Нахождение определителя матрицы по строке. Понижение порядка определителя

Для определителя четвёртого и более высоких порядков обычно применяются иные методы вычисления, нежели использование готовых формул как для вычисления определителей второго и третьего порядков . Один из методов вычисления определителей высших порядков - использование следствия из теоремы Лапласа (саму теорему можно посмотреть, например, в книге А.Г. Куроша «Курс высшей алгебры»). Это следствие позволяет разложить определитель по элементам некоторой строки или столбца. При этом вычисление определителя n-го порядка сводится к вычислению n определителей (n-1)-го порядка. Именно поэтому такое преобразование именуют понижением порядка определителя. Например, вычисление определителя четвёртого порядка сводится к нахождению четырёх определителей третьего порядка.

Допустим, нам задана квадратная матрица n-го порядка, т.е. $A=\left(\begin{array} {cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \\ \end{array} \right)$. Вычислить определитель этой матрицы можно, разложив его по строке или по столбцу.

Зафиксируем некоторую строку, номер которой равен $i$. Тогда определитель матрицы $A_{n\times n}$ можно разложить по выбранной i-й строке, используя следующую формулу:

\begin{equation} \Delta A=\sum\limits_{j=1}^{n}a_{ij}A_{ij}=a_{i1}A_{i1}+a_{i2}A_{i2}+\ldots+a_{in}A_{in} \end{equation}

$A_{ij}$ обозначает алгебраическое дополнение элемента $a_{ij}$. Для подробной информации об этом понятии рекомендую глянуть тему Алгебраические дополнения и миноры . Запись $a_{ij}$ обозначает элемент матрицы или определителя, расположенный на пересечении i-й строки j-го столбца. Для более полной информации можно глянуть тему Матрицы. Виды матриц. Основные термины .

Допустим, мы хотим найти сумму $1^2+2^2+3^2+4^2+5^2$. Какой фразой можно охарактеризовать запись $1^2+2^2+3^2+4^2+5^2$? Можно сказать так: это сумма единицы в квадрате, двойки в квадрате, тройки в квадрате, четвёрки в квадрате и пятёрки в квадрате. А можно сказать покороче: это сумма квадратов целых чисел от 1 до 5. Чтобы выражать сумму более коротко и служит запись с помощью буквы $\sum$ (это греческая буква "сигма").

Вместо $1^2+2^2+3^2+4^2+5^2$ мы можем использовать такую запись: $\sum\limits_{i=1}^{5}i^2$. Буква $i$ именуется индексом суммирования , а числа 1 (начальное значение $i$) и 5 (конечное значение $i$) называются нижним и верхним пределами суммирования соответственно.

Расшифруем запись $\sum\limits_{i=1}^{5}i^2$ подробно. Если $i=1$, то $i^2=1^2$, поэтому первым слагаемым данной суммы будет число $1^2$:

$$ \sum\limits_{i=1}^{5}i^2=1^2+\ldots $$

Следующее целое число после единицы - двойка, поэтому подставляя $i=2$, получим: $i^2=2^2$. Сумма теперь станет такой:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+\ldots $$

После двойки следующее число - тройка, поэтому подставляя $i=3$ будем иметь: $i^2=3^2$. И сумма примет вид:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+\ldots $$

Осталось подставить лишь два числа: 4 и 5. Если подставить $i=4$, то $i^2=4^2$, а если подставить $i=5$, то $i^2=5^2$. Значения $i$ достигли верхнего предела суммирования, поэтому слагаемое $5^2$ будет последним. Итак, окончательно сумма теперь такова:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+4^2+5^2. $$

Эту сумму можно и вычислить, банально сложив числа: $\sum\limits_{i=1}^{5}i^2=55$.

