Однопроводный ток - реальность, снижающая затраты на передачу энергии в сотни раз.

Рис. 1. Схема генератора.

Для повторения эксперимента необходимо собрать генератор, схема которого приведена на рисунке 1.

Схема представляет собой обычный преобразователь постоянного напряжения в переменное которым питается трансформатор Т1. Возможно также, что схема выполняет ещё какую-то не вполне традиционную роль
1. Батарея питания GB1. В первых опытах (около года назад) я использовал одну обычную квадратную батарейку постоянного тока на 4,5 В. Во второй серии опытов (кон. июня 2004г.- нач. июля 2004г.) мной были использованы две последовательно включённые квадратные батарейки по 4,5 В, причём одна новая, а другая та же что использовалась в первых опытах.
2. Кнопка SB1. В общем, я думаю любая малогабаритная кнопка.
3. Конденсатор C1. Полярный конденсатор К50-12 номиналом 10мкФ*25В.
4. Транзистор VT1. Транзистор n-p-n марки КТ819В в пластмассовом корпусе.
5. Резистор R1. Резистор подстроечный номиналом 6,8 КОм.
6. Конденсатор C2. Плоский квадратный конденсатор марки Н30 номиналом 10нФ.
7. Трансформатор Т1. Мной было собранно два трансформатора. Первый трансформатор был собран для первых опытов, второй во время второй серии опытов.

Первый трансформатор имеет следующие характеристики:

Рис. 2. Конструкция каркаса первого трансформатора (размеры в мм).

Катушка I имеет 6 витков медного провода диаметром 0,15 мм, катушка II имеет 20 витков медного провода диаметром 0,25 мм, катушка III содержит 1800± 10 витков медного провода диаметром 0,12 мм. Тип проводов точно не знаю, но что-то вроде ПЭТВ или ПЭЛ.

Трансформатор намотан на самодельном каркасе. Конструкция каркаса приведена на рисунке 2.

Диски каркаса склеены каждый из двух слоёв картона (толщиной 0,4 мм), кольцо склеено из нескольких слоёв бумаги намотанных на подходящий каркас.


Рис. 3. Намотка катушек.

Намотка осуществляется следующим образом. На кольцо каркаса накладывается один слой изоляционного материала (что-то типа слюды). Поверх него наматывается катушка III, первый слой виток к витку(от себя слева направо), а далее в навал более или менее ровно по всей поверхности катушки (выводы III катушки расположены слева). Поверх III катушки накладывается один слой того же изоляционного материала. Далее в два слоя наматывается катушка II. Начиная приблизительно от середины, мотая к левому краю и обратно к середине, желательно виток к витку (выводы II катушки закреплены справа). На оставшейся свободной половине трансформатора наматывается катушка I, намотка осуществляется также от себя виток к витку начиная от середины и заканчивая у правого края (выводы I катушки закреплены также справа диаметрально противоположно выводам II катушки). Намотка всех трёх катушек должна быть выполнена в одну сторону (от себя). И, наконец поверх намотанных катушек накладывается ещё слой изоляционного материала.

Намотка катушек трансформатора приведёна на рисунке 3.

Второй трансформатор имеет следующие характеристики:

Рис. 4. Конструкция каркаса второго трансформатора (размеры в мм).

Катушка I намотана медным проводом диаметром 0,25 мм, катушка II намотана медным проводом диаметром 0,39 мм, катушка III намотана медным проводом диаметром 0,18 мм. Все катушки второго трансформатора имеют такое же количество витков как и соответствующие катушки первого трансформатора. Тип проводов так же что-то вроде ПЭТВ или ПЭЛ. Конструкция и технология изготовления второго трансформатора такая же как и у первого. На рисунке 4 приведены размеры каркаса.

При подключении трансформаторов к генератору особое внимание следует уделить тому, чтобы начала (помечены точками на схеме) и концы катушек были подключены соответствующим образом.

Трансформаторы сердечников не имеют. Хотя первый трансформатор работает и с броневым ферритовым сердечником, но хуже. Работу второго трансформатора с сердечником не проверял.

Монтаж генератора.


Рис. 5. Монтаж генератора.

Схема генератора собрана на монтажной панельке (рис. 5) размерами 30´ 8´ 8 мм с четырьмя парами выводов. Все соединения схемы выполнены пайкой.

