Особенности электродвигателя постоянного тока со смешанным возбуждением. Двигатель постоянного тока независимого возбуждения (ДПТ НВ)

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат r рег , а в цепь якоря - добавочный (пусковой) реостат R п . Характерная особенность ДПТ НВ - его ток возбуждения I в не зависит от тока якоря I я так как питание обмотки возбуждения независимое .

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Рисунок 1

Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

где: n 0 — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n 0 (рис 13.13 а), при этом изменение частоты вращения двигателя Δn , обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря R а =∑R + R доб . Поэтому при наименьшем сопротивлении цепи якоря R а = ∑R , когда R доб = 0 , соответствует наименьший перепад частоты вращения Δn . При этом механическая характеристика становится жесткой (график 1).

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением R доб), то механиче­ские характеристики называют искусственными .

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления R доб, называют также реостатными (графики 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M) . При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора R доб частота вращения уменьшается. Сопротивления резистора R доб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

где U - напряжение питания цепи якоря двигателя, В; I я - ток якоря, соответствующий заданной нагрузке двигателя, А; n - требуемая частота вращения, об/мин; n 0 - частота вращения холостого хода, об/мин.

Частота вращения холостого хода n 0 представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим . Эта частота вращения превышает номинальную n ном на столько, на сколько номинальное напряжение U ном подводимое к цепи якоря, превышает ЭДС якоря Е я ном при номинальной нагрузки двигателя.

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф . При уменьшении Ф (при возрастании сопротивления резистора r peг ) увеличивается частота вращения холостого хода двигателя n 0 и перепад частоты вращения Δn . Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных R доб и R рег), то меняется n 0 , a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U , подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

Используемая литература: — Кацман М.М. Справочник по электрическим машинам

Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.

В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.

Конструкция и обслуживание двигателя постоянного тока

Основной обмоткой двигателя постоянного тока является якорь , подключающийся к источнику питания через щеточный аппарат . Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения) . Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.

Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.

Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.


Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.


Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.


Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений.

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника - сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах , которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0-1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а - с независимым возбуждением; б - с параллельным возбуждением; в - с последовательным возбуждением; г - со смешанным возбуждением П - потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения - параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика - единицы процентов от основной МДС.

Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

Скоростная и механическая характеристики двигателя определяются равенствами (7) и (9), представленными в статье " ", при U = const и i в = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными .

Если щетки находятся на геометрической нейтрали, при увеличении I а поток Ф δ несколько уменьшится вследствие действия поперечной реакции якоря . В результате этого скорость n , согласно выражению (7), представленному в статье "Общие сведения о двигателях постоянного тока ", будет стремится возрасти. С другой стороны, падение напряжения R а × I а вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис. 1: 1 – при преобладании влияния R а × I а; 2 – при взаимной компенсации влияния R а × I а и уменьшения Ф δ ; 3 – при преобладании влияния уменьшения Ф δ .

Ввиду того что изменение Ф δ относительно мало, механические характеристики n = f (M ) двигателя параллельного возбуждения, определяемые равенством (9), представленным в статье "Общие сведения о двигателях постоянного тока ", при U = const и i в = const совпадают по виду с характеристиками n = f (I а) (рисунок 1). По этой же причине эти характеристики практически прямолинейны.

Характеристики вида 3 (рисунок 1) неприемлемы по условиям устойчивой работы (смотрите статью " "). Поэтому двигатели параллельного возбуждения изготавливаются со слегка падающими характеристиками вида 1 (рисунок 1). В современных высокоиспользованных машинах ввиду довольно сильного насыщения зубцов якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рисунок 1) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, намагничивающая сила которой составляет до 10% от намагничивающей силы параллельной обмотки возбуждения. При этом уменьшение Ф δ под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей , а двигатель с такой обмоткой по-прежнему называется двигателем параллельного возбуждения.

Изменение скорости вращения Δn (рисунок 1) при переходе от холостого хода (I а = I а0) к номинальной нагрузке (I а = I ан) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2 – 8% от n н. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и прочее).

