Полумостовой сварочный инвертор на ir2153 90 кгц. Простой импульсный блок питания на ir2153(d) для усилителя и не только

Автомобильный инвертор на IR2153

Задача проста: есть планшет с программами навигации и навигатор с аналогичными функциями. Задача: заряжать их при помощи родных зарядных устройств.

Почему так? Данные девайсы - особо жрущие электрическую энергию. И требуют они её настолько много, что обычные дешёвые китайские автомобильные зарядки не выдерживают и либо не работают, либо сгорают. Но китайцы же об этом не предупреждают. И даже в наших магазинах об этом не скажут, так как своим товаром продавцы не пользуются.

В силу этих причин были созданы простые требования к автомобильному инвертору: он должен питать штатные зарядные устройства электроники. Вот и всё.

Какие же сложности тут могут быть? Их немного. Прежде всего, следует определиться, что мы будем делать прямоходовый преобразователь. А это значительно упрощает многое.


Чтобы не ставить после трансформатора диодный мост из быстрых высоковольтных диодов, преобразователь сделаем однотактным, для чего используем только один выход микросхемы IR2153. Скважность при этом будет 50%. Так как инвертор по входу потребляет приличный ток, поставим два ключевых транзистора параллельно, чтобы распределить нагрев. Первичных обмотки сделаем тоже две, чтобы не искать толстый провод. Такой подход - не очень правильный и мы не рекомендуем его повторять. По уму, к тому же, в истоки транзисторов при параллельном включении следует поставить выравнивающие резисторы.


Данный инвертор не имеет стабилизации и выходное напряжение под нагрузкой будет слегка просаживаться. Почему же мы выбрали вариант с такой упрощённой схемотехникой?

Все современные зарядки для электроники - импульсные. На входе они имеют диодный мост и электролитический конденсатор. Таким образом, они могут работать и от постоянного тока. В некоторых зарядках диодный мост набран из быстрых диодов, и они могут работать от пульсирующего тока (некоторые китайские инверторы не имеют электролитического конденсатора на выходе). А если зарядки такие "всеядные", то в инверторе для них не нужна стабилизация, что позволяет отказаться от крупного дросселя и сделать схему очень простой для повторения.

Тем не менее, в целях эксперимента мы сделали несколько отводов от вторичной обмотки трансформатора на разные напряжения - от 220 до 310 вольт. Нужный отвод выбирается джампером. Это нужно для тех, кто не до конца верит, что при выпрямлении сетевого напряжения 220 вольт получаются 310 вольт постоянки и боится питать зарядки от 310 вольт. На самом деле, зарядкам всё равно, они работают в очень широком диапазоне питающих напряжений. При тестировании абсолютно все зарядки заработали от всех напряжений, выдаваемых инвертором.

Максимальная мощность, выдаваемая инвертором, будет зависеть от применяемого трансформатора. Под его феррит следует подобрать частоту IR2153, задаваемую цепочкой C1R1. Полевые транзисторы - низковольтные, их следует выбирать по току. Диод на выходе - быстрый высоковольтный. При тестировании удалось успешно запитать лампочку на 60Вт.


Данная конструкция была собрана по результатам проведённого недавно

Электропитание

Импульсный блок питания усилителя на IR2151, IR2153

Импульсные блоки питания – наиболее эффективный класс вторичных источников питания. Они характеризуются компактными размерами, высокой надежностью и КПД. К недостаткам можно отнести лишь создание высокочастотных помех и сложность проектирования /реализации.

Все импульсные ПБ – это своего рода инверторы (системы, генерирующие переменное напряжение на выходе высокой частоты из выпрямленного напряжения на входе).
Сложность таких систем даже не в том, чтобы сначала выпрямить входное сетевое напряжение, или в последующем преобразовать выходной высокочастотный сигнал в постоянный, а в обратной связи, которая позволяет эффективно стабилизировать выходное напряжение.

Особо сложным здесь можно назвать процесс управления выходными напряжениями высокого уровня. Очень часто блок управления питается от низковольтного напряжения, что порождает необходимость согласования уровней.

Драйверы IR2151, IR2153

Для того, чтобы управлять независимо (или зависимо, но со специальной паузой, исключающей одновременное открытие ключей) каналами верхнего и нижнего ключа, применяются самотактируемые полумостовые драйвера, такие как IR2151 или IR2153 (последняя микросхема является улучшенной версией исходной IR2151, обе взаимозаменяемы).