Жирными кривыми линиями на рисунке показаны вспомогательные соединительные провода (за исключением трансформатора, где использовалась проволока, которой намотана катушка) представляющие собой обычный медный семи жильный провод диаметром (без изоляции) 0,5 мм и длинной в среднем около 5 см, тонкими прямыми линиями показаны выводы самих деталей. То есть, если у конденсатора тонкая прямая линия, то значит конденсатор подключен к панельке своим выводом без вспомогательного соединительного провода. Обращаю внимание, что желательно использовать подстроечный резистор припаянный непосредственно к панельке. Так как с переменным резистором который подключен проводами у меня хуже работает. Трансформаторы подключаются по одному, то есть либо первый либо второй. Катушки трансформатора подключены той же проволокой которой намотаны, длинной около 4-8 см. Начало III катушки имеет длину 7 см, конец III катушки можно вообще не оставлять, так как в экспериментах он почти не участвует, а можно на всякий случай оставить, сделать длинной около 4 см и намотать его поверх изоляции трансформатора.

Настройка генератора.

Для работы генератора следует учитывать все описанные мелочи. Правильно собранный генератор в настройке не нуждается. В начале следует лишь поставить подстроечный резистор в среднее положение, далее по ходу работы производят подстройку до получения наилучших результатов эксперимента. Какие либо изменения в схеме генератора необходимые для проведения опытов будут описаны ниже.

Эксперименты и наблюдаемые явления

Описания явлений даны приблизительно в хронологическом порядке.

Первая серия экспериментов (около года назад).

Для этой серии экспериментов использовался первый трансформатор, одна 4,5 вольтовая батарейка питания и тестер Ц4324. Все эксперименты проводились на деревянном столе покрытом плёнкой.

1. Передача переменного напряжения по одному проводу.

Рис. 6. Подключение тестера.

Для наблюдения этого явления я использовал тестер с двумя щупами длинной около 1 метра каждый. Тестер включается на переменный тип измерения на любом пределе и подключается одним щупом к выходу (начало III катушки) трансформатора, второй щуп никуда не подключается его вообще можно убрать (рис. 6).

Тем не менее важное значение имеет оба ли щупа присутствуют и какой куда подключен. Максимальное отклонение стрелки наблюдается в том случае, когда щуп идущий от гнезда тестера (*) подключен к выходу трансформатора, а второй щуп идущий от гнезда тестера (V, mA, -Kom, +Om) никуда не подключен (рис. 7.а). Минимальное отклонение стрелки наблюдается тогда, когда один щуп идущий от гнезда (V, mA, -Kom, +Om) подключен к выходу трансформатора, второй щуп отсутствует (рис. 7.б).


Рис. 7.

Отклонения стрелки, но в меньшей степени наблюдается также при подключении тестера к концу III обмотки трансформатора.

2. Подключение диодной вилки.

Рис. 8. Диодная вилка.

Схема вилки и её подключение приведено на рисунке 8.

Вилка состоит из двух одинаковых диодов VD1, VD2 марки КД503А или КД503Б и необязательного, хотя с ним лучше работает, поэтому лучше всё же поставить, конденсатора С3 марки H30 и номиналом 10нФ.

а. Для наблюдения появления на концах вилки постоянного тока, к вилке подключается тестер Ц4324 для измерения напряжения (предел около 30 в.) или силы тока (на одном из самых низких пределов) по постоянному току (рис. 9).


Рис. 9. Измерение напряжения.

Кроме того измерения можно проводить и по переменному току, подключив тестер к одному или двум выводам вилки.

То есть переменное напряжение диодами полностью не выпрямляется.

б. Также вместо тестера можно подключить светодиод VD3 типа АЛ307 (рис. 10).

Рис. 10. Подключение светодиода.

3. Подключение лампы дневного света (ЛДС).

Описание ЛДС будет дано ниже.

Схема подключения ЛДС к трансформатору приведена на рисунке 11.


Рис. 11. Подключение ЛДС (два варианта).

ЛДС к трансформатору можно подключать как с помощью вилки так и без неё. После включения устройства лампа должна светится на 1/2 - 2/3 своей длинны. Настройкой подстроечного резистора можно получить в лампе бегущие, чередующиеся тёмно-светлые кольца. Движение происходит от подключенного конца к свободному концу лампы (на рисунке слева на право). Свечение лампы не сильное, поэтому опыт рекомендуется проводить при слабом освещении.

Примечание: В выше описанных экспериментах подключение вилки со светодиодом и лампы осуществлялось непосредственно к выходу трансформатора без использования удлиняющих проводов.

4. Подключение тестера, светодиода и ЛДС на удлиняющем проводе.

Схема подключения тестера, и светодиода на удлиняющем проводе приведена на рисунке 12. Опять же конденсатор можно не использовать.


Рис. 12. Подключение на удлиняющем проводе.

В качестве удлиняющего провода использовался обычный двух жильный телефонный провод длинной 3,1метр, жилы которого были свиты вместе (другого просто не нашлось). Свечение светодиода и показания тестера не много уменьшились, но всё же были. При подключении ЛДС на удлиняющем проводе свечение ЛДС не наблюдается.

Примечание: Можно подвесить лампу за питающий провод длинной около 20 см, чтобы исключить контакт с поверхностью стола (проводил во второй серии экспериментов).