Рисунок 2. Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения

Регулирование скорости посредством ослабления магнитного потока

Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения R р.в (смотрите рисунок 1, б в статье " " и рисунок 1 в статье "Пуск двигателей постоянного тока "). При отсутствии добавочного сопротивления в цепи якоря (R ра = 0) и U = const характеристики n = f (I а) и n = f (M ), определяемые равенствами (7) и (9), представленными в статье "Общие сведения о двигателях постоянного тока ", для разных значений R р.в, i в или Ф δ имеют вид, показанный на рисунке 2. Все характеристики n = f (I а) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе I а, который, согласно выражению (5), представленному в статье "Общие сведения о двигателях постоянного тока ", равен

I а = U / R а.

Однако механические характеристики n = f (M ) пересекают ось абсцисс в разных точках.

Нижняя характеристика на рисунке 2 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой M ст = f (n ) для рабочей машины, соединенной с двигателем (жирная штриховая линия на рисунке 2).

Точка холостого хода двигателя (M = M 0 , I а = I а0) лежит несколько правее оси ординат на рисунке 2. С увеличением скорости вращения n вследствие увеличения механических потерь M 0 и I а0 также увеличиваются (тонкая штриховая линия на рисунке 2).

Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения n , то E а [смотрите выражение (6) в статье "Общие сведения о двигателях постоянного тока "] будет увеличиваться, а I а и M будут, согласно равенствам (5) и (8), представленным в статье "Общие сведения о двигателях постоянного тока ", уменьшаться. При I а = 0 и M = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости I а и M изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рисунке 2 левее оси ординат).

Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1: 2. Изготавливаются также двигатели с регулированием скорости таким способом в пределах до 1: 5 или даже 1: 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов (смотрите статью "Регулирование скорости вращения и устойчивость работы двигателей постоянного тока ") или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики

Если последовательно в цепь якоря включить добавочное сопротивление R ра (рисунок 3, а ), то вместо выражений (7) и (9), представленных в статье "Общие сведения о двигателях постоянного тока ", получим

(1)
(2)

Сопротивление R ра может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.

Рисунок 3. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а ) и соответствующие механические и скоростные характеристики (б )

Характеристики n = f (M ) и n = f (I а) для различных значений R ра = const при U = const и i в = const изображены на рисунке 3, б (R ра1 < R ра2 < R ра3). Верхняя характеристика (R ра = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (n = 0) в точке, для которой

Продолжения этих характеристик под осью абсцисс на рисунке 3 соответствуют торможению двигателя противовключением. В этом случае n < 0, э. д. с. E а имеет противоположный знак и складывается с напряжением сети U , вследствие чего

а момент двигателя M действует против направления вращения и является поэтому тормозящим.

Если в режиме холостого хода (I а = I а0) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режим I а = 0, а затем I а изменит направление и машина перейдет в режим генератора (участки характеристик на рисунке 3, б слева от оси ординат).

Как видно из рисунка 3, б , при включении R ра характеристики становятся менее жесткими, а при больших значениях R ра – круто падающими, или мягкими.

Если кривая момента сопротивления M ст = f (n ) имеет вид, изображенный на рисунке 3, б жирной штриховой линией, то значения n при установившемся режиме работы для каждого значения R ра определяются точками пересечения соответствующих кривых. Чем больше R ра, тем меньше n и ниже коэффициент полезного действия (к. п. д.).

Регулирование скорости посредством изменения напряжения якоря

Регулирование скорости посредством изменения напряжения якоря может осуществляется с помощью агрегата "генератор – двигатель" (Г – Д), называемого также агрегатом Леонарда (рисунок 4). В этом случае первичный двигатель ПД (переменного тока, внутреннего сгорания и тому подобный) вращает с постоянной скоростью генератор постоянного тока Г . Якорь генератора непосредственно подключен к якорю двигателя постоянного тока Д , который служит приводом рабочей машины РМ . Обмотки возбуждения генератора ОВГ и двигателя ОВД питаются от независимого источника – сети постоянного тока (рисунок 4) или от возбудителей (небольших генераторов постоянного тока) на валу первичного двигателя ПД . Регулирование тока возбуждения генератора i в.г должно производиться практически от нуля (на рисунке 4 с помощью реостата, включенного по потенциометрической схеме). При необходимости реверсирования двигателя можно изменить полярность генератора (на рисунке 4 с помощью переключателя П ).

