Мутация вирусов, механизмы ее возникновения. Мутации вирусов

Введение

Повышение сохранности и продуктивности сельскохозяйственных животных невозможно без дальнейшего совершенствования ветеринарного обслуживания животноводства. Среди ветеринарных дисциплин важное место принадлежит вирусологии. Современный ветеринарный врач должен знать не только клинико - патологическую сторону болезни, но и иметь четкое представление о вирусах, их свойствах, методах лабораторной диагностики и особенностях постинфекционного и поствакцинального иммунитета.

Вирусы изменяют свой свойства как в естественных условиях размножения, так и в эксперименте. В основе наследственного изменение свойств вирусов могут лежать два процесса: 1) мутация, т. е. изменение последовательности нуклеотидов в определенном участке генома вируса, ведущее к фенотипически выраженному изменению свойства; 2) рекомбинация, т. е. обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусами.

Мутация у вирусов

Мутация - изменчивость, связанная с изменением самих генов. Она может иметь прерывистый, скачкообразный характер и приводить к стойким изменением наследственных свойств вирусов. Все мутации вирусов делятся на две группы:

· спонтанные;

· индуцированные;

По протяженности их делят на точечные и аберрационные (изменения, затрагивающие значительный участок генома). Точечные мутации обусловлены заменой одного нуклеотида (для РНК-содержащих вирусов). Такие мутации могут иногда ревертировать с восстановлением исходной структуры генома.

Однако мутационные изменения способны захватывать и более крупные участки молекул нуклеиновых кислот, т. е. несколько нуклеотидов. В этом случае тоже могут происходить выпадения, вставки и перемещения (транслокация) целых участков и даже повороты участков на 180° (так называемые инверсии), смещения рамки считывания - более крупные перестройки в структуре нуклеиновых кислот, а следовательно, и нарушения генетической информации.

Но не всегда точечные мутации приводят к изменению фенотипа. Имеется ряд причин, в силу которых такие мутации могут не проявляться. Одна из них - вырожденность генетического кода. Код белкового синтеза вырожден, т. е. некоторые аминокислоты могут кодироваться несколькими триплетами (кодонами). Например, аминокислота лейцин может кодироваться шестью триплетами. Вот почему, если в молекуле РНК вследствие каких-то воздействий произошла замена триплета ЦУУ на ЦУЦ, ЦУА на ЦУГ, то в молекуле синтезируемого белка все равно включится аминокислота лейцин. Поэтому ни структура белка, ни его биологические свойства не нарушатся.

Природа пользуется своеобразным языком синонимов и, заменяя один кодон другим, вкладывает в них одно и тоже понятие (аминокислоту), сохраняя, таким образом, в синтезируемом белке его естественную структуру и функцию.

Другое дело, когда какая-то аминокислота кодируется всего одним триплетом, например, синтез триптофана кодируется только одним триплетом УГГ и замены, т. е. синонима, не имеется. В этом случае в белок включается какая-нибудь иная аминокислота, что может привести к появлению мутантного признака.

Аберрация у фагов обусловлена делециями (выпадением) различного числа нуклеотидов, от одной пары до последовательности, которая обуславливает одну или несколько функций вируса. Как спонтанные, так и индуцированные мутации делят также на прямые и обратные.

Мутации могут иметь разные последствия. В одних случаях они ведут к изменению фенотипических проявлений в нормальных условиях. Например, увеличивается или уменьшается размер бляшек под агаровым покрытием; увеличивается или ослабляется нейровирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. п.

В других случаев мутация является летальной, так как вследствие ее нарушается синтез или функция жизненно важного вирусспецифического белка, например вирусной полимеразы.

В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции в определенных для него условиях и теряет эту способность в неразрешающих (непермиссивных) условиях. Типичным примером таких мутаций являются температурно-чувствительные - ts-мутации, при которых вирус теряет способность размножаться при повышенных температурах (39 - 42°С), сохраняя эту способность при обычных температурах выращивания (36 - 37°С).

Морфологические или структурные мутации могут касаться размера вириона, первичной структуры вирусных белков, изменения генов, детерминирующих ранние и поздние вирусспецифические ферменты, обеспечивающие репродукцию вируса.