5. Передача энергии без проводов.

Стрелка тестера, настроенного на переменный тип измерений, щупы которого лежат рядом (расстояние пока не велико) с генератором начинает отклоняться при включении генератора. Вывод: стрелка отклоняется, значит совершается работа, а значит затрачивается энергия, но ведь тестер ни к чему не подключен???

6. Влияние нахождения различных предметов в зоне работы генератора.

Это явление можно наблюдать при проведении предыдущего эксперимента, если поводить рукой над генератором, щупами и тестером. В результате этих действий будет заметно колебание стрелки тестера. То есть рука в данном случае является приёмником излучения (поля) генератора захватывающим основную часть излучения (поля), кстати, по моемому токи около генератора наводятся в любых проводящих предметах. Это явление очень схоже с теорией и опытами Н. Теслы (KUASAR.NAROD.RU/LIBRARY/TESLA/ENERG.HTM#0001).

Вторая серия экспериментов (конец июня 2004г. – начало июля 2004г.).

В этих экспериментах в основном проводятся количественные измерения, а также используется второй трансформатор, две квадратные батарейки включенные последовательно дающие напряжение около 7 вольт и тестер Ц4324. Все эксперименты проводятся на деревянном столе покрытом плёнкой.

1. Измерение напряжения выхода.

Тестер включенный на измерение:
- переменного тока/напряжения и подключенный как показано на рисунке 6 зашкаливает на любом пределе измерений.
- постоянного напряжения и подключенный как показано на рисунке 9 показывает: с конденсатором С3 значение 79 В, без конденсатора 76 В.
- постоянного напряжения и подключенный как показано на рисунке 12 показывает: с конденсатором С3 значение 72 В, без конденсатора 68 В.
- постоянного тока и подключенный как показано на рисунке 9 только без конденсатора С3 и без дополнительной нагрузки показывает ток 1,6 мА.

Примечание: значения могут различаться в зависимости от состояния батарей питания.

2. Зарядка конденсатора от диодной вилки.

Используется схема аналогичная той что изображена на рисунке 8, только конденсатор С3 заменяется на полярный конденсатор марки К50-12 номиналом 20 мкФ´ 300 В. Далее генератор включают на (5-10 сек.) для зарядки конденсатора, после чего генератор выключают и измеряют тестером постоянное напряжение на конденсаторе (можно не отключая конденсатор от диодов). После такой зарядки тестер у меня показывает 79 В на пределе измерений тестера в 120 В. Кстати разряжая конденсатор, накоротко замыкая выводы, наблюдается довольно мощная искра. То есть как я полагаю, конденсатор действительно заряжается от одного проводника.

3. Явление смены полярности или присутствие обратного тока в диодной вилке.

Рис. 13. Обратный ток в диодной вилке.

Для наблюдения явления используется схема изображённая на рисунке 9 только без конденсатора (может и с ним конечно работает не пробовал). Тестер настраиваю на измерение постоянного напряжения (предел измерений 120 В) или силы тока (предел измерений 6 мА). Включаю генератор тестер показывает 76 В(или 1,6 мА если тестер настроен на измерение силы тока), далее отключаю один щуп тестера (рис. 13). Показания тестера становятся равными нулю.

Далее начинаю убавлять предел измерений тестера. При пределе тестера 1,2 В (0,06 мА) стрелка тестера начинает отклоняться в обратную сторону. Заметьте, тестер включен на постоянный тип измерений и касание осуществляется одним щупом причём именно тем что изображён на рисунке 13.

4. Переменное напряжение на батарее питания.


Рис. 14. Переменный ток в цепи питания.

Стрелка тестера зашкаливает если одним щупом тестера (настроенного на переменный тип измерений тока / напряжения) касаться одного (любого) вывода батарейки питания (рис. 14). Я случайно коснулся пальцем контакта кнопки, в результате чего получил небольшой ожог.

Примечание: возможно именно такой же эффект наблюдался в опытах Тесла в результате которых вышли из строя генераторы электростанции.

5. Снижение потребляемой мощности при подключении нагрузки.


Рис. 15. Снижение потребляемого тока под нагрузкой.

Для этого эксперимента используется дополнительный тестер Ц4311 для измерения потребляемого напряжения, тестер Ц4324 используется для измерения потребляемого тока. Подключение тестеров приведено на рисунке 15.

Тестер Ц4324 настраивается на предел измерения постоянного тока 3000 мА, а тестер Ц4311 настраивается на предел измерения постоянного напряжения 15 В.

В качестве нагрузки используется ЛДС мощностью 40 Вт подключенная без вилки к выходу генератора. Особое значение следует уделить размерам лампы: длинна 1,2 метра, диаметр трубы 36 мм, особенно это важно будет в следующем опыте.

Генератор отключен напряжение на батарее 7 В.