Рисунок 4. Схема агрегата "генератор – двигатель" для регулирования скорости двигателя независимого возбуждения

Пуск двигателя Д и регулирование его скорости осуществляют следующим образом. При максимальном i в.д и i в.г = 0 производят пуск первичного двигателя ПД . Затем плавно увеличивают i в.г, и при небольшом напряжении генератора U двигатель Д придет во вращение. Регулируя, далее, U в пределах до U = U н, можно получить любые скорости вращения двигателя до n = n н. Дальнейшее увеличение n возможно путем уменьшения i в.д. Для реверсирования двигателя уменьшают i в.г до нуля, переключают ОВГ и снова увеличивают i в.г от значения i в.г = 0.

Когда рабочая машина создает резко пульсирующую нагрузку (например, некоторые прокатные станы) и нежелательно, чтобы пики нагрузки полностью передавались первичному двигателю или в сеть переменного тока, двигатель Д можно снабдить маховиком (агрегат Г – Д – М, или агрегат Леонарда – Ильгнера). В этом случае при понижении n во время пика нагрузки часть этой нагрузки покрывается за счет кинетической энергии маховика. Эффективность действия маховика будет больше при более мягкой характеристике двигателя ПД или Д .

В последнее время все чаще двигатель ПД и генератор Г заменяют полупроводниковым выпрямителем с регулируемым напряжением. В этом случае рассматриваемый агрегат называют также вентильным (тиристорным ) приводом.

Рассмотренные агрегаты используются при необходимости регулирования скорости вращения двигателя с высоким к. п. д. в широких пределах – до 1: 100 и более (крупные металлорежущие станки, прокатные станы и так далее).

Отметим, что изменение U с целью регулирования n по схеме рисунка 1, б , показанного в статье "Общие сведения о генераторах постоянного тока " и рисунка 3, а , не дает желаемых результатов, так как одновременно с изменением напряжения цепи якоря изменяется пропорционально U также ток возбуждения. Так как регулирование U можно производить только от значения U = U н вниз, то вскоре магнитная цепь окажется насыщенной, вследствие чего U и i в будут изменяться пропорционально друг другу. Согласно равенству (7), представленному в статье "Общие сведения о двигателях постоянного тока "), n при этом существенным образом не меняется.

В последнее время все больше распространяется так называемое импульсное регулирование двигателей постоянного тока. При этом цепь якоря двигателя питается от источника постоянного тока с постоянным напряжением через тиристоры, которые периодически, с частотой 1 – 3 кГц включаются и отключаются. Чтобы сгладить при этом кривую тока якоря, на его зажимах подключаются конденсаторы. Напряжение на зажимах якоря в этом случае практически постоянно и пропорционально отношению времени включения тиристоров ко времени продолжительности всего цикла. Таким образом, импульсный метод позволяет регулировать скорость вращения двигателя при его питании от источника с постоянным напряжением в широких пределах без реостата в цепи якоря и практически без дополнительных потерь. Таким же образом, без пускового реостата и без дополнительных потерь, может производиться пуск двигателя.

Импульсный способ регулирования в экономическом отношении весьма выгоден для управления двигателями, работающими в режимах переменной скорости вращения с частыми пусками, например на электрифицированном транспорте.

Рисунок 5. Рабочие характеристики двигателя параллельного возбуждения P н = 10 кВт, U н = 200 В, n н = 950 об/мин

Рабочие характеристики

Рабочие характеристики представляют собой зависимости потребляемой мощности P 1 , потребляемого тока I , скорости n , момента M , и к. п. д. η от полезной мощности P 2 при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рисунке 5.

Одновременно с увеличением мощности на валу P 2 растет и момент на валу M . Поскольку с увеличением P 2 и M скорость n несколько уменьшается, то M P 2 / n растет несколько быстрее P 2 . Увеличение P 2 и M , естественно, сопровождается увеличением тока двигателя I . Пропорционально I растет также потребляемая из сети мощность P 1 . При холостом ходе (P 2 = 0) к. п. д. η = 0, затем с увеличением P 2 сначала η быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря η снова начинает уменьшаться.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Рисунок 1 — схема параллельного возбуждения машины постоянного тока

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Рисунок 2 — схема независимого возбуждения машины постоянного тока

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Рисунок 3 — схема последовательного возбуждения машины постоянного тока

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

Рисунок 4 — схема смешанного возбуждения машины постоянного тока

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.