Маркировка пельтье. Что такое элемент пельтье, его устройство, принцип работы и практическое применение

Элементом Пельтье принято называть преобразователь, который способен работать от разности температур. Происходит это путем протекания электрического тока по проводникам через контакты. Для этого в элементах предусмотрены специальные пластины. Тепло от одной стороны переходит в другую.

На сегодняшний день указанная технология является востребованной в первую очередь из-за значительной мощности теплоотдачи. Дополнительно устройства способны похвастаться компактностью. Радиаторы для многих моделей устанавливаются слабенькие. Связано это с тем, что тепловой поток довольно быстро остывает. В результате нужная температура поддерживается постоянно.

Подвижных частей указанный элемент не имеет. Работают устройства абсолютно бесшумно, и это является несомненным преимуществом. Также следует сказать, что эксплуатироваться они способны очень долго, а случаи поломок возникают крайне редко. Самый простой тип состоит из медных проводников с контактами и соединительными проводами. Дополнительно с охлаждающей стороны имеется изолятор. Изготовляют его, как правило, из керамики или

Зачем нужны элементы Пельтье?

Элементы Пельтье чаще всего используются для изготовления холодильников. Обычно речь идет о компактных моделях, которые могут применяться, к примеру, автомобилистами в дороге. Однако на этом область применения устройств не подходит к концу. В последнее время элементы Пельтье активно начали устанавливать в звуковую, а также акустическую технику. Там они способны выполнять функции куллера.

В результате охлаждение усилителя устройства происходит без какого-либо шума. Для портативных компрессоров элементы Пельтье являются незаменимыми. Если говорить о научной отрасли, то ученые применяют данные устройства для охлаждения лазера. При этом можно добиться значительной стабилизации волны изучения у светодиодов.

Недостатки моделей Пельтье

Казалось бы, такое простое и эффективной устройство лишено недостатков, однако они имеются. В первую очередь специалисты сразу отметили малую пробивную способность модуля. Это говорит о том, что у человека возникнут определенные проблемы, если он захочет охладить прибор, который работает от сети с напряжением 400 В. В данном случае частично поможет решить эту проблему специальная диэлектрическая паста. Однако пробой тока все равно будет высоким и обмотка элемента Пельтье может не выдержать.

Дополнительно указанные модели не советуют применять для точной электроники. Поскольку в конструкции элемента имеются металлические пластины, то чувствительность транзисторов может нарушаться. Последним недостатком элемента Пельтье можно назвать малый коэффициент полезного действия. Достигнуть значительной разности температур указанные устройства не способны.

Модуль для регулятора

Сделать элемент Пельтье своими руками для регулятора довольно просто. Для этого следует заранее заготовить две металлические пластины, а также проводку с контактами. В первую очередь для установки готовят проводники, которые будут располагаться у основания. Обычно их закупают с маркировкой "РР".

Дополнительно для нормального контроля температуры следует предусмотреть полупроводники на выходе. Они необходимы для того, чтобы быстро отдавать тепло на верхнюю пластину. Для установки всех элементов следует использовать паяльник. Чтобы доделать элемент Пельтье своими руками, в последнюю очередь подсоединяют два провода. Первый монтируется у нижнего основания и фиксируется у крайнего проводника. Соприкосновения при этом с пластиной следует избегать.

Далее крепят второй провод у верней части. Фиксация осуществляется также к крайнему элементу. Для того чтобы проверить работоспособность устройства, применяют тестер. Для этого два провода нужно подсоединить к прибору. В результате отклонение напряжения должно составить примерно 23 В. В данной ситуации многое зависит от мощности регулятора.

Холодильники с терморезистором

Как сделать элемент Пельтье своими руками для холодильника с терморезистором? Отвечая на этот вопрос, важно отметить, что пластины для него подбираются исключительно из керамики. При этом проводников используется около 20 штук. Это необходимо для того, чтобы перепад температуры был более высоким. Повысить можно до 70 %. В данном случае важно рассчитать

Сделать это можно исходя из мощности оборудования. Холодильник на жидком фреоне в этом случае походит идеально. Непосредственно элемент Пельтье устанавливается возле испарителя, который располагается рядом с мотором. Для его монтажа потребуется стандартный набор инструментов, а также прокладки. Они необходимы для того, чтобы оградить модель от пускового реле. Таким образом, охлаждение нижней части устройства будет происходить намного быстрее.

Чтобы добиться получения разницы в температурах (эффект Пельтье) своими руками, проводников может понадобиться не менее 16 штук. Главное при этом - надежно изолировать провода, которые будут подключаться к компрессору. Для того чтобы сделать все правильно, нужно в первую очередь отсоединить осушитель холодильника. Только после этого есть возможность соединить все контакты. По завершении установки предельное напряжение следует проверить при помощи тестера. При нарушении работы элемента в первую очередь страдает терморегулятор. В некоторых случая происходит его

Модель для холодильника 15 В

Делается холодильник Пельтье своими руками с малой Крепятся модули в основном возле радиаторов. Для того чтобы надежно их закрепить, специалисты используют уголки. К фильтру элемент не должен прислоняться, и это следует учитывать.