Включаем генератор:
- лампа отключена: напряжение падает до 4,5 В, потребляемый ток 250 мА.
- лампа подключена: напряжение падает до 4,5 В, потребляемый ток 180 мА.

Примечание: данные могут отличаться в зависимости от состояния батарей питания (новые, разряженные).

6. Получение обратного тока в цепи питания.


Рис. 16. Обратный ток.

Наверное это самый сложный опыт для повторения в виду неустойчивости его работы. Для этого эксперимента используется схема приведённая на рисунке 16.

Для измерений потребляемого тока в этом опыте необходимо использовать обязательно тестер Ц4324 настроенный на измерение постоянного тока на пределе 3000 мА, на других пределах измерений и с другим тестером обратного тока у меня не наблюдается. Искровой промежуток создаётся следующим образом Выходной конец катушки III накладываю (без крепления) на алюминиевую накладку конца лампы, далее включаю генератор и двигаю лампу из стороны в сторону таким образом чтобы между лампой и концом проволоки создавалась искра. В результате этих действий стрелка тестера начинает ходить из стороны в сторону, то приближаясь к нулю, то удалясь от него, в определённый момент стрелка устремляется к нулю, а затем уверенно отклоняется далее за нуль. Главное здесь поймать положение лампы при котором наступило данное явление. Кроме показаний обратного тока тестера также в этот момент наблюдается свечение ЛДС и искра между лампой и проволокой катушки.

Примечание: Также работает и с первым трансформатором, но сложнее поймать момент. Обязательно используёте ЛДС описанную раннее так как с ЛДС другого типа (которые я пробовал) явление наблюдается хуже либо же вообще не наблюдается. Кстати можно подключить тестер Ц4311 для измерения напряжения питания, но с ним опять же сложнее поймать момент.

Как я уже говорил в форуме сайта фирмы ООО “Скиф” данное явление можно трактовать по разному. Можно конечно всё списать на погрешности тестера и погрешности измерений, но можно предположить что именно при условиях описанных выше (определенная ЛДС (резонатор), определённый тестер и его предел (индуктивность, сопротивление) и т. д.) и наблюдается явление генерации обратного тока в цепи питания. Данное явление очень схоже с получением обратного тока в опытах Чернетского хотя есть и различие заключающееся в количестве питающих нагрузку проводов

7.Искровой разряд на любой проводящий предмет.

При достаточно близком поднесении отвёртки, грифеля карандаша к выходному концу (именно выходу) трансформатора наблюдается слабый искровой разряд, при поднесении к другому концу ничего нет.

8. Притяжение проволочного проводника.

Из-за того что выходной провод III катушки является тонкой проволокой наблюдается притяжение проволоки к близко расположенным (1-2мм) металлическим предметам (подобно наэлектризованной эбонитовой палочке притягивающей бумажки). Особенно это заметно при настройке искры в 6 эксперименте, что даже мешает, так как искровой промежуток слипается.

Заключение

Опыты Тесла, Авраменко, Чернетского и все вышеописанные эксперименты как мне кажется одного поля ягоды.

Данные явления ещё требуют больших исследований, но всё как всегда упирается в средства.

Большая просьба к тем кто захочет повторить данное устройство, обязательно сообщите о проведенных опытах и наблюдаемых явлениях.

P. S. Все вопросы, предложения и замечания можно направлять на E-mail: [email protected] или на форум сайта фирмы ООО “Скиф” Краснову Дмитрию.

Краснов Дмитрий


Дата публикации: Прочитано: 76130 раз Дополнительно на данную тему

1. Однопроводная передача энергии

Эксперименты по однопроводной и беспроводной передаче электроэнергии начались белее 100 лет назад с опытов Н.Тесла. Спустя много лет интерес к этой проблеме возник опять, особенно после того, как С.В.Авраменко продемонстрировал передачу переменного тока по одному проводу в московском научно-исследовательском электротехническом институте .

Рис.1 . Однопроводная передача энергии по схеме Авраменк о

Основу устройства для однопроводной передачи энергии составляет "вилка Авраменко", которая представляет собой два последовательно включенных полупроводниковых диода (рис.1). Если вилку присоединить к проводу, находящемуся под переменным напряжением, то через некоторое время в разряднике Р наблюдается серия искр. Временной интервал от подключения до появления разряда зависит от величины емкости С, величины напряжения, частоты пульсации и размера зазора Р.

Включение в линию передачи L резистора номиналом 2-5 МОм не вызывает существенных изменений в работе схемы .

Подтверждение реальности однопроводной передачи энергии вызвало у автора желание экспериментально проверить возможность беспроводной передачи энергии - основной задачи, которую успешно решил Н.Тесла, но которая до сих пор не повторена в экспериментах.