Для практики попробуйте записать и вычислить следующую сумму: $\sum\limits_{k=3}^{8}(5k+2)$. Индекс суммирования здесь - буква $k$, нижний предел суммирования равен 3, а верхний предел суммирования равен 8.

$$ \sum\limits_{k=3}^{8}(5k+2)=17+22+27+32+37+42=177. $$

Аналог формулы (1) существует и для столбцов. Формула для разложения определителя по j-му столбцу выглядит следующим образом:

\begin{equation} \Delta A=\sum\limits_{i=1}^{n}a_{ij}A_{ij}=a_{1j}A_{1j}+a_{2j}A_{2j}+\ldots+a_{nj}A_{nj} \end{equation}

Правила, выраженные формулами (1) и (2), можно сформулировать так: определитель равен сумме произведений элементов некоей строки или столбца на алгебраические дополнения этих элементов. Для наглядности рассмотрим определитель четвёртого порядка, записанный в общем виде:

$$\Delta=\left| \begin{array} {cccc} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{array} \right|$$

Выберем произвольный столбец в этом определителе. Возьмём, к примеру, столбец под номером 4. Запишем формулу для разложения определителя по выбранному четвёртому столбцу:

Аналогично, выбирая, к примеру, третью строку, получим разложение по этой строке:

Пример №1

Вычислить определитель матрицы $A=\left(\begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right)$, используя разложение по первой строке и второму столбцу.

Нам нужно вычислить определитель третьего порядка $\Delta A=\left| \begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right|$. Чтобы разложить его по первой строке нужно использовать формулу . Запишем это разложение в общем виде:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}. $$

Для нашей матрицы $a_{11}=5$, $a_{12}=-4$, $a_{13}=3$. Для вычисления алгебраических дополнений $A_{11}$, $A_{12}$, $A_{13}$ станем использовать формулу №1 из темы, посвящённой . Итак, искомые алгебраические дополнения таковы:

\begin{aligned} & A_{11}=(-1)^2\cdot \left| \begin{array} {cc} 2 & -1 \\ 0 & 4 \end{array} \right|=2\cdot 4-(-1)\cdot 0=8;\\ & A_{12}=(-1)^3\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|=-(7\cdot 4-(-1)\cdot 9)=-37;\\ & A_{13}=(-1)^4\cdot \left| \begin{array} {cc} 7 & 2 \\ 9 & 0 \end{array} \right|=7\cdot 0-2\cdot 9=-18. \end{aligned}

Как мы нашли алгебраические дополнения? показать\скрыть

Подставляя все найденные значения в записанную выше формулу, получим:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}=5\cdot{8}+(-4)\cdot(-37)+3\cdot(-18)=134. $$

Как видите, процесс нахождения определителя третьего порядка мы свели к вычислению значений трёх определителей второго порядка. Иными словами, мы понизили порядок исходного определителя.

Обычно в таких простых случаях не расписывают решение подробно, отдельно находя алгебраические дополнения, а уж затем подставляя их в формулу для вычисления определителя. Чаще всего просто продолжают запись общей формулы, - до тех пор, пока не будет получен ответ. Именно так мы станем раскладывать определитель по второму столбцу.

Итак, приступим к разложению определителя по второму столбцу. Вспомогательных вычислений производить не будем, - просто продолжим формулу до получения ответа. Обратите внимание, что во втором столбце один элемент равен нулю, т.е. $a_{32}=0$. Это говорит о том, что слагаемое $a_{32}\cdot A_{32}=0\cdot A_{23}=0$. Используя формулу для разложения по второму столбцу, получим:

$$ \Delta A= a_{12}\cdot A_{12}+a_{22}\cdot A_{22}+a_{32}\cdot A_{32}=-4\cdot (-1)\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|+2\cdot \left| \begin{array} {cc} 5 & 3 \\ 9 & 4 \end{array} \right|=4\cdot 37+2\cdot (-7)=134. $$

Ответ получен. Естественно, что результат разложения по второму столбцу совпал с результатом разложения по первой строке, ибо мы раскладывали один и тот же определитель. Заметьте, что при разложении по второму столбцу мы делали меньше вычислений, так как один элемент второго столбца был равен нулю. Именно исходя из таких соображений для разложения стараются выбирать тот столбец или строку, которые содержат побольше нулей.

Ответ : $\Delta A=134$.

Пример №2

Вычислить определитель матрицы $A=\left(\begin{array} {cccc} -1 & 3 & 2 & -3\\ 4 & -2 & 5 & 1\\ -5 & 0 & -4 & 0\\ 9 & 7 & 8 & -7 \end{array} \right)$, используя разложение по выбранной строке или столбцу.