Чтобы доделать термоэлектрический модуль Пельтье своими руками, нижнюю пластину в основном выбирают из нержавеющей стали. Проводники, как правило, применяются с маркировкой "ПР20". Нагрузку они максимум способны выдерживать на уровне 3 А. Максимальное отклонение температуры способно достигать 10 градусов. В этом случае коэффициент полезного действия может составлять 75 %.

Элементы Пельтье в холодильниках 24 В

Используя элемент Пельтье, холодильник своими руками сделать можно только из проводников с хорошей герметизацией. При этом они для охлаждения должны укладываться в три ряда. Рабочий ток в системе обязан поддерживаться на уровне 4 А.. Проверить его можно при помощи обычного тестера.

Если использовать керамические пластины для элемента, то максимального отклонения температуры можно добиться в 15 градусов. Провода к конденсатору устанавливаются только после того, как будет подложена прокладка. Закрепить ее на стенке устройства можно разными способами. Главное в данной ситуации - не использовать клей, который чувствителен к температурам свыше 30 градусов.

Элемент Пельтье для автомобильного охладителя

Чтобы сделать качественный автохолодильник своими руками, Пельтье (модуль) подбирается с пластиной, толщина которой не более 1.1 мм. Провода лучше всего использовать немодульного типа. Также для работы потребуются медные проводники. Их пропускная способность должна составлять не менее 4А.

Таким образом, максимальное температурное отклонение будет доходить до 10 градусов, это считается нормальным. Проводники чаще всего используют с маркировкой "ПР20". Они в последнее время показали себя более стабильными. Также они подходят для различных контактов. Для соединения устройства с конденсатором используют паяльник. Качественная установка возможна только на блок реле прокладку. Перепады в данном случае будут минимальными.

Как сделать элемент для кулера питьевой воды?

Для фиксации их можно воспользоваться обычными гаечками. Появление излишнего шума при эксплуатации говорит том, что устройство работает не должным образом. В данном случае необходимо проверит целостность проводки. Также нужно осмотреть проводники.

Элемент Пельтье для кондиционера

Чтобы качественно сделать элемент Пельтье своими руками для кондиционера, пластины используют двойные. Минимальная их толщина должна составлять не менее 1 мм. В таком случае можно надеяться на температурное отклонение в 15 градусов. Производительность кондиционеров после оснащения модулей в среднем увеличивается на 20 %. Многое в данной ситуации зависит от температуры окружающей среды. Также следует учитывать стабильность напряжения от сети. При небольших помехах нагрузка устройством выдерживается примерно 4 А.

При пайке проводников их следует размещать не слишком близко друг к другу. Чтобы правильно доделать модули Пельтье своими руками, входные и выходные контакты надо устанавливать только на одну из двух пластин. В таком случае прибор получится более компактным. Грубой ошибкой в данной ситуации будет подключать модуль непосредственно к блоку. Это приведет к неминуемой поломке элемента.

Установка модуля на конденсатор

Чтобы установить модуль Пельтье своими руками, важно оценить мощность конденсатора. Если она не превышает 20 В, то элемент следует монтировать с проводниками, на которых указана маркировка "ПР30" или "ПР26". Для того чтобы закрепить модуль Пельтье (элемент) своими руками на конденсаторе, используют маленькие металлические уголки.

Лучше всего их устанавливать по четыре на каждую из сторон. По производительности конденсатор, в конечном счете, способен прибавить плюс 10 %. Если говорить о теплопотерях, то они будут незначительными. Коэффициент полезного действия прибора в среднем равняется 80 %. Для высоковольтных конденсаторов модули не рассчитаны. В данном случае не поможет даже большое количество проводников.

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения – градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
  • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.

Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).

Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части . При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.

Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.

Как самостоятельно изготовить кулер для охлаждения воды

Догадливый читатель уже понял, что «чудо-ковшик» из первой части можно использовать для охлаждения жидкости, если запустить его «в обратную сторону», подключив постоянный ток.

ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).

Для этого нам понадобится:

  1. Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
  2. Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
  3. Блок питания на 10-12 вольт с регулировкой силы тока.
  4. Термоэлектрические модули TEC1-12705 (40x40) — 2 шт.
  5. Провода сечением 0,2 мм.
  6. Термоклей или термопаста.
  7. Ключ на 2 канала (тумблер, кнопка).
  8. Кран, паяльник, припой.

При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.

Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).

Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.

Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.

Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.

Расчёт затрат на построение кулера:

В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.

Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами

Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.

В замкнутых пространствах малого объёма (до 0,7 м 3) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.

