Никель-металлгидридный аккумулятор. Держатели элементов АА

Сфера применения электрических аккумуляторов довольно-таки широка. Небольшими батареями комплектуются привычные для всех бытовые приборы, АКБ слегка больших размеров оснащаются автомобили, ну а уж очень крупные и ёмкостные аккумуляторы монтируют в нагруженные работой промышленные станции. Казалось бы, что помимо пользовательского назначения у разных видов АКБ может быть общего? Однако на самом деле сходств у подобных батарей более чем достаточно. Пожалуй, одним из основных среди возможных сходств аккумуляторов является принцип организации их работы. В сегодняшнем материале наш ресурс решил рассмотреть именно один из таковых. Если быть точнее, то ниже речь пойдет о функционировании и правилах эксплуатации никель-металлогидридных батарей.

История появления никель-металлогидридных АКБ

Создание никель-металлогидридных аккумуляторов начало вызывать немалый интерес у представителей инженерии более 60 лет назад, то есть в 50-х годах 20 века. Ученые, специализирующиеся на изучение физико-химических свойств АКБ, всерьёз задумались над тем, как преодолеть недостатки популярных на то время никель-кадмиевых батарей. Пожалуй, одной из основных целей ученых было создание такого аккумулятора, который мог бы ускорить и упростить процесс протекания всех реакций, связанных с электролитической передачей водорода.

В итоге, специалистам лишь к концу 70-х годов удалось сначала спроектировать, а затем создать и полноценно испытать более-менее качественные никель-металлогидридные батареи. Главное отличие нового типа АКБ от предшественников заключалось в том, что он имел строго определённые места для скопления основной массы водорода. Говоря точнее, скопление вещества происходило в сплавах нескольких металлов, находящихся на электродах аккумулятора. Состав сплавов имел такую структуру, что один или несколько металлов накапливали водород (иногда в несколько тысяч раз превышающих их объём), а другие металлы выступали в роли катализаторов электролитических реакций, обеспечивая переход водородного вещества в металлическую решётку электродов.

Сделанный аккумулятор, имеющий водородно-металлогидридный анод и никелевый катод, получил аббревиатуру «Ni-MH» (от названия токопроводящих, накапливающих веществ). Работают подобные АКБ на щелочном электролите и обеспечивают отличный цикл «заряд-разряд» — до 2 000 тысяч для одной полноценной батареи. Несмотря на это, путь к проектировке аккумуляторов Ni-MH был нелёгок, а существующие на данный момент образцы до сих пор модернизируются. Основной вектор модернизации направлен на увеличение энергетической плотности батарей.

Отметим, что сегодня никель-металлогидридные АКБ в большинстве своём производятся на основе сплава металлов «LaNi5». Первый образец подобных аккумуляторов был запатентован в 1975 году и стал активно использоваться в широкой промышленности. Современные никель-металлогидридные батареи имеют высокую энергетическую плотность и состоят из совершенно нетоксичного сырья, что упрощает их утилизацию. Пожалуй, именно из-за данных преимуществ они стали очень популярны во многих сферах, где требуется долгое хранение электрического заряда.

Устройство и принцип работы никель-металлогидридной батареи

Никель-металлогидридные аккумуляторы всех размерностей, ёмкостей и предназначений выпускают в двух основных типах форм – призматической и цилиндрической. Вне зависимости от формы, подобные АКБ состоят из следующих обязательных элементов:

  • металлогидридных и никелевых электродов (катодов и анодов), образующих гальванический элемент сеточной структуры, который отвечает за движение и накопление электрического заряда;
  • сепараторных областей, разделяющих электроды и также участвующих в процессе электролитических реакций;
  • выводных контактов, отдающих во внешнюю среду накопленный заряд;
  • крышки с вмонтированным в неё клапаном, необходимой для сброса излишнего давления из полостей аккумулятора (давления свыше 2-4 мегапаскаль);
  • термозащитного и крепкого корпуса, вмещающего описанные выше элементы батареи.

Конструкция никель-металлогидридных аккумуляторов, как и многих других типов данного устройства, довольно-таки проста и особых сложностей в рассмотрении не представляет. Наглядно это показано на следующих конструктивных схемах АКБ:

Принципы работы рассматриваемых АКБ, в отличие от их общей конструктивной схемы, выглядят слегка сложнее. Для понимания их сути давайте обратим внимание на поэтапное функционирование никель-металлогидридных аккумуляторов. В типовом варианте этапы работы у данных батарей следующие:

  1. Положительный электрод – анод, осуществляет окислительную реакцию с абсорбцией водорода;
  2. Отрицательный электрод – катод, реализует восстановительную реакцию в дисабсорбицией водорода.

Говоря простым языком, электродная сетка организует упорядоченное движение частиц (электродов и ионов) посредством конкретных химических реакций. При этом непосредственно электролит в основной реакции выделения электричества не участвует, а включается в работу лишь при определённых обстоятельствах функционирования аккумуляторов Ni-MH (например, при перезарядке, реализуя реакцию циркуляции кислорода). Более подробно рассматривать принципы работы никель-металлогидридных АКБ не будем, так как для этого требуются специальные химические знания, которых у многих читателей нашего ресурса нет. При желании узнать о принципах работы батарей в больших подробностях стоит обратиться к технической литературе, которая максимально подробно освещает течение каждой реакции на концах электродах как при заряде батарей, так и при их разряде.

Характеристики стандартного АКБ Ni-MH можно увидеть в следующей таблице (столбец посередине):

Правила эксплуатации

Любой аккумулятор – относительно неприхотливое в обслуживании и эксплуатации устройство. Несмотря на это, его стоимость зачастую высока, поэтому каждый владелец той или иной батареи заинтересован в увеличении её срока службы. Относительно АКБ формации «Ni-MH» продлить эксплуатационный период не столь сложно. Для этого достаточно:

  • Во-первых, соблюдать правила зарядки аккумулятора;
  • Во-вторых, правильно его эксплуатировать и хранить при простое.