По своему механизму мутации могут быть тоже разными. В одних случаях происходит делеция, т. е. выпадение одного или нескольких нуклеотидов, в других - происходит встраивание одного или нескольких нуклеотидов, а в некоторых случаях - замена одного нуклеотида другим.

Мутации могут быть прямыми и обратными. Прямые мутации меняют фенотип, а обратные (реверсии) - его восстанавливают. Возможны истинные реверсии, когда обратная мутация происходит вместе первичного повреждения, и псевдореверсии, если мутация происходит в другом участке дефектного гена (интрагенная супрессия мутации) или в другом гене (экстрагенная супрессия мутации). Реверсия не является редким событием, так как ревертанты обычно более приспособлены к данной клеточной системе. Поэтому при получении мутантов с заданными свойствами, например вакцинных штаммов, приходится считаться с возможной их реверсией к дикому типу.

Вирусы отличаются от остальных представителей живого мира не только своими малыми размерами, избирательной способностью размножаться в живых клетках, особенностями строения наследственного вещества, но и значительной изменчивостью. Изменения могут касаться величины, формы, патогенности, антигенной структуры, тканевого тропизма, устойчивости к физико - химическим воздействиям и других свойств вирусов. Значение причин, механизмов и характера изменения имеет большое значение при получении необходимых вакцинных штаммов вирусов, а также для разработки эффективных мер борьбы с вирусными эпизоотиями, в процессе которых, как известно, свойства вирусов могут существенно изменят одной из причин сравнительно высокой способности вирусов изменять свои свойства является то, что наследственное вещество этих микроорганизмов менее защищено от воздействия внешней среды.

Мутация вирусов может возникать в результате химических изменений цистронов или нарушения последовательности их расположения в структуре молекулы вирусной нуклеиновой кислоты.

В зависимости от условий различают естественную изменчивость вирусов, наблюдаемую в обычных условиях размножения, и искусственную, получаемую в процессе многочисленных специальных пассажей или путем воздействия на вирусы особых физических или химических факторов (мутагенов).

В естественных условиях изменчивость проявляется не у всех вирусов одинаково. Наиболее ярко этот признак выражен у вируса гриппа. Значительной изменчивости подвержен вирус ящера. Об этом свидетельствует наличие большого количества вариантов у разных типов этих вирусов, и существенные изменения его антигенных свойств в конце почти каждой эпизоотии.

Люди умирают из-за эволюции. Порядка 30% смертей, происходящих на земном шаре, можно приписать эволюции простых микроорганизмов, начиная с инфекционных агентов, которые все время нас атакуют, - вирусов, грибов и бактерий - и заканчивая клетками нашего собственного организма, изменения в которых порой приводят к раку.

Одна из самых страшных инфекций - это самый обычный грипп. Ежегодно он уносит около 250 тысяч жизней, а в отдельные годы гораздо больше. Самая масштабная из известных эпидемий гриппа - знаменитая испанка 1918 года, погубившая несколько процентов населения Земли.

Штамм вируса гриппа

Как и любой биологический объект, каждый вирус непрерывно изменяется в результате происходящих в его геноме мутаций. Вирус гриппа - один из довольно быстро изменяющихся вирусов. Одна из причин - то, что его генетическая информация кодируется молекулами РНК, а не ДНК, как, например, наш геном; РНК - легко мутирующая молекула. Другая причина - на вирус непрерывно действует отбор: многие из происходящих в его геноме мутаций оказываются для него «полезными», позволяя эффективнее передаваться, например, между людьми.

Из-за накапливающихся мутаций свойства вируса гриппа постепенно изменяются. Самый заметный для нас результат мутаций - это изменения антигенных свойств вируса, то есть способности клеток нашей иммунной системы узнавать данный штамм. Такие постепенные изменения называются антигенным дрейфом. Сейчас считается, что бо́льшая часть антигенного дрейфа идет в тропических широтах, где у гриппа нет выраженных сезонных эпидемий и он держится на одном уровне в популяции человека круглый год. А вот в Северном и Южном полушариях - соответственно, в декабре–марте и в июне–октябре - каждый год возникают новые эпидемии. Обычно ВОЗ рекомендует новый состав вакцины за полгода до того, как эта вакцина реально начинает использоваться - по той причине, что ее производственный цикл довольно длинный.