Существуют многочисленные модификации данных схем и аналоги от других производителей.

Типовая схема включения драйвера с транзисторами выглядит следующим образом.

Рис. 1. Схема включения драйвера с транзисторами

Тип корпуса может быть PDIP или SOIC (разница на картинке ниже).

Рис. 2. Тип корпуса PDIP и SOIC

Модификация с буквой D в конце предполагает наличие дополнительного диода вольтодобавки.

Различия микросхем IR2151 / 2153 / 2155 по параметрам можно увидеть в таблице ниже.

Таблица

ИБП на IR2153 – простейший вариант

Сама принципиальная схема выглядит следующим образом.

Рис. 3. Принципиальная схема ИБП

На выходе можно получить двухполярное питание (реализуется выпрямителями со средней точкой).

Мощность БП можно увеличить за счет изменения параметров емкости конденсатора C3 (считается как 1:1 – на 1 Вт нагрузки требуется 1 мкф).

В теории выходную мощность можно нарастить до 1.5 кВт (правда для конденсаторов такой ёмкости потребуется система soft-старта).

При конфигурации, обозначенной на принципиальной схеме, достигается выходная сила тока 3,3А (до 511 В) при использовании в усилителях мощности, или 2,5А (387 В) – при подключении постоянной нагрузки.

ИБП с защитой от перегрузок

Сама схема.

Рис. 4. Схема ИБП с защитой от перегрузок

В данном БП предусмотрена система перехода на рабочую частоту, исключающая броски пускового тока (софт-старт), а также простейшая защита от ВЧ помех (на входе и выходе катушки индуктивности).

ИБП мощностью до 1,5 кВт

Схема ниже может обеспечивать работу с мощными силовыми транзисторами, такими как SPW35N60C3, IRFP460 и т.п.

Рис. 5. Схема ИБП мощностью до 1,5 кВт

Управление мощными VT4 и VT5 реализовано через эмиттерные повторители на VT2 и VT1.

БП усилителя на трансформаторе из БП компьютера

Часто случается так, что комплектующие покупать практически и не нужно, они могут стоять и пылиться в составе давно неиспользуемой техники, например, в системном блоке ПК где-то в подвале или на балконе.

Ниже приведена одна из достаточно простых, но не менее работоспособных схем ИБП для усилителя.

  • александр / 24.04.2019 - 08:24
    на рис 6 ошибка нет конденсатора в цепи трансформатора выхода
  • Как известно люминисцентные лампы запитываются напряжением до 400 В. Поэтому их использование в автомобилях весьма затруднительно, потому что редко когда заводы изготовители делают преобразователи напряжения для питания подобных ламп.

    Да и их срок службы заставляет желать лучшего, в этой связи их применение в автомобилях отсутствует полностью. Однако подобные лампы обладают рядом преимуществ по сравнению с другими, это и энергосберегательность и большой спектр свечения, высокая светоотдача.

    Однако необходимость сборки преобразователя напряжения для его работы, практически убивает желание их использовать. Если у вас есть желания использовать подобные лампы в своем авто, мы представляем вам схему реализации преобразователя на основе микросхемы IR2153. Этот драйвер зачастую используется в импульсных преобразователях, однако мы его приспособим под преобразователь напряжения.

    Схема подключения микросхемы и навесные элементы представлены ниже. Трансформатор придется намотать самим, ничего сложного в этом нет. Ферритовое кольцо надо взять от трансформатора мощностью не менее 150 Вт. Первичная обмотка мотается проводом сечением не менее 0,7 мм? 25 витков.

    Вторичную обмотку мотаем тем же проводом 65 витков. Коэффициент трансформации позволяет поднять напряжение до 220-260 В, чего в принципе достаточно для розжига ламп.

    Мощность преобразователя будет составлять около 100 Вт, это с большим запасом хватит для запитки любой лампы.

    Выходное напряжение с трансформатора переменное, оно не подходит для запитки газоразрядных ламп. Поэтому его необходимо выпрямить, либо так как показано на схеме одним диодом и конденсатором или использовать полноценный диодный мост, который снизит пульсации на выходе. Для выпрямления использовать только высокочастотные импульсные диоды, например, HER107/207/307, FR107/207/307, UF4007, UF5408, MUR460 или подобного класса.