О первом аспекте обслуживания АКБ поговорим чуть позже, ну а сейчас обратим внимание на основной перечень правил эксплуатации никель-металлогидридных батарей. Шаблонный список данных правил таков:

  • Хранение никель-металлогидридных аккумуляторов должно осуществляться только в их заряженном состоянии на уровне 30-50 %;
  • Строго запрещается перегревать АКБ Ni-MH, так как по сравнению с теми же никель-кадмиевыми батареями, рассматриваемые нами намного чувствительней к нагреву. Перегруженность работой отрицательно сказывается на всех процессах, протекающих в полостях и на выходах аккумулятора. Особенно страдает токоотдача;
  • Никогда не перезаряжайте никель-металлогидридные батареи. Всегда придерживайтесь правил зарядки, описанных в настоящей статье или отражённых в технической документации к аккумулятору;
  • В процессе слабой эксплуатации или длительном хранении «тренируйте» АКБ. Зачастую хватает периодически проводимого цикла «заряд-разряд» (порядка 3-6 раз). Также подобной «тренировке» желательно подвергать новые батареи Ni-MH;
  • Хранить аккумуляторы никель-металлогидридной формации требуется в комнатном температурном режиме. Оптимальная температура – 15-23 градусов по Цельсию;
  • Старайтесь не разряжать аккумулятор до минимальных пределов – напряжение, меньшее 0,9 Вольт для каждой пары «катод-анод». Восстановлению никель-металлогидридные АКБ, конечно, поддаются, но желательно их не доводить до «мёртвого» состояния (о том, как восстановить батарею, также поговорим ниже);
  • Следите за конструктивным качеством батареи. Не допускается наличие серьёзных дефектов, недостаток электролита и тому подобные вещи. Рекомендуемая периодичность проверки АКБ равняется 2-4 неделям;
  • В случае с использованием больших, стационарных батарей также важно придерживаться правил:
    • их текущего ремонта (не менее раза в год):
    • капитального восстановления (не менее раза в 3 года);
    • надёжного крепления АКБ в месте использования;
    • наличия освещения;
    • использования правильных зарядных устройств;
    • и соблюдения техники безопасности использования подобных аккумуляторов.

Придерживаться описанных правил важно не только потому, что подобный подход к эксплуатации никель-металлогидридных АКБ существенно продлить их срок службы. Также они гарантируют безопасное и, в целом, беспроблемное, использование батареи.

Правила зарядки

Раннее было отмечено, что правила эксплуатации – это далеко не единственное, что требуется для достижения максимального эксплуатационного срока никель-металлогидридных АКБ. Помимо грамотного использования, подобные батареи крайне важно грамотно заряжать. Вообще, ответить на вопрос – «Как правильно заряжать аккумулятор Ni-MH?», довольно-таки сложно. Дело в том, что каждый тип сплавов, используемый на электродах батареи, требует определённых правил данного процесса.

Обобщив и усреднив их, можно выделить следующие фундаментальные основы зарядки никель-металлогидридных аккумуляторов:

  • Во-первых, требуется соблюдать правильное время зарядки. Для большинства АКБ Ni-MH оно составляет либо 15 часов при зарядном токе около 0,1 С, либо 1-5 часов при зарядном токе в пределах 0,1-1 С для батарей с высокоактивными электродами. Исключениями являются восстанавливаемые аккумуляторы, которые могут заряжаться более 30 часов;
  • Во-вторых, важно отслеживать температуру батареи в процессе зарядки. Многие производители не рекомендуют превышать температурный максимум в 50-60 градусов по Цельсию;
  • И в-третьих, следует учитывать непосредственно порядок проведения зарядки. Оптимальным считается такой подход, когда АКБ разряжается номинальным током до напряжения на выходах в 0,9-1 Вольт, после чего заряжается на 75-80 % от своей максимальной ёмкости. При этом важно учитывать, что при быстрой зарядке (подаваемый ток более 0,1) важно организовать предзарядку с подачей высокого тока на аккумулятор около 8-10 минут. После этого процесс зарядки стоит организовать с плавным повышением подаваемого на АКБ напряжения до 1,6-1,8 Вольт. К слову, при обычной подзарядке никель-металлогидридного аккумулятора напряжение зачастую не изменяется и в норме составляет 0,3-1 Вольт.

Примечание! Отмеченные выше правила зарядки батарей носят усреднённый характер. Не забывайте, что для конкретной марки никель-металлогидридной АКБ они могут слегка отличаться.

Восстановление аккумулятора

Наряду с дороговизной и быстрым саморазрядом, у аккумуляторов Ni-MH есть ещё один недостаток – ярко выраженный «эффект памяти». Его суть заключается в том, что при систематичной зарядке не полностью разряженной батареи она как бы запоминает это и с течением времени существенно теряет в своей ёмкости. Для нейтрализации подобных рисков владельцам подобных АКБ требуется заряжать максимально разряженные батареи, а также периодически «тренировать» их путём процесса восстановления.

Восстанавливать никель-металлогидридные аккумуляторы при «тренировке» или при их сильном разряде необходимо следующим образом:

  1. В первую очередь, необходимо подготовиться. Для восстановления потребуются:
    • качественный и, желательно, умный зарядный прибор;
    • инструменты для замера напряжения и сила тока;
    • любое устройство, способное потреблять энергию с АКБ.
  2. После подготовки можно уже задаться вопросом по поводу того, как восстановить батарею. Сначала необходимо по всем правилам зарядить аккумулятор, а затем его разрядить по напряжения на выходах батареи в 0,8-1 Вольт;
  3. Затем начинается непосредственно восстановление, которое, опять же, должно проводится в соответствии со всеми правилами зарядки никель-металлогидридных аккумуляторов. Стандартный процесс восстановления может быть проведён двумя способами:
    • Первый – если АКБ подаёт признаки «жизни» (как правило, при разряде на уровне 0,8-1 Вольт). Зарядка проходит с постоянным увеличением подаваемого напряжение с 0,3 до 1 Вольта с силой тока 0,1 С в течение 30-60 минут, после чего вольтаж остаётся неизменным, а сила тока увеличивается до 0,3-0,5 С;
    • Второй – если АКБ не подаёт признаков «жизни» (при разряде менее 0,8 Вольт). В таком случае зарядка осуществляется с 10-минутной пред-зарядкой высоким током на протяжении 10-15 минут. После этого проводятся описанные выше действия.

Стоит понимать, что восстановление никель-металлогидридных АКБ – это процедура, которую требуется периодически проводить для абсолютно всех аккумуляторов (и «живых», и «неживых»). Только такой подход к эксплуатации данного типа батарей поможет «выжать» из них максимум.

Пожалуй, на этом повествование по сегодняшней теме можно завершать. Надеемся, представленный выше материал был для вас полезен и дал ответы на интересующие вопросы.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

И были предприняты как попытка преодоления недостатков . Однако, применяемые в то время металл-гидридные соединения были нестабильны, и требуемые характеристики не были достигнуты. В результате процесс разработки NiMH аккумуляторов застопорился. Новые металл-гидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980. Начиная с конца восьмидесятых годов XX века NiMH аккумуляторы постоянно совершенствовались, главным образом по плотности запасаемой энергии . Их разработчики отмечали, что для NiMH технологии имеется потенциальная возможность достижения ещё более высоких плотностей энергии.