Эволюция вируса гриппа

Помимо постепенного антигенного дрейфа, эволюция вируса гриппа характеризуется также антигенными сдвигами - радикальными изменениями свойств вируса, которые обычно связаны с реассортацией. У вируса гриппа геном записан на восьми отдельных сегментах, немного напоминающих человеческие хромосомы. Когда клетка хозяина заражается одновременно двумя вирусными частицами двух разных штаммов, эти сегменты могут перемешаться, и может возникнуть новая вирусная частица с новыми свойствами, состоящая отчасти из сегментов одного родительского штамма и отчасти - другого. Такие реассортантные штаммы часто отличаются по свойствам от родительских штаммов и иногда приводят к большим эпидемиям. Все крупнейшие пандемии ХХ века, о которых мы знаем, - пандемии 50–70-х годов, а также, скорее всего, испанка 1918 года - вызывались, видимо, такими реассортациями, когда штаммы, приходящие из разных видов организмов, например из птиц, свиней, лошадей, перемешивались и давали что-то новое, с чем человеческая иммунная система раньше не сталкивалась.

Предсказание мутации вируса

Предсказуема ли эволюция гриппа? В краткосрочной перспективе - да. Недавние научные работы показывают, что можно отчасти предсказать будущую эволюцию вируса, если знаешь о его предыдущей эволюции. Можно, как любят эволюционисты, построить эволюционное дерево. Причем у обычного вируса гриппа А оно имеет очень характерную форму: это отдельный ствол, от которого отходят коротенькие веточки. Когда вы видите дерево такой формы, вы почти всегда можете быть уверены, что имеете дело с патогеном. Есть одна-единственная линия, которая оказывается эволюционно успешной, и она характеризуется быстрыми изменениями, так что коллективной иммунной системе человечества приходится все время стрелять по движущейся мишени. От нее ответвляются другие линии, которые в конце концов вымирают. Тем не менее некое разнообразие существует постоянно.

Для того чтобы хотя бы примерно понять, глядя на разнообразие текущего года, какой из наблюдаемых в текущем году штаммов даст эпидемию в следующем году, надо смотреть на то, какими мутациями отличаются штаммы друг от друга. Если вирус накопил большое количество мутаций в своих эпитопах, то есть в тех местах своих поверхностных (торчащих наружу) белков, которые «видны» иммунной системе, то, скорее всего, он для иммунной системы будет незаметен, а потому с большой вероятностью эффективен. Наоборот, если у него были какие-то мутации во внутренних генах, то эти мутации с большой вероятностью были вредными - они делают вирус менее приспособленным, и такие линии будут вымирать. Можно построить математическую модель, исходя из числа мутаций в эпитопах и других местах, которая предсказывает будущую эволюционную успешность вируса. Кроме того, можно изучить, насколько данный штамм вируса был эволюционно успешным до сих пор, и экстраполировать это в будущее. Такие подходы имеют ограничения; например, они пока не учитывают взаимодействия между генами. У вируса гриппа 11 генов, и они все друг с другом взаимодействуют довольно сложным образом. При составлении прогнозов такого рода соображения пока обычно опускаются, хотя разные группы, в том числе и наша, показали, что они на самом деле важны. Тем не менее в краткосрочной перспективе они важны.

Предсказывать долгосрочную эволюцию вируса, в том числе антигенные сдвиги, гораздо сложнее. Как минимум для этого надо научиться понимать, какие именно из ныне наблюдаемых штаммов дадут реассортант, который может привести к следующей серьезной эпидемии. Такого рода предсказания мы делать совсем не умеем, потому что здесь очень много привходящих факторов. Здесь важно смотреть, с кем больше взаимодействует человек, важно пытаться предсказывать, какие именно штаммы с большей вероятностью легче «научатся» передаваться от человека к человеку.