    Конденсатор ставить с рабочим напряжением не менее 400 В. Трансформатор можно взять со старого блока питания компьютера. Транзисторы устанавливать либо на разные теплоотводы, либо на один с изолированием корпусов транзисторов через слюдяную прокладку.

    Упрощенный мост на IR2153 — такое устройство как мост реализованный на универсальном драйвере для управления полевыми транзисторами, справедливо считается одним из наиболее эффективных модулей преобразователя. Но, чтобы собрать такой прибор потребуются существенные денежные вложения, а также нужно учитывать технологический уровень сложности при его изготовлении. Это если вы собираетесь взяться за конструирование высоко мощного моста на несколько киловатт, тогда да, будут некоторые затруднения.

    А вот если воспользоваться приведенной ниже схемой, то никаких проблем не будет, тем более устройство собрано на двух популярных чипах IR2153 , представляющих собой высоковольтные драйвера с внутренним генератором. Принцип включения микросхем обычный и неоднократно тестировался на полумосте. Особенность вызывает первоочередное тактирование второй микросхемы от R-входа.

    Номинальные значения электронных компонентов:

    B1 — диодный мост RS2007, RS3507 и тому подобные. При эксплуатации на мощностях более пары сотен ватт необходимо поставить на него радиатор.
    C1, C7 — электролиты 630…1000мкФ х 400В
    R1, R5 — 33..56кОм 2Вт. Для более точного расчета можете воспользоваться формулой
    R=310/(2*Cзатвора*15.6*fраб+0.003)
    C2, C5 — электролиты 220мкФ 25В
    C8, C9 — керамика 0.1мкФ 25В
    R8 — 2Ом 0.25Вт
    R9 — 24кОм
    R10 — 6кОм
    R2, C3 — рассчитываются по даташиту на IR2153 исходя из требуемой частоты
    IC1, IC2 — IR2153, IR2153D, IR21531 (если применяется IR2153D то D1 и D2 не ставить!)
    D1, D2, D3, D4 — UF4007, BYW26C, BY329 или другие подобные ультрабыстрые диоды
    C4, C6 — танталовые 22мкФ 25В
    R3, R4, R6, R7 — 10…30Ом 0.25Вт (меньшее значение для тяжелых затворов, большее — для легких)
    Q1, Q2, Q3, Q4 — IRF840 или что-то подобное. Все зависит от ваших потребностей

    Насчет расчетов например: R2,С3 как сказано выше, нужно определять по даташиту, к тому же есть множество программ для расчета. Если для кого то это дремучий лес то я считаю, тогда и не надо вообще браться за конструирование.

    Ниже показана печатная плата с нанесенной на нее обозначениями деталей и их места установки.

    В качестве нагрузки данного моста могут послужить выходной трансформатор строчной развертки телевизора, SSTC-катушка либо что-то аналогичное им, но мощность не должна превышать 1000 Вт. Если использовать большие мощности, то нет никакой гарантии в стабильной работе микросхемы. Если же все таки возникает необходимость реализовать высокие мощности, то тогда необходимо добавить емкость конденсаторов в цепи фильтров 310v, то тогда существует вероятность, что будет прекрасно работать и на высокой мощности.

    Техническая информация

    1. Когда осуществляется запуск, то создается сильный импульсный бросок тока в следствии происходящего цикла зарядки конденсаторов в цепи фильтра. При этом возможно срабатывание автоматов, если такое происходит, то нужно в сетевую цепь установить NTC-термистор, который применяется для защиты импульсных питающих источников и электронных балластных систем, предварительно подобрав его значения по необходимому току.
    2. При подключении к мосту в качестве нагрузки выходной строчный трансформатор, то первичную обмотку нужно наматывать в количестве 65 витков не меньше.
    3. При компоновке элементов на печатную плату, лучше всего под микросхемы нужно будет устанавливать панельки, а в них уже помещать саму микросхему после полного завершения монтажа схемы.

    Импульсный блок питания на IR2151-IR2153

    Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

    Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.


    На входе стоит PTC термистор – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.

    Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа "вертикалка", но можно использовать диодную сборку типа "табуретка".

    Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.

    Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

    Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

    Полевые транзисторы используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

    Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

    При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

    Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

    Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф .

    Печатная плата

    Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих "наворотов", присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных "плохому питанию" (фон и посторонние звуки).

    В работе полевые транзисторы не сильно нагреваются.

    Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

    Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.