2. Новые эксперименты по однопроводной передаче энергии
Для проверки идей Н.Тесла автором настоящей статьи были проведены эксперименты по передаче электроэнергии по одному проводу и беспроводная передача энергии. Для этой цели разработана новая схема однопроводной передачи энергии.

В нашей схеме не использовалась "вилка Авраменко". Вместо "вилки Авраменко" использовалась обычная мостовая схема. В проведенных экспериментах мостовая схема оказалась значительно эффективней, чем "вилка Авраменко". Кроме этого, были внесены и другие изменения в схему Авраменко.

Новая схема приведена на рис.2. В состав передающего узла входят трансформатор и генератор, подключенный к источнику питания Б5-47. Схема приемного узла показана на рис.2 справа от трансформатора.

Рис.2. Однопроводная передача энергии по новой схеме.

На схеме, изображенной на рис.2 , обозначены: 1 - генератор, 2 - расширитель спектра, 3 - "антенна", L - линия передачи. Общий вид устройства показан на рис.3. Свечение лампы накаливания 220В, 25Вт в однопроводной линии передачи, можно видеть на фото рис.3.

Рис. 3. Общий вид устройства для демонстрации однопроводной передачи энергии.

Энергией устройство обеспечивает источник питания постоянного тока Б5-47, позволяющий получать напряжение 0 - 30В. Нагрузкой служит лампа накаливания 220В, 25Вт. Генератор и трансформатор размещены в корпусе из диэлектрика. Диоды, конденсатор, лампа, элементы 2 и 3, составляющие приемник энергии, размещены в бело-голубом пластмассовом корпусе под лампой (рис.3).

Приемный узел соединен с трансформатором одним проводом.

Яркость свечения лампы зависит от мощности генератора. При повышенном напряжении на выходе источника питания Б5-47 в пределах 16 - 18 вольт лампа 220В, 25Вт горит почти полным накалом (рис.4).

Рис. 4. Свечение лампы 220В, 25Вт в однопроводной линии передачи при повышенном напряжении от источника Б5-47.

Ключевыми моментами в повышении эффективности нашей схемы, по сравнению со схемой Авраменко, является использование стандартной мостовой схемы, а не ее половины, а также наличие расширителя спектра. Наличие в схеме расширителя спектра приводит к тому, что нагрузка, не препятствует полному заряду конденсатора.

Включение в линию передачи резистора или использование в качестве линии передачи проводника с большим удельным сопротивлением существенно не влияет на степень накала спирали лампы. Таким образом, сопротивление линии передачи сказывается весьма незначительно. Лампочка светится даже при "оборванной" линии передачи.

Это наиболее наглядно демонстрирует фото на рис.5.

Рис. 5. Свечение лампы 220В, 25Вт в разорванной однопроводной линии, связанной узлом по изоляции.

В новой схеме однопроводной передачи энергии имеется два самостоятельных контура, спектры частот в которых различные. В первом контуре узкополосный спектр частот, во втором - широкополосный. Первый контур разомкнут. В нем цепь условно замкнута на приемник через антенну 3 (рис.2). Второй контур образован конденсатором, расширителем спектра и лампой накаливания.

Свечение лампы в разорванной линии передачи, связанной узлом по изоляции, указывает на то, что возможна передача энергине только по одному проводу, но и беспроводная передача энергии, на что указывал и что демонстрировал в своих экспериментах Н.Тесла.

3. Эксперименты по беспроводной передаче энергии.

В экспериментах исследовалась возможность передачи энергии без проводов на электродвигатель. В экспериментах передающим устройством служил комплекс, состоящий из блока питания Б5-47, генератора и трансформатора.

В качестве приемника выступал специальный приемный узел для беспроводной передачи энергии, содержащий электронный узел и электродвигатель постоянного тока ИДР-6.

На рис.6 показан общий вид устройства для демонстрации беспроводной передачи энергии. В экспериментах наблюдалось вращение электродвигателя, не подключенного к линии передачи.

Рис. 6. Общий вид устройства для демонстрации беспроводной передачи энергии.

Электродвигатель установлен на электропроводящей платформе, которая, в свою очередь, установлена на корпусе из изоляционного материала (рис.7).

Рис. 7. Приемник с электродвигателем для демонстрации беспроводной передачи энергии.

Внутри корпуса находится электронный узел. Электронный узел занимает незначительный объем приемника и выполнен на печатной плате. Внутренняя часть приемника для беспроводной передачи энергии показана на рис.8.

Рис. 8. Внутренняя часть приемника для демонстрации беспроводной передачи энергии на электродвигатель.

При включении передающего устройства наблюдалось вращение электродвигателя в руках экспериментатора. При этом ни электродвигатель, ни платформа не подключались к передающему устройству. В корпусе, на котором расположена платформа с двигателем, отсутствовали источники питания.