Параметры

  • Теоретическая энергоёмкость (Вт·ч /кг): 300 Вт·ч/кг .
  • Удельная энергоёмкость: около - 60-72 Вт·ч/кг.
  • Удельная энергоплотность (Вт·ч/дм ³): около - 150 Вт·ч/дм³.
  • ЭДС: 1,25 .
  • Рабочая температура: −60…+55 °C .(-40… +55)
  • Срок службы: около 300-500 циклов заряда/разряда.

Описание

Никель-металл-гидридные аккумуляторы форм фактора "Крона", как правило- начальным напряжением 8,4 вольта, постепенно снижает напряжение до 7,2 вольт, а затем, когда энергия аккумулятора будет исчерпана, напряжение быстро снижается. Этот тип аккумуляторов разработан для замены никель-кадмиевых аккумуляторов . Никель-металл-гидридные аккумуляторы имеют примерно на 20 % большую емкость при тех же габаритах, но меньший срок службы - от 200 до 300 циклов заряда/разряда. Саморазряд примерно в 1,5-2 раза выше, чем у никель-кадмиевых аккумуляторов.

NiMH аккумуляторы практически избавлены от «эффекта памяти ». Это означает, что заряжать не полностью разряженный аккумулятор можно, если он не хранился больше нескольких дней в таком состоянии. Если же аккумулятор был частично разряжен, а затем не использовался в течение длительного времени (более 30 дней), то перед зарядом его необходимо разрядить.

Экологически безопасны.

Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда - 15-16 часов (типичная рекомендация производителя).

Хранение

Аккумуляторы нужно хранить полностью заряженными в холодильнике, но не ниже 0 градусов . При хранении желательно регулярно (раз в 1-2 месяца) проверять напряжение. Оно не должно падать ниже 1,37 . Если же напряжение упало, необходимо зарядить аккумуляторы заново. Единственный вид аккумуляторов, которые могут храниться разряженными, - это Ni-Cd аккумуляторы .

NiMH аккумуляторы с низким саморазрядом (LSD NiMH)

Никель-металл-гидридные аккумуляторы с низким саморазрядом (the low self-discharge nickel-metal hydride battery, LSD NiMH), впервые были представлены в ноябре 2005 фирмой Sanyo под торговой маркой Eneloop. Позднее многие мировые производители представили свои LSD NiMH аккумуляторы.

Этот тип аккумуляторов имеет сниженный саморазряд, а значит обладает более длительным сроком хранения по сравнению с обычными NiMH. Аккумуляторы продаются как «готовые к использованию» или «предварительно заряженный» и позиционируются как замена щелочным батарейкам.

По сравнению с обычными аккумуляторами NiMH, LSD NiMH являются наиболее полезными, когда между зарядкой и использованием аккумулятора может пройти более трех недель. Обычные NiMH аккумуляторы теряют до 10% емкости зарядом в течение первых 24 часов после заряда, зетем ток саморазряда стабилизируется на уровне до 0,5% емкости в день. Для LSD NiMH этот параметр как правило находится в диапазоне от 0,04% до 0,1% емкости в день. Производители утверждают, что улучшив электролит и электрод, удалось добиться следующих преимуществ LSD NiMH относительно классической технологии:

Из недостатков следует отметить сравнительно чуть меньшую емкость. В настоящее время (2012 год) максимально достигнутая паспортная емкость LSD - 2700 mAh.

Тем не менее, при тестировании аккумуляторов Sanyo Eneloop XX с паспортной емкостью 2500mAh (min 2400mAh) оказалось, что все из аккумуляторов партии в 16 штук (сделаны в Японии, проданы в Ю.Корее) имеют емкость даже больше - от 2550 mAh до 2680 mAh. Тестировалось зарядкой LaCrosse BC-9009.

Неполный список аккумуляторов долгого хранения (с низким саморазрядом):

  • Prolife от Fujicell
  • Ready2Use Accu от Varta
  • AccuEvolution от AccuPower
  • Hybrid, Platinum, и OPP Pre-Charged от Rayovac
  • eneloop от Sanyo
  • eniTime от Yuasa
  • Infinium от Panasonic
  • ReCyko от Gold Peak
  • Instant от Vapex
  • Hybrio от Uniross
  • Cycle Energy от Sony
  • MaxE и MaxE Plus от Ansmann
  • EnergyOn от NexCell
  • ActiveCharge/StayCharged/Pre-Charged/Accu от Duracell
  • Pre-Charged от Kodak
  • nx-ready от ENIX energies
  • Imedion от
  • Pleomax E-Lock от Samsung
  • Centura от Tenergy
  • Ecomax от CDR King
  • R2G от Lenmar
  • LSD ready to use от Turnigy

Другие преимущества NiMH аккумуляторов с низким саморазрядом (LSD NiMH)

Никель-металл-гидридные аккумуляторы с низким саморазрядом обычно имеют значительно более низкое внутреннее сопротивление чем обычные NiMH батареи. Это сказывается весьма положительно в приложениях с высоким токопотреблением:

  • Более стабильное напряжение
  • Уменьшенное тепловыделение особенно на режимах быстрого заряда/разряда
  • Более высокая эффективность
  • Способность к высокой импульсной токоотдаче (Пример: зарядка вспышки фотоаппарата происходит быстрее)
  • Возможность продолжительной работы в устройствах с низким энергопотреблением (Пример: пульты ДУ, часы.)

Методы заряда

Зарядка производится электрическим током при напряжении на элементе до 1,4 - 1,6 В. Напряжение на полностью заряженном элементе без нагрузки составляет 1,4 В. Напряжение при нагрузке меняется от 1,4 до 0,9 В. Напряжение без нагрузки на полностью разряженном аккумуляторе составляет 1,0 - 1,1 В (дальнейшая разрядка может испортить элемент). Для зарядки аккумулятора используется постоянный или импульсный ток с кратковременными отрицательными импульсами (для восстановления эффекта «памяти», метод «FLEX Negative Pulse Charging» или «Reflex Charging»).

Контроль окончания заряда по изменению напряжения

Одним из методов определения окончания заряда является метод -ΔV. На изображении показан график напряжения на элементе при заряде. Зарядное устройство заряжает аккумулятор постоянным током. После того, как аккумулятор полностью заряжен, напряжение на нём начинает падать. Эффект наблюдается только при достаточно больших токах зарядки (0,5С..1С). Зарядное устройство должно определить это падение и выключить зарядку.

Существует ещё так называемый «inflexion» - метод определения окончания быстрой зарядки. Суть метода заключается в том, что анализируется не максимум напряжения на аккумуляторе, а максимум производной напряжения по времени. То есть быстрая зарядка прекратится в тот момент, когда скорость роста напряжения будет максимальной. Это позволяет завершить фазу быстрой зарядки раньше, когда температура аккумулятора еще не успела значительно подняться. Однако метод требует измерения напряжения с большей точностью и некоторых математических вычислений (вычисления производной и цифровой фильтрации полученного значения).

