа RAID-0.
Варианты RAID-3 и RAID-4 отличаются тем, что в первом случае чередуются отдельные байты, а во втором – группы байт, “блоки”.
Основным недостатком этих двух схем является крайне низкая скорость записи на массив, поскольку каждая операция записи вызывает обновление “контрольной суммы”, блока избыточности для записанной информации. Очевидно, что, несмотря на структуру с чередованием, производительность массива RAID-3 и RAID-4 ограничена производительностью одного диска, того, на котором лежит “блок избыточности”.

RAID-5
Попытка обойти это ограничение породила следующий тип RAID, в настоящее время он получил, наряду с RAID-10, наибольшее распространение. Если запись на диск “блока избыточности” ограничивает весь массив, давайте его тоже размажем по дискам массива, сделаем для этой информации невыделенный диск, тем самым операции обновления избыточности окажутся распределенными по всем дискам массива. То есть мы также как и в случае RAID-3(4) берем дисков для хранения N информации в количестве N + 1 диск, но в отличие от Type 3 и 4 этот диск также используется для хранения данных вперемешку с данными избыточности, как и остальные N.
Недостатки? А как же без них. Проблема с медленной записью отчасти была решена, но все же не полностью. Запись на массив RAID-5 осуществляется, тем не менее, медленнее, чем на массив RAID-10. Зато RAID-5 более “экономически эффективен”. Для RAID-10 мы платим за отказоустойчивость ровно половиной дисков, а в случае RAID-5 это всего один диск.

Однако скорость записи снижается пропорционально увеличению количества дисков в массиве (в отличие от RAID-0, где она только растет). Это связано с тем, что при записи блока данных массиву нужно заново рассчитать блок избыточности, для чего прочитать остальные “горизонтальные” блоки и пересчитать в соответствии с их даными блок избыточности. То есть на одну операцию записи массив из 8 дисков (7 дисков данных + 1 дополнительный) будет делать 6 операций чтения в кэш (остальные блоки данных со всех дисков, чтобы рассчитать блок избыточности), вычислять из этих блоков блок избыточности, и делать 2 записи (запись блока записываемых данных и перезапись блока избыточности). В современных системах частично острота снимается за счет кэширования, но тем не менее удлиннение группы RAID-5 хотя и вызывает пропорциональное увеличение скорости чтения, но также и соответственное ему снижение скорости записи.
Ситуация со снижением производительности при записи на RAID-5 иногда порождает любопытный экстремизм, например, http://www.baarf.com/ ;)

Тем не менее, поскольку RAID-5 есть наиболее эффективная RAID-структура с точки зрения расхода дисков на “погонный мегабайт” он широко используется там, где снижение скорости записи не является решающим параметром, например для долговременного хранения данных или для данных, преимущественно считываемых.
Отдельно следует упомянуть, что расширение дискового массива RAID-5 добавлением дополнительного диска вызывает полное пересчитывание всего RAID, что может занимать часы, а в отдельных случаях и дни, во время которых производительность массива катастрофически падает.

RAID-6
Дальнейшее развитие идеи RAID-5. Если мы рассчитаем дополнительную избыточность по иному нежели применяемому в RAID-5 закону, то мы сможем сохранить доступ к данным при отказе двух дисков массива.
Платой за это является дополнительный диск под данные второго “блока избыточности”. То есть для хранения данных равных объему N дисков нам нужно будет взять N + 2 диска.Усложняется “математика” вычисления блоков избыточности, что вызывает еще большее снижение скорости записи по сравнению с RAID-5, зато повышается надежность. Причем в ряде случаев она даже превышает уровень надежности RAID-10. Нетрудно увидеть, что RAID-10 тоже выдерживает выход из строя двух дисков в массиве, однако в том случае, если эти диски принадлежат одному “зеркалу” или разным, но при этом не двум зеркальным дискам. А вероятность именно такой ситуации никак нельзя сбрасывать со счета.

Дальнейшее увеличение номеров типов RAID происходит за счет “гибридизации”, так появляются RAID-0+1 ставший уже рассмотренным RAID-10, или всяческие химерические RAID-51 и так далее.
В живой природе к счастью не встречаются, обычно оставаясь “сном разума” (ну, кроме уже описанного выше RAID-10).