Наблюдалось увеличение скорости вращения электродвигателя с уменьшением расстояния между приемником и передающим устройством. На рис.9 показана фотография эксперимента, когда частота вращения электродвигателя увеличивалась, если электродвигатель находился в руках двух человек.

Рис. 9. Вращение электродвигателя в руках двух человек.

4. Эксперименты с перегоревшими лампами накаливания

В описанных выше экспериментах по передаче энергии горят как исправные лампы, так и перегоревшие. Ниже приведены результаты экспериментов с перегоревшими лампами накаливания. На рис.10 виден разрыв спирали в лампе накаливания. Эта фотография сделана при выключенном устройстве.

Рис. 10. Перегоревшая лампа 220В, 60 Вт перед началом эксперимента.

На рис.11 представлена фотография, сделанная при проведении эксперимента. Видна раскаленная спираль и яркое свечение в месте разрыва спирали. Включение в линию передачи резистора или использование в качестве линии передачи проводника с большим удельным сопротивлением существенно не уменьшало степени накала спирали лампы.

Степень накала спирали лампы в значительной мере зависит от длины зазора в месте разрыва спирали. При проведении экспериментов выявлено, что существует оптимальная длина перегоревшего участка, при котором накал оставшейся нити накаливания максимален.

Рис. 11. Свечение перегоревшей лампы накаливания 220В, 60 Вт.

Со свечением перегоревших ламп накаливания, не подозревая того, сталкивается практически каждый из нас. Для этого достаточно внимательно присмотреться к перегоревшим электрическим лампам. Довольно часто можно заметить, что внутренняя цепь лампы накаливания перегорает не в одном месте, а в нескольких местах.

Понятно, что вероятность одновременного перегорания нити лампы в нескольких местах очень мала. Это значит, что лампа, утратив целостность спирали, продолжала светить, пока цепь не разорвалась еще в одном месте. Этот феномен возникает в большинстве случаев при перегорании ламп накаливания, включенных в сеть 220В, 50Гц.

Был проведен эксперимент, в котором подключались стандартные лампы накаливания 220В, 60Вт к вторичной обмотке повышающего трансформатора. На холостом ходу трансформатор имел на вторичной обмотке напряжение около 300В. В эксперименте было использовано 20 ламп накаливания.

Оказалось, что чаще всего лампы накаливания перегорали в двух и более местах, причем перегорала не только спираль, но и токоподводящие проводники внутри лампы. При этом после первого разрыва цепи лампы продолжали некоторое время светить даже более ярко, чем до перегорания. Лампа светилась до тех пор, пока не перегорал другой участок цепи. Внутренняя цепь одной лампы в нашем эксперименте перегорела в четырех местах! При этом спираль перегорела в двух местах и, кроме спирали, перегорели оба подводящих электрода внутри лампы.

Лампа погасла только после перегорания четвертого участка цепи - электрода, на котором закреплена спираль.

Результаты эксперимента приведены в таблице 1.

Таблица 1.



5. Эксперименты, демонстрирующие свечение лампы накаливания в руке
Свечение газоразрядной лампы в руке экспериментатора при использовании переменного электромагнитного поля - обычное явление. Необычным является свечение в руке лампы накаливания, к которой подведен только один провод. Раскаленная спираль в лампе, находящейся в руках экспериментатора, в то время, когда к лампе не подведены два провода, несомненновызывает интерес.

Известно, что Никола Тесла демонстрировал светящуюся в руке лампу. Мне не удалось найти описания этого эксперимента, поэтому было разработано специальное устройство. Ниже представлены результаты проведенных экспериментов, в ходе которых наблюдалось свечение лампы накаливания в руке экспериментатора. На рис.12а и рис.12б представлены варианты устройства для демонстрации свечения лампы накаливания 220В в руке.


Рис. 12 а б . Варианты устройства для демонстрации свечения лампы накаливания 220В в руке.

В экспериментах, демонстрирующих свечение лампы накаливания в руке, не использовалась "вилка Авраменко". Свечение лампы в руке обеспечивалось как за счет электронных узлов, так и за счет конструктивных особенностей устройств.

На рис.13 и рис.14 крупным планом представлены фотографии, на которых показано свечение ламп накаливания 220В, 15Вт и 220В, 25Вт в руке экспериментатора. При этом лампы не включены в замкнутую цепь. Яркость свечения была тем большей, чем выше уровень напряжения подавался на генератор.

В целях безопасности эксперимента на генератор подавалось напряжение, обеспечивающее горение ламп примерно в половину накала.

Рис. 13. Свечение лампы накаливания 220В, 15Вт в руке экспериментатора.


Рис. 14. Свечение лампы накаливания 220В, 25Вт в руке экспериментатора.