Как возникают эпидемии

Эпидемии могут вызывать штаммы, присутствовавшие в популяции раньше. Например, текущая эпидемия 2016 года вызвана вирусом гриппа, впервые замеченным у людей в 2009 году. Однако обычно самые серьезные эпидемии вызываются штаммами, новыми для человека. Чтобы случилась такая эпидемия, должно произойти несколько событий. В каком-то виде животных, с которыми взаимодействует человек, должен возникнуть вариант патогена, способный заражать людей; этот вариант должен передаться человеку; наконец, как правило, он должен приобрести дополнительные мутации, позволяющие ему заражать людей эффективно. Вероятность каждого из этих событий оценить очень сложно, поэтому заранее предсказывать эпидемии мы не умеем.

Свиной грипп H1N1

В этом году около двух третей всех случаев гриппа вызываются пандемическим штаммом H1N1 2009 года, известным под именем «свиной». Этот вирус действительно был, по-видимому, получен человеком от свиней, хотя то же самое верно для многих других вирусов: передача от свиней - это довольно частый механизм возникновения новых штаммов у человека. Отличительное свойство H1N1/09 - его очень интересное происхождение: некоторые его сегменты пришли из птичьего гриппа, некоторые - из свиного, некоторые - из обычного человеческого H3N2, который до сих пор вызывал все инфекции. Плавильным котлом, где все эти сегменты встретились друг с другом, стали свиньи. Сейчас ясно, что смертность от H1N1/09 приблизительно такая же, что и от обычного гриппа, которым мы болели каждый год до этого (хотя тут есть нюансы). Фактически в этом году H1N1/09 стал сезонным гриппом, и возможно, что он останется с нами еще на много лет.

Универсальная вакцина от гриппа

От гриппа существует довольно эффективная вакцина. Но проблема в том, что она все время устаревает, поскольку каждый год вирус эволюционирует, изменяя свои антигенные свойства и становясь снова незнакомым для нашей иммунной системы. Вакцину в результате приходится постоянно обновлять. Каждый год специалисты из Всемирной организации здравоохранения (ВОЗ) рекомендуют всем производителям новый состав так называемой трехвалентной вакцины, перечисляя те три штамма, которые должны быть в нее заложены. Лучше всего трехвалентная вакцина защищает именно от них. Хотя, конечно, существует перекрестный иммунитет, и от штаммов, похожих по антигенным свойствам на эти три штамма, она будет защищать тоже неплохо. Тем не менее прививаться от гриппа нам рекомендуют каждый год, и это правильно. Трехвалентная вакцина этого года включает в себя H1N1/09, так что те, кто прививался осенью, сейчас, скорее всего, в выигрыше. Прививка не гарантирует, что вы не заболеете, но снижает вероятность этого.

Предсказания того, как именно пойдет эволюция гриппа, были бы менее актуальными, если бы мы научились делать универсальную вакцину, защищающую от всех штаммов. Пока такой вакцины нет, хотя несколько кандидатов проходят клинические испытания. Сложность в том, что иммунной системе «видны» как раз те поверхностные белки вируса (гемагглютинин и нейраминидаза), которые вирус легко и безболезненно для себя может изменить. Поэтому вакцинацией трудно объяснить иммунной системе, во что ей, собственно, необходимо целиться.

Искусственный синтез штамма гриппа

Была нашумевшая работа одной группы из Голландии и группы из Японии, где исследователи пытались вручную синтезировать штамм птичьего гриппа, который был бы способен передаваться между млекопитающими. Это им удалось. Их работа считалась этически спорной, потому что все боялись, что синтезированный штамм может «убежать» из лаборатории, что его гены не стоит выкладывать в открытый доступ, потому что кто-нибудь злонамеренно сможет такое синтезировать. Тем не менее теперь мы знаем, какими свойствами может обладать тот штамм птичьего гриппа, который сможет передаться человеку.

Вирус гриппа. Почему он мутирует.

Грипп переносят каждые шесть из десяти заболевших детей и четыре из десяти взрослых, зарегистрированных в поликлинике (понятно, что данные эти далеко не полные: ведь не все обращаются к врачу!). Мало этого, грипп "подхлестывает" сердечно-сосудистые, легочные заболевания. Тяжелый урон здоровью людей делают проблему чрезвычайно острой.

Вирусы вызывают сотни болезней животных, растений и даже бактерий. На их долю приходится большинство инфекционных заболеваний современного человека, и среди них такие грозные, как оспа, бешенство, полиомиелит.