Контроль окончания заряда по изменению температуры

При зарядке элемента постоянным током бóльшая часть электрической энергии преобразуется в химическую энергию. Когда аккумулятор полностью заряжен, то подводимая электрическая энергия будет преобразовываться в тепло. При достаточно большом зарядном токе можно определить окончание заряда по резкому увеличению температуры элемента, установив датчик температуры аккумулятора. Максимальная допустимая температура аккумулятора 60°С.

Области применения

Замена стандартного гальванического элемента, электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Выбор емкости аккумуляторов

При использовании NiMH аккумуляторов далеко не всегда следует гнаться за большой ёмкостью. Чем более ёмкий аккумулятор, тем выше (при прочих равных условиях) его ток саморазряда. Для примера рассмотрим аккумуляторы ёмкостью 2500 мАч и 1900 мАч. Полностью заряженные и не используемые в течение, например, месячного срока аккумуляторы потеряют часть своей электрической ёмкости вследствие саморазряда. Более ёмкий аккумулятор будет терять заряд значительно быстрее, чем менее ёмкий. Таким образом по прошествии, например, месяца аккумуляторы будут иметь примерно равный заряд, а по прошествии ещё большего времени изначально более ёмкий аккумулятор будет содержать меньший заряд.

С практической точки зрения аккумуляторы высокой ёмкости (1500-3000 мАч для AA-батарей) есть смысл использовать в устройствах с высоким потреблением энергии в течение короткого времени и без предварительного хранения. Например:

  • В радиоуправляемых моделях;
  • В фотоаппарате - для увеличения количества снимков, сделанных в относительно короткий промежуток времени;
  • В прочих устройствах, в которых заряд будет выработан за относительно короткий срок.

Аккумуляторы же низкой ёмкости (300-1000 мАч для AA-батарей) скорее подойдут для следующих случаев:

  • Когда использование заряда начинается не сразу после зарядки, а по прошествии значительного времени;
  • Для периодического использования в устройствах (ручные фонари, GPS-навигаторы, игрушки, рации);
  • Для длительного использования в устройстве с умеренным энергопотреблением.

Производители

Никель-металл-гидридные аккумуляторы производятся разными фирмами, в том числе:

  • Camelion
  • Lenmar
  • Наша сила
  • НИАИ ИСТОЧНИК
  • Космос

См. также

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.

Примечания

Ссылки

  • ГОСТ 15596-82 Источники тока химические. Термины и определения
  • ГОСТ Р МЭК 61436-2004 Аккумуляторы никель-металл-гидридные герметичные
  • ГОСТ Р МЭК 62133-2004 Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Требования безопасности для портативных герметичных аккумуляторов и батарей из них при портативном применении

Началось все с того, что моя фотомыльница наотрез отказалась работать со свежевынутыми из зарядного устройства аккумуляторами - четырьмя NiMH размера АА. Их бы взять, как обычно, да выбросить. Но почему-то в этот раз любопытство возобладало над здравым смыслом (или это может жаба подала голос), и захотелось понять - а нельзя ли из этих батарей выдавить еще хоть чего-нибудь. Фотоаппарат весьма охоч до энергии, но ведь есть и более скромные потребители - мышки беспроводные или клавиатуры, например.

Собственно параметров, интересных потребителю, два - емкость батареи и ее внутреннее сопротивление. Возможных манипуляций тоже немного - разрядить да зарядить. Измеряя в процессе разряда ток и время можно оценить емкость аккумулятора. По разнице напряжения аккумулятора на холостом ходу и под нагрузкой можно оценить внутреннее сопротивление. Повторив цикл разряд-заряд (т. е. выполнив «тренировку») несколько раз, можно понять имеет ли вообще это действо смысл.

Соответственно сформировался такой план - делаем управляемые разрядник и зарядник с возможностью непрерывного измерения параметров процесса, производим над измеренными величинами простые арифметические действия, повторяем процесс нужное число раз. Сравниваем, делаем выводы, выбрасываем наконец аккумуляторы.

Измерительный стенд
Сплошной сборник велосипедов. Состоит из аналоговой части (на схеме ниже) и микроконтроллера. В моем случае интеллектуальной частью был ардуино, хотя это совершенно не принципиально - лишь бы был необходимый набор входов/выходов.

Сделан стенд был из того, что нашлось в радиусе трех метров. Если кому-то захочется повторить, то вовсе не обязательно в точности следовать схеме. Выбор параметров элементов может быть весьма широким, далее я это немного прокомментирую.

Блок разряда представляет собой управляемый стабилизатор тока на ОУ IC1B (LM324N) и полевом транзисторе Q1. Транзистор практически любой, лишь бы хватило допустимых напряжений, токов и рассеиваемой мощности. А они тут все небольшие. Резистор обратной связи и одновременно часть нагрузки (вместе с Q1 и R20) для аккумулятора - R1. Его максимальная величина должна быть такой, чтобы обеспечить требуемый максимальный ток разряда. Если исходить из того, что разряжать аккумулятор можно до 1 В, то для обеспечения тока разряда, например, в 500 мА резистор R1 не должен быть больше 2 Ом. Управляется стабилизатор трехбитным резистивным ЦАП (R12-R17). Тут расчет такой - напряжение на прямом входе ОУ равно напряжению на R1 (которое пропорционально току разряда). Меняем напряжение на прямом входе - меняется ток разряда. Для масштабирования выхода ЦАП к нужному диапазону имеется подстроечный резистор R3. Лучше, чтобы он был многооборотный. Номиналы R12-R17 могут быть любыми (в районе десятков килоом), главное, чтобы выполнялось соотношение их величин 1/2. Особой точности от ЦАП не требуется, поскольку ток разряда (напряжение на R1) в процессе измеряется непосредственно инструментальным усилителем IC1D. Его коэффициент усиления равен K=R11/R10=R9/R8. Выход подается на АЦП микроконтроллера (А1). Изменением номиналов R8-R11 усиление можно подогнать к желаемому. Напряжение на батарее измеряется вторым усилителем IC1C, K=R5/R4=R7/R6. Зачем управление током разряда? Дело тут в основном вот в чем. Если разряжать постоянным большим током, то ввиду большого внутреннего сопротивления у изношенных батарей минимально допустимое напряжение 1 В (а другого ориентира для прекращения разряда нет) будет достигнуто раньше, чем аккумулятор на самом деле разрядится. Если разряжать постоянным малым током, то процесс растянется слишком надолго. Поэтому разряд ведется ступенчато. Восьми ступеней мне показалось достаточно. Если охота больше/меньше, то можно изменить разрядность ЦАП. Кроме того, включая-выключая нагрузку, можно прикинуть внутреннее сопротивление аккумулятора. Думаю, что дальнейших пояснений алгоритм работы контроллера при разряде не требует. По окончании процесса Q1 оказывается заперт, батарея полностью отключается от нагрузки, а контроллер включает блок заряда.