Для разложения выгоднее всего выбирать ту строку или столбец, которые содержат более всего нулей. Естественно, что в данном случае имеет смысл раскладывать по третьей строке, так как она содержит два элемента, равных нулю. Используя формулу, запишем разложение определителя по третьей строке:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}. $$

Так как $a_{31}=-5$, $a_{32}=0$, $a_{33}=-4$, $a_{34}=0$, то записанная выше формула станет такой:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}. $$

Обратимся к алгебраическим дополнениям $A_{31}$ и $A_{33}$. Для их вычисления будем использовать формулу №2 из темы, посвящённой определителям второго и третьего порядков (в этом же разделе есть подробные примеры применения данной формулы).

\begin{aligned} & A_{31}=(-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|=10;\\ & A_{33}=(-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-34. \end{aligned}

Подставляя полученные данные в формулу для определителя, будем иметь:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}=-5\cdot 10-4\cdot (-34)=86. $$

В принципе, всё решение можно записать в одну строку. Если пропустить все пояснения и промежуточные вычисления, то запись решения будет такова:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}=\\= -5 \cdot (-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|-4\cdot (-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-5\cdot 10-4\cdot (-34)=86. $$

Ответ : $\Delta A=86$.

АЛГЕБРА

1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ. Определения определителя и его основные свойства. Теорема о разложении определителя по элементам строки (столбца). Критерий обратимости матрицы .

Определителем илидетерминантом n-го порядка называется число, записываемое в виде

и вычисляемое по данным числам (действительным или комплексным) – элементам определителя – по следующему закону:

,

распространенная на всевозможные различные перестановки из чисел . Число равно числу транспозиций, которые нужно сделать, чтобы перейти от основной перестановки к перестановке n -го порядка . Произведение называется членом определителя .

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

d = a i 1 A i 1 + a i 2 A i 2 +... + a i n A i n (i = )

или j- го столбца

d = a 1 j A 1 j + a 2 j A 2 j +... + a n j A n j (j = ).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Доказательство.

Убедимся в справедливости теоремы на примере разложения определителя 3-го порядка, например, по 1-й строке. По теореме это разложение будет иметь вид: D= = а 11 А 11 + а 12 А 12 + а 13 А 13 = {с учетом определения A ij получим}= =а 11 (-1) 2 М 11 + а 12 (-1) 3 М 12 + а 13 (-1) 4 М 13 = а 11 - а 12 + а 13 = а 11 (а 22 ×а 33 - а 23 ×а 32) - а 12 (а 21 ×а 33 - а 23 ×а 31) + а 13 (а 21 ×а 32 - а 22 ×а 31) = =а 11 ×а 22 ×а 33 + а 12 ×а 23 ×а 31 + а 13 ×а 21 ×а 32 - а 13 ×а 22 ×а 31 - а 12 ×а 21 ×а 33 - а 11 ×а 23 ×а 32 = {по правилу треугольников} = = D. Аналогичный результат получается при разложении определителя по любой строке (столбцу). Fin.

Следствие. Если в i–й строке (j-м столбце) определителя D есть только один ненулевой элемент а ij ¹ 0, то результатом разложения определителя по этой строке (столбцу) будет выражение D = а ij ×А ij .

Определители n-го порядка удовлетворяют свойствам:

1) При транспонировании определителя его значение не меняется, (то есть значение определителя не меняется при замене его строк столбцами с теми же номерами).

Доказательство:

D = = = a 11 ×a 22 - а 12 ×а 21

NB. Следовательно, строки и столбцы определителя равноправны, поэтому его свойства можно формулировать и доказывать либо для строк, либо для столбцов.

2) При взаимной перестановке любых двух строк (столбцов) определителя его знак меняется на противоположный.

Доказательство:



D = = a 11 ×a 22 - а 12 ×а 21 = - (а 12 ×а 21 - a 11 ×a 22) = -

3) Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Доказательство. Пусть определитель D имеет две одинаковые строки. Если поменять их местами, то, с одной стороны, величина определителя не изменится, так как строки одинаковы, а с другой стороны определитель должен поменять свой знак на противоположный по свойству 2. Таким образом, имеем: D = -D Þ D = 0.