Вирус очень изменчив и приспосабливается к среде. Существо этой изменчивости было расшифровано сравнительно недавно. "Верхнее платье" вируса — его "выходной", а точнее, "входной" костюм чрезвычайно практичен. Его можно было бы назвать и "охотничьим" костюмом: он прекрасно приспособлен для охоты на клетку. "Сшит" костюм из двух основных белковых материалов — гемагглютининов (с их помощью вирус прикрепляется к поверхности клетки — жертвы) и нейраминидаз (чьи ферменты снимают стражу у крепостных ворот, когда вирусу нужно проникнуть в клетку, а затем и выйти из нее).

Но и организм встречает вирус "по одежке": именно белковая оболочка — сфера приложения защитных сил. Стоит смениться хоть какой-то части белкового одеяния вируса, и ранее выработанные антитела уже недействительны.

Так почему же вирус гриппа мутирует?
Существует две противоборствующие точки зрения на природу изменчивости вируса гриппа.

Вот первая из них.

В лабораторных экспериментах чувствительные клетки заражали вирусом гриппа с разными нейраминидазами. В результате получили не только точные копии исходных вирусов, но и вирусы с перегруппированными фрагментами. Механизм такой перегруппировки (рекомбинации) более или менее понятен.

Нить нуклеиновой кислоты вируса гриппа состоит из восьми отдельных фрагментов. Каждый из них заменяется сравнительно легко... Меняется фрагмент нуклеиновой кислоты, немедленно меняется и соответствующий ему белок в оболочке вируса.

Но вот откуда берутся эти новые фрагменты? Казалось бы, им неоткуда взяться.

Этот вопрос и озадачил исследователей. Он как будто вел в тупик. Пока не начали изучать грипп зверей и птиц. Оказалось, что среди домашних и диких животных циркулируют вирусы, напоминающие возбудителя гриппа человека. Особенно много их было выделено от птиц, в том числе и перелетных. Гибриды вирусов гриппа различных типов выделили, например, от уток, вирус гриппа, похожий на человеческий, обнаружили у китов.

Обратите внимание: у птичьих вирусов встречаются все виды нейраминидаз, что у человека и других млекопитающих. Например, нейраминидазы вирусов, циркулировавших с 1933 года по 1957-й, а также нейраминидазы так называемого "азиатского" гриппа, появившегося после 1957 года.

Так возникло предположение: мутация вируса гриппа связано с взаимоотношениями организмов в природе и обменом вирусами гриппа человека и животных. В пользу этой гипотезы говорит и то, что у людей и птиц выделены варианты ныне циркулирующих вирусов гриппа человека.

И все-таки пока это не более чем догадка. Хотя в лабораторных опытах и получают рекомбинации вирусов человека и животных, никто не наблюдал таких явлений в природе. Неясно, каким образом новые варианты вирусов, если они возникают у животных, могут заражать человека. Потребуется немало усилий, чтобы выяснить это.

Эта гипотеза выглядит логичной, стройной и поэтому весьма привлекательной. У нее много сторонников. Однако другие ученые считают, что искать причины изменчивости гриппа во взаимодействии с животным миром нельзя. Да, в природе и в лабораторной пробирке можно встретить гибриды вирусов человека и животных. Но они нежизнеспособны и не столь уж и агрессивны.

Сторонники второй точки зрения обращаются к человеческому организму. Каждый ищет там, где ожидает найти. И, что самое удивительное, находит! Специальные исследования подтвердили: в крови пожилых людей существуют антитела против возбудителей гриппа, которые уже давно циркулировали или еще не циркулируют!

Но ведь исследования китов, уток, свиней и многих других представителей животного мира как будто убеждают в том, что один и тот же вирус гриппа (имеется в виду его нуклеиновая кислота — болезнетворное начало) обнаруживается в разных царствах живого?..

Кроме крупных, заметных сдвигов в белковом обличье вируса (они связаны с заменой одного из фрагментов наследственного аппарата), наблюдаются и менее заметные, но из года в год прогрессирующие изменения гемагглютининов. Предложенные учеными объяснения этого белкового "дрейфа" подвергаются экспериментальной проверке.