Блок заряда. Тоже стабилизатор тока, только неуправляемый, зато отключаемый. Ток задается источником опорного напряжения на IC2 (2.5 В, точность 1% согласно даташиту) и резистором R21. В моем случае ток заряда был классическим - 1/10 от номинальной емкости аккумулятора. Резистор обратной связи - R20. Источник опорного напряжения можно использовать любой другой - на ваш вкус и наличие деталей. Транзистор Q2 работает в более жестком режиме, чем Q1. Ввиду заметной разницы между напряжением Vcc и напряжением батареи на нем рассеивается заметная мощность. Это плата за простоту схемы. Но радиатор спасает положение. Транзистор Q3 служит для принудительного запирания Q2, т. е. для отключения блока заряда. Управляется сигналом 12 микроконтроллера. Еще один источник опорного напряжения (IC3) нужен для работы АЦП контроллера. От его параметров зависит точность измерений нашего стенда. Светодиод LED1 - для индикации состояния процесса. В моем случае он не горит в процессе разряда, горит при заряде и мигает, когда цикл закончен.
Напряжение питания выбирается таким, чтобы обеспечить открытие транзисторов и работу их в нужных диапазонах. В данном случае у обоих транзисторов напряжение отпирания затвора довольно велико - порядка 2-4 В. Кроме того, Q2 «подперт» напряжением батареи и R20, поэтому отпирающее напряжение на затворе стартует примерно от 3,5-5,5 В. В свою очередь LM323 не может поднять напряжение на выходе выше Vcc минус 1,5 В. Поэтому Vcc должно быть достаточно велико и в моем случае равно 9 В.

Алгоритм управления зарядом ориентировался на классический вариант контроля момента начала падения напряжения на батарее. Однако на деле оказалось все не совсем так, но об этом позже.
Все измеряемые величины в процессе «исследований» писались в файл, потом производились расчеты и строились графики.

Думаю, что с измерительным стендом все ясно, поэтому перейдем к результатам.

Результаты измерений
Итак, имеем заряженные (но неработающие) батареи, которые разряжаем и измеряем запасенную емкость, а заодно и внутреннее сопротивление. Выглядит это примерно так.

Графики в осях время, часы (X) и мощность, Вт (Y) для лучшей и худшей из батарей. Видно, что запасенная энергия (площадь под графиками) существенно разная. В числовом выражении измеренная емкость аккумуляторов составила 1196, 739, 1237 и 1007 мА*ч. Не густо, учитывая, что номинальная емкость (которая указана на корпусе) - 2700 мА*ч. И разброс весьма велик. А что же внутреннее сопротивление? Оно составило 0.39, 0.43, 0.32 и 0.64 Ом соответственно. Ужасно. Понятно почему мыльница отказывалась работать - батареи просто не в состоянии отдать большой ток. Ну что ж, приступим к тренировке.

Цикл первый. Опять отдаваемые мощности лучшей и худшей батареи.

Прогресс виден невооруженным глазом! Числа это подтверждают: 1715, 1444, 1762 и 1634 мА*ч. Внутреннему сопротивлению тоже похорошело, но очень неравномерно - 0.23, 0.40, 0.1, 0.43 Ом. Казалось бы есть шанс. Но увы - дальнейшие циклы разряда/заряда ничего не дали. Значения емкости, как и внутреннего сопротивления, изменялись от цикла к циклу в пределах около 10%. Что лежит где-то недалеко от пределов точности измерений. Т.е. длительная тренировка, во всяком случае для моих аккумуляторов, ничего на дала. Но зато стало ясно, что батареи сохранили больше половины емкости и вполне еще поработают на малом токе. Хоть какая-то экономия в хозяйстве.

Теперь хочу немножко остановиться на процессе заряда. Возможно мои наблюдения будут полезны кому-то, кто соберется конструировать интеллектуальное зарядное устройство.
Вот типичный график заряда (слева шкала напряжения на аккумуляторе в вольтах).

После начала заряда наблюдается провал напряжения. В разных циклах он может быть больше или меньше по глубине, немного разной длительности, иногда отсутствует. Далее в течение примерно 10 часов идет равномерный рост и затем выход почти на горизонтальное плато. Теория гласит, что при малом токе заряда не наблюдается падение напряжения в конце заряда. Я набрался терпения и все-таки дождался этого падения. Оно мало (на графике на глаз почти и не заметно), ждать его нужно очень долго, но оно всегда есть. После десяти часов заряда и до спада напряжение на батарее хоть и растет, но крайне незначительно. На итоговом заряде это почти не сказывается, каких-то неприятных явлений типа нагрева батареи не наблюдается. Таким образом при конструировании слаботочных зарядных устройств снабжать их интеллектом никакого смысла нет. Достаточно таймера на 10-12 часов, причем никакой особой точности при этом не требуется.

Однако такая идиллия была нарушена одним из элементов. Примерно через 5-6 часов заряда возникали весьма заметные колебания напряжения.

Сначала я было списал это на конструктивный недостаток моего стенда. На фото видно, что собрано все было навесным монтажом, а контроллер подключен довольно длинными проводами. Однако повторные эксперименты показали, что такая ерунда стабильно возникает с одним и тем же аккумулятором и никогда не возникает с другими. К своему стыду причину такого поведения я не нашел. Тем не менее (и на графике это хорошо видно) среднее значение напряжение растет так, как надо.

Эпилог

В итоге имеем четыре аккумулятора, которым точными научными методами найдена экологическая ниша. Имеем разочарование в возможностях процесса тренировки. И имеем один необъясненный эффект, возникающий при заряде.
На очереди батарейка побольше - автомобильный аккумулятор. Но там нагрузочные резисторы на пару порядков мощнее надо. Где-то едут по просторам Евразии.

На этом все. Спасибо за внимание.

Всё о Ni─MH аккумуляторах: устройство, характеристики, плюсы и минусы

Никель-металлогидридные (Ni─MH) аккумуляторы относятся к группе щелочных. Это химические источники тока, в которых в роли анода выступает водородный металлогидридный электрод, катода ─ оксид никеля, а электролитом является щёлочь гидроксид калия (KOH). Ni─MH аккумуляторы имеют конструкцию, аналогичную Ni─Cd аккумуляторам. По протекающим в них процессам они похожи на никель-водородные аккумуляторы. По своей удельной энергоёмкости никель─металлогидридные превосходят оба этих типа. В этой статье мы подробно разберём устройство и характеристики Ni─MH аккумуляторы, также их плюсы и минусы.