4) Общий множитель элементов какой-либо строки (столбца) можно выносить за знак определителя.

Доказательство:

D= = la 11 ×a 22 - lа 12 ×а 21 = l(a 11 ×a 22 - а 12 ×а 21) = l .

Следствие: D = = l×m .

NB. Правило умножения определителя на число. Чтобы умножить определитель на число, надо все элементы какой-то одной его строки (столбца) умножить на это число.

5) Определитель с нулевой строкой (столбцом) равен нулю.

Доказательство. По свойству 4 вынесем общий множитель l = 0 элементов нулевой строки (столбца) за знак определителя. Получим 0×D = 0.

6) Определитель с двумя и более пропорциональными строками (столбцами) равен нулю.

Доказательство. Если вынести за знак определителя коэффициент пропорциональности двух строк (столбцов) l≠0, то получится определитель с двумя одинаковыми строками (столбцами), равный нулю по свойству 3.

7) Если каждый элемент какой-либо строки (столбца) определителя представить в

виде суммы k слагаемых, то такой определитель равен сумме k определителей, у которых элементы этой строки (столбца) заменены соответствующими слагаемыми, а все остальные элементы такие же как у исходного определителя.

Доказательство:

D= = (а 11 + b 11)а 22 - (а 12 + b 12)а 21 = (а 11 а 22 - а 12 а 21) + (b 11 а 22 - b 12 а 21) = = + .

Опр. n-ая строка определителя называется линейной комбинацией его остальных (n-1) строк, если ее можно представить в виде суммы произведений этих строк на соответствующие числа l 1 , l 2 , …, l n - 1 . Например, в определителе

3–я строка является линейной комбинацией первых двух строк.

NB. Линейная комбинация называется тривиальной, если в ней "l i = 0. В противном случае линейная комбинация называется нетривиальной (if $l i ¹ 0).

8 а) Если одна строка (столбец) определителя является линейной комбинацией других его строк (столбцов), то такой определитель равен нулю.

Доказательство: D =


8 б) Величина определителя не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы любой другой строки (столбца) определителя, умноженные на одно и то же число.

Доказательство:

Пусть D= Þ {к 1-й строке прибавим 2-ю строку, умноженную на число l} Þ

9) Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов любой другой строки (столбца) определителя равна нулю, то есть = 0 (if i ≠ j).Например, пусть

Тогда а 11 А 21 + а 12 А 22 + а 13 А 23 = 0, так как выполнено умножение элементов 1-ой строки определителя на алгебраические дополнения соответствующих элементов 2-ой строки.

Доказательство:

а 11 А 21 + а 12 А 22 + а 13 А 23 = а 11 ×(-1) 2+1 + а 12 ×(-1) 2+2 + а 13 ×(-1) 2+3 =

={это есть разложение по 1-й строке определителя (-1)× = 0}= 0.

Если определитель D¹0, то по свойству 8 б) в нем всегда можно «обнулить» i-ю строку (j-й столбец) до единственного ненулевого элемента и разложить определитель по этой строке (столбцу). Применяя эту операцию нужное число раз, всегда можно из определителя n-го порядка получить определитель 2-го порядка.

При нахождении определителей второго, третьего порядка можно пользоваться стандартными формулами (2 - разница произведения диагональных элементов, 3 - правило треугольника). Однако для вычисления определителя четвертого, пятого порядка и старших гораздо быстрее разложить их по элементам строки или столбца, содержащего больше всего нулей и свести к расчету нескольких определителей на единицу меньшего порядка.

Схемы знаков при минорах для детерминантов 3-го - 5-го порядка приведены ниже.

Их не трудно запомнить, если знать следующие правила:
Дополнение к элементам главной диагонали идут со знаком «+» , а на параллельных диагоналям чередуются «-», «+», «-», ...
Дополнение к элементам нечетных столбцов и строк начинаются с знака «+» , а дальше чередуются «-», «+» , для парных начинаются со знака «-» , а дальше поочередно меняются «+», «-»,...
Вторым правилом пользуется большинство студентов, поскольку оно привязано к столбца или строки по которому осуществляется расписание определителя.