А истина? Она, как водится, где-то посередине. Как только на перекрестке современных наук удастся воздвигнуть стройное и гармоничное здание обоснованной теории гриппа, так все наблюдения приобретут в нашем сознании единственно верный смысл и займут подобающее им место в ряду других факторов. Вероятнее всего, сойдутся и крайние точки зрения. Так было уже не раз, когда спорили страстные искатели истины.

Вирус гриппа — чемпион мутации
Ежегодно тяжелую форму гриппа переносят от трех до пяти миллионов человек, до 500 тысяч из которых умирают от самого гриппа или его осложнений (по данным ВОЗ ). Прививки от гриппа, конечно, существенно снижают вероятность заболеть. Однако

в отличие от таких болезней, как корь или туберкулез, иммунитет к которым вырабатывается после первого заболевания или прививки и остаётся эффективным в течение всей жизни, гриппом многие болеют практически каждый год.

Эффективность иммунитета определяется тем, насколько успешно иммунная система распознает и обезвреживает источник инфекции — вирус или бактерию. При первом заражении или прививке иммунная система учится вырабатывать антитела — молекулы, которые связываются с вирусными частицами или бактериями и обезвреживают их. Однажды выработав антитела, иммунная система оставляет их «на вооружении» до конца жизни.

Поэтому, если человек заражается той же самой инфекцией повторно, иммунитет срабатывает и инфекция быстро обезвреживается. Именно по такому принципу работают прививки против кори, туберкулёза и других заболеваний. Почему же этот механизм дает сбой с вирусом гриппа и прививаться от гриппа приходится каждый год заново?

Это связано с двумя причинами. Первая — это особенность взаимодействия между нашей иммунной системой и вирусом. Поверхность частиц вируса гриппа покрыта молекулами двух белков, называемых гемагглютинин (HA) и нейраминидаза (NA) (см. рисунок). По типу этих белков классифицируются различные варианты гриппа человека, например, H1N1 (гемагглютинин типа 1, нейраминидаза типа 1). Человеческая иммунная система умеет вырабатывать антитела, которые успешно связываются с этими белками. Проблема заключается в том, что эти антитела довольно «привередливы». Даже небольшие изменения в структуре HA и NA приводят к тому, что антитела теряют способность связываться с ними и обезвреживать вирус.

С точки зрения иммунной системы такие модифицированные варианты уже известного вируса выглядят как совершенно новые инфекции.

Во-вторых, на помощь вирусу приходит чрезвычайно полезное для него (и вредное для нас) свойство — способность быстро эволюционировать. Как и все другие организмы, вирус гриппа подвержен случайным мутациям. Это значит, что генетическая информация вирусов-потомков немного отличается от генетической информации вирусов-родителей. Таким образом, мутации постоянно создаются новые варианты белков HA и NA. Однако в отличие от высших живых организмов и от многих других вирусов грипп видоизменяется очень быстро:

чтобы накопить столько же мутаций, сколько белки млекопитающих накапливают за миллионы лет, вирусу гриппа требуется всего несколько лет или даже месяцев.

Таким образом, эволюцию вируса гриппа мы можем наблюдать буквально в реальном времени.

Некоторые из мутаций гриппа приводят к тому, что иммунная система, «натренированная» на старый штамм, распознаёт мутировавший вирус хуже, чем не мутировавший. В то время как иммунитет эффективно борется с немутировашими вирусами, вирусы-мутанты размножаются и заражают всё большее и большее количество людей. Это классический процесс естественного отбора, открытого Чарльзом Дарвином.

Отбор осуществляет иммунная система, которая, защищая нас, невольно оказывает нам медвежью услугу.

Через некоторое время — как правило, два-три года — старый, не мутировавший штамм (вариант вируса) полностью вымирает, а вирус-мутант становится новым доминирующим штаммом. Иммунная система большинства людей учится справляться и с новым штаммом, и цикл повторяется. Такая «гонка вооружений» между вирусом и иммунной системой продолжается десятилетиями.