Никель-металлогидридные начали создавать ещё в середине прошлого века. Они разрабатывались с учётом преодолеть те недостатки, которые имели . Во время проводимых исследований учёные разработали новые никель─водородные батареи, применяемые в космической технике. Им удалось разработать новый способ накопления водорода. В новом типе аккумуляторов водород собирался в определённых материалах, а точнее сплавах некоторых металлов. Эти сплавы могли накапливать объем водорода, в тысячу раз превышающий их собственный объем. В состав сплавов входили 2 или более металлов. Один из них накапливал водород, а другой выступал в роли катализатора, который обеспечивал переход атомов водорода в металлическую решётку.


В Ni─MH аккумуляторах могут использоваться различные комбинации металлов. В результате есть возможности по изменению свойств сплава. Для создания никель─металлогидридных аккумуляторов был налажен выпуск сплавов, которые работают в условиях комнатной температуры и при низком давлении водорода. Разработка различных сплавов и совершенствование технологии производства Ni─MH аккумуляторов ведётся по настоящее время. Современные образцы аккумуляторов этого типа обеспечивают до 2 тысяч циклов заряд-разряд. При этом ёмкость минусового электрода снижается не больше, чем на 30 процентов. Такой результат достигается при использовании сплавов никеля с различными редкоземельными металлами.

В 1975 году Билл получил патент на сплав LaNi5. Это был первый образец никель─металлогидридного аккумулятора, где этот сплав был в роли активного вещества. Что касается более ранних экземпляров из других металлогидридных сплавов, то там не была обеспечена требуемая ёмкость.

Промышленный выпуск Ni─MH аккумуляторов был организован лишь в середине восьмидесятых годов, когда был получен сплав состава La─Ni─Co. Он позволял проводить обратимое абсорбирование водорода больше ста циклов. В дальнейшем все усовершенствования конструкции Ni─MH аккумуляторных батарей сводились к наращиванию энергетической плотности.

В дальнейшем был заменён отрицательный электрод, что дало увеличение активной массы плюсового электрода в 1,3─2 раза. Именно от плюсового электрода и зависит ёмкость этого типа аккумуляторов. Ni─MH аккумуляторы обладают более высокими удельными энергетическими параметрами, чем никель─кадмиевые.

Помимо высокой энергетической плотности никель-металлогидридных аккумуляторных батарей, они ещё состоят из нетоксичных материалов, что упрощает их эксплуатацию и утилизацию. Благодаря этим факторам аккумуляторы Ni─MH стали успешно распространяться. Дополнительно можете прочитать про для автомобиля.

Применение никель-металлогидридных аккумуляторов

Ni─MH аккумуляторы широко применяются для питания различной электроники, работающей в автономном режиме. В большинстве своём они выполняются в виде АА или ААА батарей. Хотя есть и другие исполнения, в том числе, промышленные аккумуляторные батареи. Сфера применения у них практически полностью совпадает с никель─кадмиевыми и даже шире, поскольку они не содержат токсичных материалов.





Продаваемые на рынке никель─металлогидридные аккумуляторы можно разделить на две большие группы по ёмкости:

  • 1500-3000 мАч;
  • 300-1000 мАч.

Первая группа (1500-3000 мАч) используется в различных устройствах, которые имеют высокое энергопотребление за короткий промежуток времени. При этом, как правило, отсутствует предварительное хранение батареек. В качестве примера можно привести такие устройства, как плееры, фотоаппараты, радиоуправляемые модели и другие гаджеты, где энергия аккумулятора Ni─MH расходуется за короткое время .

Вторая группа (300-1000 мАч) подходит, когда расход энергии начинается после определённого временного интервала. Примером могут служить ручные фонарики, рации, игрушки, GPS-навигаторы и других устройств с умеренным энергопотреблением, долгое время находящихся в автономном режиме.

Устройство Ni─MH аккумуляторов

Конструкция никель─металлогидридных аккумуляторов

Ni─MH цилиндрической формы

В этой конструкции разноимённые электроды разделены сепаратором. Все вместе они свёрнуты в рулон. Он помещается в корпус и герметизируется крышкой со специальной прокладкой. В крышке сделан аварийный клапан, рассчитанный на открытие при возрастании давления внутри аккумулятора до 2─4 МПа. На рисунке ниже показана конструкция никель─металлогидридного цилиндрического аккумулятора.

Ni─MH призматической формы

В Ni─MH аккумуляторах призматической формы поочерёдное размещение разноимённых электродов. Их также разделяет сепаратор. Сборка электродов находится в металлическом или пластиковом корпусе, который закрывается герметичной крышкой. В крышке в большинстве случаев ставится датчик или клапан давления. Ниже представлена конструкция никель-металлогидридного аккумулятора призматической формы.


В никель-металлогидридных аккумуляторных батареях в роли электролита выступает щёлочь. По составу это КОН с добавлением LiOH. Материал сепаратора в большинстве случаев это нетканый полиамид и полипропилен, обработанные смачивателем. Толщина сепаратора от 0,12 до 0,25 миллиметров.

Положительный электрод Ni─MH аккумуляторов выполняется из тех же материалов, что используются в Ni─Cd аккумуляторных батареях. Это оксидно─никелевая металлокерамика, пенополимерные и войлочные материалы.

Отрицательные электроды для Ni─MH аккумуляторов могут быть следующих вариантов:

  • ламель. Водород─абсорбирующий сплав в виде порошка запрессовывается в сетку из никеля;
  • пеноникелевый. Паста из сплава и связующего вещества вводится в пеноникелевую основу с последующей сушкой и прессованием;
  • фольга. Паста из сплава и связующего вещества наносится на перфорированную фольгу (из никеля или стали) с последующей сушкой и прессованием;
  • вальцованный. Порошок из сплава и связующего посредством прокатки (вальцевание) наносится на решётку или сетку (медную или никелевую);
  • спечённый. Сплав в порошкообразном виде напрессовывается на сетку Ni и затем обжигается в водороде.

Удельные ёмкости у всех этих вариантов электродов близки по значению. Они зависят в основном от ёмкости используемого сплава. Теперь стоит несколько подробнее рассмотреть конструкцию разных электродов никель─металлогидридных аккумуляторов.