Перейдем к рассмотрению примеров разложения определителя и изучению особенностей этого метода.

Разложить определитель третьего порядка по элементам первой строки и второго столбца

Проводим разложение определителя по элементам первой строки

Подобным образом выполняем вычисления разложения по элементам второго столбца

Оба значения одинаковы, а значит расчеты проведены правильно. Если у Вас получится что определители полученные расписанием по строке и столбцу не совпадают - значит где-то допущена ошибка при вычислениях и нужно перечислить или найти ее.

Найти определитель четвертого порядка методом разложения

Проводим разложение по элементам третьей строки (выделена красным) так как в ней больше всего нулевых элементов.

Определители, входящие в расписание находим по правилу треугольников

Найденные значения подставляем и посчитываем

На этом примере метод разложения показал свою эффективность и простоту. Стандартные правила оказались бы слишком громоздкими в вычислениях.

Найти определитель пятого порядка методом разложения

АЛГЕБРА

    МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ. Определения определителя и его основные свойства. Теорема о разложении определителя по элементам строки (столбца). Критерий обратимости матрицы .

Определителем илидетерминантом n -го порядка называется число, записываемое в виде

и вычисляемое по данным числам (действительным или комплексным) – элементам определителя – по следующему закону:

,

распространенная на всевозможные различные перестановки
из чисел
. Число
равно числу транспозиций, которые нужно сделать, чтобы перейти от основной перестановки
к перестановкеn -го порядка
. Произведение
называетсячленом определителя .

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

d = a i 1 A i 1 + a i 2 A i 2 +... + a i n A i n (i =
)

или j- го столбца

d = a 1 j A 1 j + a 2 j A 2 j +... + a n j A n j (j =
).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Доказательство.

Убедимся в справедливости теоремы на примере разложения определителя 3-го порядка, например, по 1-й строке. По теореме это разложение будет иметь вид: =
= а 11 А 11 + а 12 А 12 + а 13 А 13 = {с учетом определения A ij получим}= =а 11 (1) 2 М 11 + а 12 (1) 3 М 12 + а 13 (1) 4 М 13 = а 11
 а 12
+ а 13
= а 11 (а 22 а 33  а 23 а 32)  а 12 (а 21 а 33  а 23 а 31) + а 13 (а 21 а 32  а 22 а 31) = =а 11 а 22 а 33 + а 12 а 23 а 31 + а 13 а 21 а 32  а 13 а 22 а 31  а 12 а 21 а 33  а 11 а 23 а 32 = {по правилу треугольников} =
=. Аналогичный результат получается при разложении определителя по любой строке (столбцу). Fin.

Следствие. Если в i–й строке (j-м столбце) определителя  есть только один ненулевой элемент а ij  0, то результатом разложения определителя по этой строке (столбцу) будет выражение  = а ij А ij .

Определители n -го порядка удовлетворяют свойствам:

1) При транспонировании определителя его значение не меняется, (то есть значение определителя не меняется при замене его строк столбцами с теми же номерами).

Доказательство:

 =
=
= a 11 a 22  а 12 а 21

NB. Следовательно, строки и столбцы определителя равноправны, поэтому его свойства можно формулировать и доказывать либо для строк, либо для столбцов.

2) При взаимной перестановке любых двух строк (столбцов) определителя его знак меняется на противоположный.

Доказательство:

 =
= a 11 a 22  а 12 а 21 =  (а 12 а 21  a 11 a 22) = 

3) Определитель с двумя одинаковыми строками (столбцами) равен нулю.

Доказательство. Пусть определитель  имеет две одинаковые строки. Если поменять их местами, то, с одной стороны, величина определителя не изменится, так как строки одинаковы, а с другой стороны определитель должен поменять свой знак на противоположный по свойству 2. Таким образом, имеем:  =    = 0.

4) Общий множитель элементов какой-либо строки (столбца) можно выносить за знак определителя.

Доказательство:

=
=a 11 a 22  а 12 а 21 = (a 11 a 22  а 12 а 21) = 
.

Следствие:  =
=
.