Как бороться с гриппом

Как в таком случае бороться с гриппом? Есть несколько способов помочь нашей иммунной системе. Во-первых, создаются противовирусные препараты, например, озельтамивир (известный под торговой маркой «Тамифлю») или амантадин, которые препятствуют воспроизводству вируса внутри клеток. К сожалению, вирусы со временем вырабатывают устойчивость к таким препаратам посредством того же процесса мутаций и естественного отбора:

так, почти весь вирус подтипа H1N1, циркулировавший в 2009 году, оказался устойчив к озельтамивиру («Тамифлю»).

Во-вторых, ученые пытаются научить иммунную систему распознавать менее изменчивые части вируса (об этом писала ).

В-третьих, ученые пытаются предсказать, какой штамм вируса окажется наиболее распространенным в следующем году. Если мы научимся это делать, мы сможем «переобучать» нашу иммунную систему по мере необходимости, заранее делая прививку против того штамма, который будет преобладать в следующем сезоне, и наш иммунитет получит фору в гонке вооружений с вирусом. Собственно,

уже сегодня Всемирная организация здравоохранения обновляет состав вакцины от гриппа каждые полгода.

Однако иногда — раз в несколько лет — преобладающим оказывается не тот штамм, на основе которого разрабатывалась вакцина; в таком случае прививка оказывается менее эффективной. Поэтому точное предсказание штамма, который будет наиболее распространён в следующем году, является одной из важных задач борьбы с гриппом.

Наша группа (Джонатан Душофф, Джошуа Плоткин, Георгий Базыкин и Сергей Кряжимский) занимается изучением эволюции вируса гриппа и других организмов уже несколько лет. Наше сотрудничество началось в Принстонском университете в лаборатории профессора Саймона Левина, чьими аспирантами мы были в разные годы. Нас с самого начала интересовали как практические вопросы (как наиболее эффективно предсказать следующий преобладающий штамм), так и фундаментальные вопросы эволюции, например,

является ли эволюция гриппа направленной или случайной.

Задачей нашего последнего совместного проекта было определить взаимосвязь между мутациями, происходящими в разных частях белков HA и NA. Дело в том, что одна и та же мутация, скажем, в белке HA может иметь очень разные последствия для вируса в зависимости от того, произошли ли мутации в других частях того же белка. Например, мутация А позволяет вирусу стать «невидимым» для иммунной системы только в паре с мутацией Б, в то время как каждая из мутаций сама по себе для вируса бесполезна. Обнаружить такие пары мутаций, называемых эпистатическими, можно, проанализировав статистические закономерности в генетических последовательностях вируса. Это мы и сделали .

Такой анализ стал возможен лишь в последние годы, когда резко упала стоимость «секвенирования», то есть выяснения генетических последовательностей.

Количество генетических последовательностей вируса гриппа, зарегистрированных в базе данных , за последние пять лет выросло более чем в шесть раз и достигает 150 тысяч. Такого количества данных достаточно, чтобы обнаружить эпистатические пары мутаций, которые произошли в вирусе гриппа за последние 100 лет.

Оказывается, количество эпистатических мутаций в гриппе достаточно велико, то есть избежать атаки иммунной системы или обрести невосприимчивость к антивирусному препарату могут, по всей видимости, лишь весьма специфические варианты вируса, которые обзаводятся необходимыми комбинациями мутаций. Например, невосприимчивость к препарату озельтамивир появилась в 2009-м году только у вирусов, обладающих как минимум тремя специфическими мутациями в белке NA.

С практической точки зрения тот факт, что мутации в вирусе гриппа эпистатические, позволяет надеяться, что в ближайшем будущем мы научимся предсказывать последующие мутации по предыдущим. Пока вирус «собирает» все необходимые мутации для успешной комбинации, мы сможем разработать новую вакцину против штамма, обладающего всей комбинацией, который распространится только через несколько месяцев или даже лет.

Чтобы определить успех той или иной мутации в сочетании с другими, необходимо понять, как именно происходит взаимодействие между мутациями

и как они, совместно и по отдельности, влияют на структуру белков HA и NA, а также разобраться, как иммунная система реагирует на модифицированные варианты этих белков. Эти вопросы сейчас активно исследуются, в особенности в группе Джошуа Плоткина в Университете Пенсильвании, с которой мы активно сотрудничаем, а также другими коллективами.