Устройство электродов Ni─MH аккумуляторов

Устройство металловодородного электрода

Основной материал, который определяет характеристики Ni─MH аккумуляторов, это сплав, поглощающий водород. Он может абсорбировать объем водорода в тысячу раз больший, чем его собственный объем . Наиболее распространённым сплавом для производства металловодородных электродов стал LaNi5. Так обозначается группа сплавом, где никель частично заменён на кобальт, марганец и алюминий. Это сделано для увеличения его активности и стабильности. В целях экономии ряд производителей используют не лантана, а Мm (миш-металл). Он представляет собой смесь редкоземельных элементов в соотношении, близком к тому, что есть в природной руде. Там кроме La есть неодим, церий, празеодим.

Во время прохождения цикла заряд-разряд кристаллическая решётка сплава сжимается и расширяется на 15─25 процентов. Это обусловлено процессами десорбции и абсорбции водорода. В результате растёт внутреннее напряжение и в сплаве образуются трещины. Из-за образования трещин растёт площадь поверхности, подвергающейся коррозии из-за реакции со щёлочью (электролит). В результате происходит постепенное снижение разрядной ёмкости отрицательного электрода.

Поскольку в аккумуляторной батарее имеется ограниченное количество электролита, все описанные процессы порождают проблемы, которые связаны с его перераспределением. В результате коррозии сплава его поверхность становится химически пассивной. На ней образуются оксиды и гидроксиды, стойкие к коррозии. Они увеличивают перенапряжение при реакции на металлогидридном электроде. Продукты коррозии образуются с потреблением водорода и кислорода из щелочи. Это ведёт к уменьшению количества электролита в батарее и увеличению её внутреннего сопротивления. Все эти процессы отрицательно сказываются на сроке эксплуатации Ni─MH аккумуляторов.

Чтобы снизить нежелательные процессы коррозии и диспергирования, производители используют 2 методики. Первая включает в себя микрокапсулирование частиц сплава. Это значит, что поверхность покрывается пористым слоем меди или никеля малой толщины (5─10 процентов). Более распространена вторая методика. Эта технология подразумевает обработку частиц сплава в щелочном растворе. В результате образуется защитная плёнка, которая проницаема для водорода.

Устройство оксидно─никелевого электрода

Оксидно-никелевые электроды можно встретить в следующих исполнениях:

  • ламельные;
  • безламельные металлокерамические спечёные;
  • прессованные.

Всё большую популярность обретают пенополимерные и безламельные войлочные электроды.

Конструктивно ламельные оксидно─никелевые электроды состоят из соединённых ламелей. Ламель – это перфорированные коробочки из тонкой стальной никелированной ленты. Её толщина составляет 0,1 миллиметра.

Металлокерамические спечённые электроды имеют пористую структуру металлокерамической основы. В порах, которых в основе не менее 70 процентов, находится активная масса. Материал основы – это карбонильный никелевый мелкодисперсный порошок (60─65 процентов) и карбонат аммония (или карбамид). Этот порошок напрессовывается, накатывается на сетку из никеля или стали. Также может выполняться его напыление.

Далее по технологии сетка с порошком проходит термообработку в атмосфере водорода. Температура при этом составляет 800─960 градусов Цельсия. Карбамид или карбонат аммония разлагается и происходит спекание никеля. В результате получается основа толщиной 1─2,3 миллиметра. Пористость получаемой основы составляет 80─85 процентов, а радиус пор равен 5─20 микрометров. Далее полученная основа пропитывается нагретым до 60─90 градусов раствором сульфата или нитрата никеля. А затем ещё делается пропитка раствором щелочи, осаждающей оксиды и гидроксиды никеля.

На современных производствах применяется электрохимическая технология пропитки. Электрод в растворе нитрата никеля подвергают катодной обработке. В результате в порах выделяется водород и пластины подщелачиваются. В порах пластины происходит осаждение гидроксидов и оксидов никеля.

Фольговые электроды являются разновидностью спечённых электродов. Их производят следующим образом. На перфорированную ленту из никеля толщиной около 0,05 миллиметра с двух сторон наносится спиртовая эмульсия никелевого карбонильного порошка со связующими веществами. Далее проводится спекание и пропитка реагентами (химическая или электрохимическая). Толщина электрода равна 0,4─0,6 миллиметра.

Прессованные электроды производятся путём напрессовки на ленту или сетку из стали активной массы. Давление при этом составляет 35─60 МПа. В качестве активной массы используется смесь гидроксидов никеля и кобальта, графита, связующих веществ.


Металловойлочные электроды представляют собой высокопористую основу, состоящую из волокон углерода или никеля. Пористость основы составляет от 95 процентов. Войлочный электрод делается на основе углеграфитового или полимерного фетра, покрытого никелем. Толщина электрода может быть от 0,8 до 10 миллиметров. Активная масса внедряется в войлок различными методиками.

Есть технология, где вместо войлока используют пеноникель. Его делают никелированием пенополиуретана и дальнейшим отжигом в восстановительной атмосфере. В высокопористую среду вносят добавки посредством намазки. Это паста, включающая в себя гидроксид никеля со связкой. Далее основу сушат и вальцуют. Электроды металловойлочного и пеноникелевых типов имеют высокую удельную ёмкость и существенный ресурс работы.

Реакции в никель─металлогидридных аккумуляторах

Как уже разбиралось выше, в Ni─MH аккумуляторе положительный электрод оксидно─никелевый также, как в Ni─Cd батареях. А вот отрицательный электрод вместо кадмиевого используется из никелевого сплава с добавлением редкоземельных элементов.

Какие реакции протекают в Ni─MH аккумуляторах?

На оксидно-никелевом электроде (положительный) протекает реакция:

При заряде

Ni(OH) 2 + OH −- ⇒ NiOOH + H 2 O + e −

При разряде

NiOOH + H 2 O + e − ⇒ Ni(OH) 2 + OH −

На электроде из никелевого сплава (отрицательный) протекает реакция:

При заряде

M + H 2 O + e − ⇒ MH + OH −-

При разряде

MH + OH − ⇒ M + H 2 O + e −

Суммарная реакция, протекающая в Ni─MH аккумуляторе, выглядит следующим образом:

При заряде

Ni(OH) 2 + M ⇒ NiOOH + MH

При разряде

NiOOH + MH ⇒ Ni(OH) 2 + M

При этом щелочной электролит не принимает участия в реакции образования тока.

После того, как при заряде аккумулятора до уровня 70─80 процентов на оксидно─никелевом запускается выделение кислорода в соответствии со следующей реакцией:

2OH − ⇒ 1/2O 2 + H 2 O + 2e −

На отрицательном электроде происходит реакция восстановления этого кислорода:

1/2O 2 + H 2 O + 2e − ⇒ 2OH −

Так описывается процесс перезарядки никель─металлогидридного аккумулятора. Эти реакции образуют собой замкнутую циркуляцию кислорода. В процессе восстановления кислорода происходит увеличение ёмкости металлогидридного электрода благодаря выделению группы ОН − .