Нам понадобится (для одной базовой точки охлаждения):

  1. ТЭМ ТЕС1-12712 (40Х40), 106 ватт — 1 шт.
  2. Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
  3. Радиатор HS 036-100 (100x85x25 мм).
  4. Термостат ТАМ-133-1м (реле температуры с датчиком).
  5. Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
  6. Лист дюралюминия.
  7. Провода, термопаста, крепёж

В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.

Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!

Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).

Преимущества данной конструкции:

  • бесшумная по сравнению с компрессорными холодильниками работа;
  • отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
  • не используются жидкие теплоносители (фреон);
  • общая потребляемая мощность около 200 ватт;
  • можно модернизировать конструкцию, варьировать производительность;
  • доступность и ремонтопригодность отдельных агрегатов.

Недостатки:

  • возможно появление конденсата на пластинах дюралюминия;
  • наружный блок управления;
  • многие факторы и нюансы работы выявляются опытным путём при использовании;
  • малая область применения.

Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:

Наименование Ед. изм. Кол-во Цена ед./руб. Ст-ть, руб.
ТЭМ ТЕС1-12712 (40Х40), 106 ватт шт. 1 600 600
Вентилятор RQA 12025HSL 110VAC шт. 2 150 300
Дюралюминий 3 мм шт. 1 300 300
Блок питания постоянного тока шт. 1 300 300
Термостат ТАМ-133-1м шт. 1 250 250
Радиатор HS 036-100 шт. 1 220 220
Провода, термопаста, крепёж, припой - - 300 300
Итого 2270

В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.

Запас мощности модуля ТЕС1-12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.

Где ещё применяют термоэлектрические модули

Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.

Основное применения теплоэлектрических модулей:

  1. Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
  2. Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
  3. Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).

И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.

Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.

Виталий Долбинов, рмнт.ру

2 июня 2012 в 23:47

Элементы Пельтье или мой путь к криогенным температурам

  • DIY или Сделай сам

Многие слышали про «магические» элементы Пельтье - при прохождении тока через них одна сторона охлаждается, а другая - нагревается. Это работает и в обратную сторону - если одну сторону нагревать, а другую охлаждать - вырабатывается электричество. Эффект Пельтье известен с 1834 года, но и по сей день нас не перестают радовать инновационные продукты на его основе (нужно только помнить, что при генерации электричества, как и у солнечных батарей - есть точка максимальной мощности, и если работать далеко от неё - КПД генерации сильно снижается).

В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями , так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…

Краткая теория

Классические «китайские» элементы Пельтье - это 127 элементов, включенных последовательно, и припаянных к керамической «печатной плате» из Al2O3. Соответственно, если рабочее напряжение 12В - то на каждый элемент приходится всего по 94мВ. Бывают элементы и с другим количеством последовательных элементов, и соответственно другим напряжением (например 5В).

Нужно помнить, что элемент Пельтье - это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В - у нас может не получится 6 ампер (для 6-и амперного элемента) - ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.

Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С - перенос тепла стремится к 0, а при нулевой разнице - 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию - нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).

Элементы пельтье собираются легкоплавким припоем с температурой плавления 138С - так что если элемент случайно останется без охлаждения и перегреется - то достаточно будет отпаяться одному из 127*2 контактов чтобы выкинуть элемент на свалку. Ну и элементы очень хрупкие - как керамика, так и сами охлаждающие элементы - я нечаянно разодрал 2 элемента «вдоль» из-за присохшей намертво термопасты:

Пробуем



Итак, маленький элемент - 5В*2А, большой - 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…

Идея - вынести все на морозный воздух, но есть проблема - кулер на тепловых трубках хорошо охлаждает только если температура «горячей» и «холодной» стороны кулера лежит по разные стороны фазового перехода газ-жидкость наполнителя трубки. В нашем случае это означает, что кулер в принципе не способен охладить что-либо ниже +20С (т.к. ниже работают только тонкие стенки тепловых трубок). Придется возвращаться к истокам - к цельно-медной системе охлаждения. А чтобы ограниченная производительность кулера не сказывалась на измерениях - добавим килограммовую медную пластину - тепловой аккумулятор.


Результат шокирующий - те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха - -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.

Выкатываем тяжелую артиллерию

Оказалось, неподалеку от меня хладокомбинат #7, и я решил к ним заглянуть с картонной коробкой. Вернулся с 5-ю килограммами сухого льда (температура сублимации -78С). Опускаем медную конструкцию туда - подключаем ток - на 12В температура моментально начинает расти, при 5В - падает на 1 градус на секунду, и дальше быстро растет. Все надежды разбиты…

Выводы и видео на сладкое

Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах - я пробовал элементы разных моделей от 3-х разных продавцов - поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).

Ну а с оставшимся сухим льдом можно поступить следующим образом:

PS. А если смешать сухой лед с изопропиловым спиртом - получится жидкий азот для «бедных» - в нем так же весело замораживаются и разбиваются цветы и проч. Вот только из-за того что спирт не кипит при контакте с кожей - получить обморожение существенно легче.