NB. Правило умножения определителя на число. Чтобы умножить определитель на число, надо все элементы какой-то одной его строки (столбца) умножить на это число.

5) Определитель с нулевой строкой (столбцом) равен нулю.

Доказательство. По свойству 4 вынесем общий множитель  = 0 элементов нулевой строки (столбца) за знак определителя. Получим 0 = 0.

6) Определитель с двумя и более пропорциональными строками (столбцами) равен нулю.

Доказательство. Если вынести за знак определителя коэффициент пропорциональности двух строк (столбцов) ≠0, то получится определитель с двумя одинаковыми строками (столбцами), равный нулю по свойству 3.

7) Если каждый элемент какой-либо строки (столбца) определителя представить в

виде суммы k слагаемых, то такой определитель равен сумме k определителей, у которых элементы этой строки (столбца) заменены соответствующими слагаемыми, а все остальные элементы такие же как у исходного определителя.

Доказательство:

=
= (а 11 + b 11)а 22  (а 12 + b 12)а 21 = (а 11 а 22  а 12 а 21) + (b 11 а 22  b 12 а 21) = =
+
.

Опр. n-ая строка определителя называется линейной комбинацией его остальных (n1) строк, если ее можно представить в виде суммы произведений этих строк на соответствующие числа  1 ,  2 , …,  n  1 . Например, в определителе

3–я строка является линейной комбинацией первых двух строк.

NB. Линейная комбинация называется тривиальной, если в ней  i = 0. В противном случае линейная комбинация называется нетривиальной (if  i  0).

8 а) Если одна строка (столбец) определителя является линейной комбинацией других его строк (столбцов), то такой определитель равен нулю.

Доказательство:  =

8 б) Величина определителя не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы любой другой строки (столбца) определителя, умноженные на одно и то же число.

Доказательство:

Пусть =
 {к 1-й строке прибавим 2-ю строку, умноженную на число } 

=
.

9) Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов любой другой строки (столбца) определителя равна нулю, то есть
= 0 (if i ≠ j).Например, пусть

 =
 0

Тогда а 11 А 21 + а 12 А 22 + а 13 А 23 = 0, так как выполнено умножение элементов 1-ой строки определителя на алгебраические дополнения соответствующих элементов 2-ой строки.

Доказательство:

а 11 А 21 + а 12 А 22 + а 13 А 23 = а 11 (1) 2+1
+ а 12 (1) 2+2
+ а 13 (1) 2+3
=

={это есть разложение по 1-й строке определителя (1)
= 0}= 0.

Если определитель 0, то по свойству 8 б) в нем всегда можно «обнулить» i-ю строку (j-й столбец) до единственного ненулевого элемента и разложить определитель по этой строке (столбцу). Применяя эту операцию нужное число раз, всегда можно из определителя n-го порядка получить определитель 2-го порядка.

Обратная матрица

Опр. Матрица называется присоединенной (союзной) к квадратной матрице А, если она состоит из алгебраических дополнений элементов транспонированной матрицы А т. Чтобы получить присоединенную матрицу , следует транспонировать матрицу А, а затем все ее элементы заменить их алгебраическими дополнениями, то есть

=
(3.1)

Опр. Квадратная матрица А называется вырожденной (особенной), если ее определитель |A|=0, и невырожденной, если ее определитель |A|0.

Опр. Квадратная матрица А  1 называется обратной (инверсной) к квадратной матрице А, если выполняется условие

А  1 А = АА  1 = Е (3.2)

NB. Обратная матрица А  1 возможна только для невырожденной матрицы А.

Теорема.

Для любой невырожденной квадратной матрицы А существует единственная обратная матрица А  1 , которая находится по формуле

А  1 = (3.3)

Доказательство.

1) Из определения А  1 А = АА  1 следует, что А и А - 1  это квадратные матрицы одного порядка.

Пусть матрица А – невырожденная, то есть |A|0. Тогда, по правилу умножения матриц, по теореме Лапласа и по свойству 9 определителей, получим

А=

=
=

= |A|= |A|E

Следовательно, А= |A|E. Аналогично доказывается, чтоА = |A|E.