На фотографиях (рис.13 и рис.14) в нижней части виден проводник, который подключен одним проводом к генератору. На этих же фотографиях видно, что к проводнику подносится только один контакт цоколя лампы. Другой контакт лампы остается не подключенным. Таким образом, к лампе подключен один провод, идущий от генератора. Спирали ламп горят примерно в полнакала в руке экспериментатора.

Возможно, опыты Николы Теслы по передаче энергии были чем-то похожи на описанные выше эксперименты. По крайней мере, эксперименты показывают, что революционные идеи Н.Тесла по беспроводной передаче энергии имеют реальные перспективы.

“Сверхпроводник” инженера Авраменко.

В 1892 году в Лондоне, а через год в Филадельфии, известный изобретатель, серб по национальности, Никола Тесла демонстрировал передачу электроэнергии по одному проводу. Как он это делал - остается загадкой. Часть его записей до сих пор не расшифрована, другая часть сгорела.

Сенсационность опытов Тесла очевидна любому электрику: ведь, чтобы ток шел по проводам, они должны составлять замкнутый контур. А тут вдруг - один незаземленный провод!

Но, я думаю, современным электрикам предстоит удивиться еще больше, когда они узнают, что в авторитетном для своей отрасли Всесоюзном электротехническом институте работает человек, который тоже нашел способ передавать электроэнергию по одному незамкнутому проводу. Инженер Станислав Авраменко делает это уже 15 лет.

Как же осуществляется феноменальное явление, не укладывающееся в рамки общепризнанных представлений? На рис. 1 показана одна из схем Авраменко. Она состоит из трансформатора Т, линии электропередачи (провода) Л, двух встречно включенных диодов Д, конденсатора С и разрядника Р. Трансформатор имеет ряд особенностей, которые пока (дабы сохранить приоритет) раскрывать не будем. Скажем только, что он схож с резонансным трансформатором Тесла, в котором первичная обмотка питается напряжением с частотой, равной резонансной частоте вторичной обмотки.

Подключим входные (на рис.- нижние) выводы трансформатора к источнику переменного напряжения. Поскольку два других его вывода между собой не замкнуты (точка 1 просто висит в воздухе), тока наблюдаться в них вроде бы не должно. Однако в разряднике возникает искра - происходит пробой воздуха электрическими за рядами! Он может быть непрерывным или прерывным, повторяться с интервалом, зависящим от емкости конденсатора, величины и частоты приложенного к трансформатору напряжения.

Получается, что на противоположных сторонах разрядника периодически накапливается определенное число зарядов. Но поступать туда они могут, по всей видимости, лишь от точки 3 через диоды, выпрямляющие переменный ток, существующий в линии Л. Таким образом в вилке Авраменко (часть схемы правее точки 3) циркулирует постоянный по направлению и пульсирующий по величине ток.

Подключенный к разряднику вольтметр V, при частоте около 3 кГц и напряжении 60 В на входе трансформатора, показывает перед пробоем 10-20 кВ. Установленный вместо него амперметр регистрирует ток в десятки микроампер.

На этом “чудеса” с вилкой Авраменко не заканчиваются. При сопротивлениях R1=2-5 МОм и R2=2-100 МОм (рис. 2) наблюдаются странности при определении выделяющейся на последнем мощности. Измерив (по общепринятой практике) ток магнитоэлектрическим амперметром А и напряжение электростатическим вольтметром V, перемножив полученные величины, получаем мощность много меньше той, которая определяется точным калориметрическим способом по тепловыделению на сопротивлении R2. Между тем, по всем существующим правилам, они должны совпадать. Объяснения тут пока нет.

Усложнив схему, экспериментаторы передавали по линии Л мощность, равную 1,3 кВт. Это подтвердили три ярко горевшие лампочки, суммарная мощность которых составляла как раз названную величину. Опыт проводился 5 июля 1990 года в одной из лабораторий Московского энергетического института. Источником питания служил машинный генератор с частотой 8 кГц. Длина провода Л равнялась 2,75 м. Интересно, что он был не медным или алюминиевым, которые обычно применяют для передачи электроэнергии (их сопротивление относительно мало), а вольфрамовым! Да к тому же диаметром - 15 мкм! То есть электрическое сопротивление такого провода намного превышало сопротивление обычных проводов той же длины. По идее, здесь должны происходить большие потери электроэнергии, а провод - раскалиться и излучать тепло. Но этого не было, пока трудно объяснить почему,- вольфрам оставался холодным. Высокие должностные лица с учеными степенями, убедившиеся в реальности опыта, были просто ошеломлены (однако своих фамилий просили на всякий случай не называть).

А наиболее представительная делегация знакомилась с опытами Авраменко еще летом 1989 года. В нее входили заместитель министра Минэнерго, начальники главков и другие ответственные научно-административные работники. Поскольку вразумительного теоретического объяснения эффектам Авраменко никто дать не мог, делегация ограничилась тем, что пожелала ему дальнейших успехов и чинно удалилась. Кстати, о заинтересованности государственных органов в технических новшествах: Авраменко подал первую заявку на изобретение в январе 1978 года, но до сих пор не получил авторского свидетельства.