Характеристики Ni-MH аккумуляторов

Основные параметры никель─металлогидридных и никель─кадмиевых аккумуляторов приводятся в следующей таблице.

Характеристика Ni-Cd Ni-MH Ni-H2
Характеристика Ni-Cd Ni-MH Ni-H2
Энергетическая плотность, Вт-ч/кг 45-80 60-120 -
Внутреннее сопротивление (при 6 В), мОм 100-200 200-300 -
Число циклов заряд-разряд до падения ёмкости 80 процентов от номинала 1500 300-500 2000-3000
Время быстрой зарядки, часы 1 2-4 -
Устойчивость к перезаряду средняя низкая -
Саморазряд при комнатной температуре 20% в месяц 30% в месяц 20-30% за сутки
Номинальное напряжение, В 1,25 1,25 1,25
Оптимальный ток нагрузки до 0,5С -
Пиковый ток нагрузки 20С -
Рабочая температура (разряд), С от -40 до +60 от -20 до +60 от -20 до +30
Периодичность обслуживания (тренировка), дней 30-90 30-90 -
Появление в продаже 1950 1990 -
Срок службы, лет 1-5 1-5 2-7
Удельная энергия, Вт-ч/литр 60-120 100-270 60-80

Электрические характеристики

Ёмкость аккумулятора

При повышении нагрузки и понижении температуры ОС ёмкость никель─металлогидридного аккумулятора снижается в соответствии с графиком ниже.



Эффект снижения ёмкости особенно заметен при существенной скорости разряда в области отрицательных температур.

Номинальное разрядное напряжение

Номинальное разрядное напряжение (U р) обычно находится в пределах 1,2─1,25 вольта при токе разряда (I р), определяемом по формуле:

I p = 0,1─0,2С, где

С — номинальная ёмкость батареи при температуре 25 градусов Цельсия.

Конечное напряжение разряда составляет 1 вольт. Как можно видеть на графике ниже, напряжение снижается при возрастании нагрузки.

Напряжение разомкнутой цепи

Величину этого параметра Ni─MH аккумуляторов определить достаточно сложно. Это определяется тем, что равновесный потенциал оксидно─никелевого электрода во многом зависит от степени окисленности Ni.

Важную роль играет и равновесный потенциал отрицательного электрода, который определяется степенью насыщенности водородом. Спустя сутки после заряда батареи напряжение разомкнутой никель-металлогидридного аккумулятора находится в пределах 1,30─1,35 вольта.

Хранение и срок эксплуатации

Во время хранения Ni─MH аккумулятора, как и в случае других типов батарей, имеет место явление саморазряда. При комнатной температуре за первый месяц хранения такой аккумулятор теряет 20─30 процентов ёмкости. В дальнейшем каждый месяц ёмкость никель─металлогидридного аккумулятора падает на 3─7 процентов в месяц. Интенсивность саморазряда возрастает с ростом температуры, как можно видеть на графике ниже.

Основное отличие Ni-Cd аккумуляторов и Ni-Mh аккумуляторов — это состав. Основа аккумулятора одинаковая — это никель, он является катодом, а аноды разные. У Ni-Cd аккумулятора анодом является металлический кадмий, у Ni-Mh аккумулятора анодом является водородный металлогидридный электрод.

У каждого типа аккумулятора есть свои плюсы и минусы, зная их вы, сможете более точно подобрать необходимый вам аккумулятор.

Плюсы Минусы
Ni-Cd
  • Низкая цена.
  • Возможность отдавать большой ток нагрузки.
  • Широкий диапазон рабочих температур от -50°C до +40°C. Ni-Cd аккумуляторы даже могут заряжаться при отрицательной температуре.
  • До 1000 циклов заряда-разряда, при правильной эксплуатации.
  • Относительно высокий уровень саморазряда (примерно 8-10%% в первый месяц хранения)
  • После длительного хранения требуется 3-4 цикла полного заряда-разряда для полного восстановления аккумулятора.
  • Обязательно полный разряд аккумулятора перед зарядкой, для предотвращения «эффекта памяти»
  • Больший вес относительно Ni-Mh аккумулятора одинаковых габаритах и ёмкости.
Ni-Mh
  • Большая удельная емкость относительно Ni-Cd аккумулятора (т.е. меньший вес при той же емкости).
  • Практически отсутствует «эффект памяти».
  • Хорошая работоспособность при низких температурах, хотя и уступает Ni-Cd аккумулятору.
  • Более дорогие аккумуляторы в сравнении с Ni-Cd.
  • Большее время зарядки.
  • Меньший рабочий ток.
  • Меньшее количество циклов заряда-разряда (до 500).
  • Уровень саморазряда в 1,5-2 раза выше, чем у Ni-Cd.

Подойдёт ли старое зарядное устройство к новому аккумулятору если я поменяю Ni-Cd на Ni-Mh аккумулятор или наоборот?

Принцип заряда у обоих аккумуляторов абсолютно одинаковый, поэтому зарядное устройство можно использовать от предыдущего аккумулятора. Основное правило зарядки данных аккумуляторов заключается в том, что заряжать их можно только после полной разрядки. Это требование является следствием того, что оба типа аккумулятора подвержены «эффекту памяти», хотя у Ni-Mh аккумуляторов эта проблема сведена к минимуму.

Как правильно хранить Ni-Cd и Ni-Mh аккумуляторы?

Лучшее место для хранения аккумулятора — сухое прохладное помещение, так как чем выше температура хранения, тем быстрее происходит саморазряд аккумулятора. Хранить батарею можно в любом состоянии кроме полного разряда или полного заряда. Оптимальный заряд — 40-60%%. Раз в 2-3 месяца следует проводить дозаряд (по причине присутствующего саморазряда), разряд и снова заряд до 40-60%% ёмкости. Допустимо хранение сроком до пяти лет. После хранения батарею следует разрядить, зарядить и после этого использовать в обычном режиме.

Можно ли использовать аккумуляторы большей или меньшей ёмкости чем аккумулятор из первоначального комплекта?

Ёмкость аккумулятора — это время работы вашего электроинструмента от аккумулятора. Соответственно для электроинструмента нет абсолютно никакой разницы по ёмкости аккумулятора. Фактическая разница будет только во времени зарядки аккумулятора, и времени работы электроинструмента от аккумулятора. При выборе ёмкости аккумулятора следует отталкиваться от ваших требований, если требуется дольше работать, используя один аккумулятор — выбор в пользу более ёмких аккумуляторов, если комплектные аккумуляторы полностью устраивали, то следует остановиться на аккумуляторах равных или близких по ёмкости.