Из А= |A|E  А  1 А = А - 1 ×|A|E  Е = А  1 |A|  = А  1 |A|  А  1 = .

2) Докажем единственность обратной матрицы. Предположим, что для матрицы А существует еще одна обратная матрица В. Тогда, согласно определению произведение АВ=Е. Обе части последнего равенства умножим слева на обратную матрицу А  1 и получим: А  1 АВ = А  1 Е  ЕВ = А  1 Е  В = А  1 . Fin.

Свойства обратной матрицы:

    АЛГЕБРА МНОГОЧЛЕНОВ. Наибольший общий делитель двух многочленов (алгоритм Евклида).

Многочленом n -ой степени называется функция вида

где – постоянные коэффициенты (действительные или комплексные), а– комплексная переменная, которая может принимать любые комплексные значения
или, выражаясь геометрическим языком,может быть любой точкой комплексной плоскости.

Если
при
, то числоназываетсякорнем или нулем многочлена
.

Для многочленов определены следующие арифметические операции:

В результате операций 1) и 2) снова получится многочлен. Частное двух многочленов может не быть многочленом.

Деление многочленов с остатком.

,

где
– частное, а
– остаток.

Теорема Безу.

Для того, чтобы многочлен
имел (комплексный) корень, необходимо и достаточно, чтобы он делился на
, т.е. чтобы его можно было представить в виде произведения, где
– некоторый многочлен степениn -1 .

Если при разложении
, то на основании теоремы Безу применимой к
, многочлен
не делится на
, а
хотя и делится на
, но не делится на
. В этом случае говорят, чтопростой корень (нуль) многочлена .

Пусть теперь
. Тогда по теореме Безу, применимой к
, многочлен
делится на
, и мы получим
, где
– некоторый многочлен степениn -2 . Если
, то
делится на
, но не делится на
, и тогда числоназываетсякорнем (нулем) кратности 2 .

В общем случае для некоторого натурального
имеет место

где
– многочлен степениn - s , и тогда говорят, что корень (нуль) многочлена кратности s .

Теорема Гаусса (основная теорема алгебры).

Всякий многочлен n -ой степени (ненулевой, т.е.
) имеет по крайней мере один комплексный корень (нуль).

Следствие из теоремы Гаусса.

Многочлен n -ой степени со старшим не равным нулю коэффициентом
имеетn комплексных корней с учетом кратности, иначе говоря
представляется в виде произведения

где
– различные корникратностей, соответственно
.

Если у многочлена с вещественными коэффициентами есть комплексные корни, то они входят сопряженными парами, т.е. если
– корень многочлена, то и корень
будет являться корнем многочлена.

Раскладывая в разложении на квадратичные множители многочлена комплексные корни
на сопряженные, т.е.
получим разложение многочленана линейные множители.

В результате получим разложение вида

где
отвечает вещественному корнюb кратности l , а
– комплексным корнямикратностиm .

Наибольший общий делитель многочленов

Пусть даны произвольные многочлены
и
. Многочлен будет называтьсяобщим делителем для
и
, если он служит делителем для каждого из этих многочленов. Свойство 5. показывает, что к числу общих делителей многочленов
и
принадлежат все многочлены нулевой степени. Если других общих делителей эти два многочлена не имеют, то они называютсявзаимно простыми .

В общем же случае многочлены
и
могут обладать делителями, зависящими от, и введем понятие онаибольшем общем делителе этих многочленов.

Наибольшим общим делителем отличных от нуля многочленов
и
называется такой многочлен
, который является их общим делителем и, вместе с тем, сам делится на любой другой общий делитель этих многочленов. Обозначается наибольший общий делитель многочленов
и
символом
.

Это определение оставляет открытым вопрос, существует ли наибольший общий делитель для любых многочленов
и
. Ответ на этот вопрос положительный. Существует метод для практического разыскания наибольшего общего делителя данных многочленов, называемыйалгоритмом последовательного деления или алгоритмом Евклида.

Алгоритм Евклида метод для нахождения наибольшего общего делителя двух целых чисел, а также двух многочленов от одного переменного. Он первоначально был изложен в «Началах» Евклида в геометрической форме как способ нахождения общей меры двух отрезков. Алгоритм Евклида для нахождения наибольшего общего делителя, как в кольце целых чисел, так и в кольце многочленов от одного переменного является частным случаем некого общего алгоритма в евклидовых кольцах.