А ведь при внимательном взгляде на опыты Авраменко становится ясно, что это не просто экспериментаторские игрушки. Вспомните, какая мощность передавалась по вольфрамовому проводнику, и он не нагревался! То есть линия как бы не имела сопротивления. Так что же она собой представляла - “сверхпроводник” при комнатной температуре? Тут уж дальше и комментировать нечего - насчет практического значения.

Есть, конечно, и теоретические предположения, объясняющие результаты опытов. Не вдаваясь в подробности, скажем, что эффект может быть связан с токами смещения и резонансными явлениями - совпадением частоты напряжения источника питания и собственных частот колебания атомных решеток проводника. Между прочим, о мгновенных токах в единичной линии писал еще Фарадей, в 30-х годах прошлого века, а в соответствии с электродинамикой, обоснованной Максвеллом, ток поляризации не приводит к выделению на проводнике джоулева тепла - то есть проводник не оказывает ему сопротивления.

Время придет - строгая теория будет создана, а пока инженер Авраменко успешно опробовал передачу электроэнергии по одному проводу на 160 м...

Заглавие лекции – «О токе, или явлениях динамического электричества» L -127.

Моя схема ОПЭ следующая: 1 – ноутбук; 2 – УНЧ, 3 – повышающий трансформатор (ноутбук, УНЧ и повышающий трансформатор играют роль генератора тока нужного мне характера, т.е. высокочастотного и высоковольтного); 4 – нагрузка в виде понижающего трансформатора и диодного моста на низковольтной обмотке, с подключенным к ней двигателем постоянного тока; 5 – изолированная проводящая пластина.


Теперь подробнее рассмотрим детали схемы. На самом деле в это схеме есть два нюанса. Первый – это повышающий трансформатор, обратите внимание на схему подключения. Один конец вторичной обмотки подсоединяется к одному из выводов первичной, и, желательно, заземляется. Это делается для обеспечения безопасности, а так же для повышения эффективности вторичной обмотки. Далее, к первичной обмотке параллельно подсоединен конденсатор, образовывая параллельный колебательный контур. Емкость конденсатора рассчитывается по известным формулам, в зависимости от индуктивности первичной обмотки и используемой частоты. Это делается для повышения силы тока в первичной обмотке, и, соответственно, для усиления эффекта. С подбором емкости конденсатора, возможно, возникнет проблема, так как индуктивность первичной обмотки в процессе ее работы меньше, чем в отключенном состоянии, и эта разница зависит от нагрузки на вторичной обмотке. Я решил этот вопрос просто: рассчитал конденсатор на индуктивность меньшую на 10%-15% от измеренной величины, при заданной частоте. И даже после этого пришлось немного регулировать частоту генератора, для настройки максимального резонанса. Нюанс второй – настроить резонанс во вторичной цепи. Индуктивность вторичной цепи складывается из индуктивности вторичной обмотки повышающего трансформатора и первичной обмотки понижающего трансформатора. Индуктивность первичной обмотки понижающего трансформатора так же, будет немного меньше измеренной, так как зависит от нагрузки на вторичной обмотке. Далее, необходимо подобрать емкость проводящей изолированной пластины. Делается это просто, измеряем площадь пластины и по формулам рассчитываем емкость, для данной частоты и индуктивности. Пластину нужно разместить на расстоянии от окружающих предметов, в противном случае ее емкость будет больше расчетной. Чем выше частота и больше индуктивность цепи, тем меньше емкость требуется, а значит и площадь пластины. При достаточно высокой частоте может хватить и собственной емкости цепи, в таком случае пластина не нужна. Мой тестовый стенд позволял работать мотору мощность 10Вт на полную мощность, зажигать лампы накаливания, и, конечно же, перегоревшие лампы дневного света. На мой взгляд, ОПЭ имеет два основных плюса. Первый – расходуется меньше материалов на проводники. Второй – за счет повышенной частоты и высокого напряжения по проводнику проходит, относительно не большой ток, провод почти не греется, что благоприятно сказывается на сопротивлении. Изучив данный материал, очень надеюсь, что у вас возник вопрос: «А что, в таком случае, мешает использовать Землю, в качестве проводника?». Отвечу – ничего!

А можно и намного проще:

Или так:

На роликах представлена очень примитивная схема, с помощью которой демонстрируется передача электроэнергии по одному проводу.
На самом деле, передавать элетроэнергию посредством одного провода на данный момент не имеет практического смысла, на мой взгляд. Эта информация размещена здесь лишь для того, что бы показать возможность передачи энергии и сигналов через Землю.