Алгоритм Евклида для нахождения наибольшего общего делителя двух многочленов
и
состоит в последовательном делении с остатком
на
, затем
на первый остаток
, затем
на второй остаток
и так далее. Так как степени остатков все время понижаются, то в этой цепочке последовательных делений мы дойдем до такого места, на котором деление совершится нацело и процесс остановится. Последний отличный от нуля остаток
, на который нацело делится предыдущий остаток
, и является наибольшим общим делителем многочленов
и
.

Для доказательства запишем изложенное в виде следующей цепочки равенств:

Последнее равенство показывает, что
служит делителем для
. Отсюда следует, что оба слагаемых правой части предпоследнего равенства делятся на
, а поэтому
будет делителем и для
. Далее, таким же путем, поднимаясь вверх, мы получим, что
является делителем и для
, …,
,
. Отсюда ввиду второго равенства, будет следовать, что
служит делителем для
, а поэтому, на основании первого равенства, - и для
.

Возьмем теперь произвольный общий делитель
многочленов
и
. Так как левая часть и первое слагаемое правой части первого из равенств делятся на
, то
также будет делится на
. Переходя ко второму и следующему равенствам, таким же способом получим, что на
делятся многочлены
,
, … Наконец, если уже будет доказано, что
и
делятся на
, то из предпоследнего равенства получим, что
делится на
. Таким образом,
на самом деле будет наибольшим общим делителем для
и
.

Мы доказали, что любые два многочлена обладают наибольшим общим делителем, и получили способ его вычисления. Этот способ показывает, что если многочлены
и
имеют оба рациональные или действительные коэффициенты, то и коэффициенты их наибольшего общего делителя также будут рациональными или, соответственно, действительными, хотя у этих многочленов могут существовать и такие делители, не все коэффициенты которых рациональны (действительны).

Определение1. 7 . Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный элемент.

Обозначение: выбранный элемент определителя, его минор.

Пример. Для

Определение1. 8. Алгебраическим дополнением элемента определителя называется его минор, если сумма индексов данного элемента i+j есть число четное, или число, противоположное минору, если i+j нечетно, т.е.

Рассмотрим еще один способ вычисления определителей третьего порядка – так называемое разложение по строке или столбцу. Для этого докажем следующую теорему:

Теорема 1.1 . Определитель равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, т.е.

где i=1,2,3.

Доказательство.

Докажем теорему для первой строки определителя, так как для любой другой строки или столбца можно провести аналогичные рассуждения и получить тот же результат.

Найдем алгебраические дополнения к элементам первой строки:

Таким образом, для вычисления определителя достаточно найти алгебраические дополнения к элементам какой-либо строки или столбца и вычислить сумму их произведений на соответствующие элементы определителя.

Пример. Вычислим определитель с помощью разложения по первому столбцу. Заметим, что при этом искать не требуется, так как следовательно, и Найдем и Следовательно,

Определители более высоких порядков .

Определение1. 9 . Определитель n-го порядка

есть сумма n! членов каждый из которых соответствует одному из n! упорядоченных множеств полученных r попарными перестановками элементов из множества 1,2,…,n.

Замечание 1. Свойства определителей 3-го порядка справедливы и для определителей n-го порядка.

Замечание 2. На практике определители высоких порядков вычисляют с помощью разложения по строке или столбцу. Это позволяет понизить порядок вычисляемых определителей и в конечном счете свести задачу к нахождению определителей 3-го порядка.

Пример. Вычислим определитель 4-го порядка с помощью разложения по 2-му столбцу. Для этого найдем и :

Следовательно,

Теоре́ма Лапла́са - одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 - 1827), которому приписывают формулирование этой теоремы в 1772 году , хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.

олнение минора определяется следующим образом:

Справедливо следующее утверждение.

Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .

Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.

Разложение определителя по строке (столбцу) (Следствие 1)

Широко известен частный случай теоремы Лапласа - разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть - квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам.