Программирование на ардуино уроки. Подключение и программирование ардуино для начинающих

Данная статья поможет вам начать работу с Arduino и включает в себя описание различных типов Arduino, как загрузить среду разработки программного обеспечения Arduino, и описывает различные платы и принадлежности, доступные для Arduino, и которые понадобятся вам для разработки проектов на Arduino.

Arduino - это одноплатный контроллер с открытыми исходными кодами, который можно использовать в множестве различных приложений. Это возможно самый простой и самый дешевый вариант из микроконтроллеров для любителей, студентов и профессионалов для разработки проектов на основе микроконтроллеров. Платы Arduino используют либо микроконтроллер Atmel AVR, либо микроконтроллер Atmel ARM, и в некоторых версия имеет интерфейс USB. Они также имеют шесть или более выводов аналоговых входов и четырнадцать или более выводов цифровых входов/выходов (I/O), которые используются для подключения к микроконтроллеру датчиков, приводов и других периферийных схем. Цена на платы Arduino в зависимости от набора функций составляет от шести до сорока долларов.

Типы плат Arduino

Существует множество различных типов плат Arduino, как показано в списке ниже, каждая из которых обладает собственным набором функций. Они отличаются по скорости обработки, памяти, портам ввода/вывода и подключению, но основная составляющая их функционала остается неизменной.

  • Arduino Robot
  • Arduino Ethernet

На разнообразие плат Arduino и их технические описания можно посмотреть в подразделе « » раздела «Купить » данного сайта.

Программное обеспечение (IDE)

Программное обеспечение, используемое для программирования Arduino, представляет собой интегрированную среду разработки Arduino IDE. IDE представляет собой Java приложение, которое работает на множестве различных платформ, включая системы PC, Mac и Linux. Она разработана для начинающих, которые не знакомы с программированием. Она включает в себя редактор, компилятор и загрузчик. Также в IDE включены библиотеки кода для использования периферии, например, последовательных портов и различных типов дисплеев. Программы для Arduino называются «скетчами», и они написаны на языке, очень похожем на C или C++.

Большинство плат Arduino подключаются к компьютеру с помощью USB кабеля. Это соединение позволяет загружать скетчи на вашу плату Arduino, а также обеспечивает плату питанием.

USB кабель для Arduino

Программирование

Программирование Arduino легко: сначала вы используете редактор кода IDE для написания программы, а затем компилируете и загружаете её одним кликом.

Программа для Arduino включает в себя две основные функции:

  • setup()
  • loop()

Вы можете использовать функцию setup() для инициализации настроек платы. Эта функция выполняется только один раз, при включении платы.

Функция loop() выполняется после завершения функции setup() , и в отличие от функции setup() она работает постоянно.

Функции программ

Ниже приведен список наиболее часто используемых функции при программировании Arduino:

  • pinMode - устанавливает вывод в режим входа или выхода;
  • analogRead - считывает аналоговое напряжение на аналоговом входном выводе;
  • analogWrite - записывает аналоговое напряжение в аналоговый выходной вывод;
  • digitalRead - считывает значение цифрового входного вывода;
  • digitalWrite - задает значение цифрового выходного вывода в высокий или низкий уровень;
  • Serial.print - пишет данные в последовательный порт в виде удобочитаемого текста ASCII.

Библиотеки Arduino

Библиотеки Arduino представляют собой коллекции функций, которые позволят вам управлять устройствами. Вот некоторые из наиболее широко используемых библиотек:

  • EEPROM - чтение и запись в «постоянно» хранилище;
  • Ethernet - для подключения к интернету, используя плату Arduino Ethernet Shield;
  • Firmata - для связи с приложениями на компьютере, используя стандартный последовательный протокол;
  • GSM - для подключения к сети GSM/GRPS с помощью платы GSM;
  • LiquidCrystal - для управления жидкокристаллическими дисплеями (LCD);
  • SD - для чтения и записи SD карт;
  • Servo - для управления сервоприводами;
  • SPI - для связи с устройствами, используя шину SPI;
  • SoftwareSerial - для последовательной связи через любые цифровые выводы;
  • Stepper - для управления шаговыми двигателями;
  • TFT - для отрисовки текста, изображений и фигур Arduino TFT экранах;
  • WiFi - для подключения к интернету, используя плату Arduino WiFi shield;
  • Wire - двухпроводный интерфейс (TWI/I2C) для передачи и приема данных через сеть устройств или датчиков.

Этапы настройки Arduino


Внимание: возможно, вам понадобится установить драйвера, если ваша система не обнаружит Arduino.

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по - рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать - это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.








Остальные отверстия, расположенные в середине платы, группируются по пять отверстий. Они используется для соединения деталей схемы.


Первое, что мы подключим к нашему микроконтроллеру, это светодиод. Схема электрических соединений показана на картинке.

Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V -напряжение на резистор
I - ток через резистор
R - сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много:wink: .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
это основная функция, которая выполняется после setup() . Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом



В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT) . Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode . Эта функция имеет два аргумента: pinNumber - это номер пина, который вы будете использовать.

Mode -задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT) . Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
- эта функция служит для того, чтобы задать состояние (state) пина (pinNumber) . Есть два основных состояния (вообще их 3), одно это HIGH , на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине, соединенном со светодиодом выставить высокий уровень HIGH .

Задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.
//LED Blink int ledPin = 7;//пин Arduino к которому подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// установка пина как ВЫХОД } void loop() { digitalWrite(ledPin, HIGH);//зажечь светодиод delay(1000);// задержка 1000 мсек (1 сек) digitalWrite(ledPin, LOW);//Выключить светодиод delay(1000);//ждать 1 сек }

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin - это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT) .
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

В первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:
//Multi LED Blink int led1Pin = 4; int led2Pin = 5; int led3Pin = 6; int led4Pin = 7; void setup() { //установка пинов как ВЫХОД pinMode(led1Pin, OUTPUT); pinMode(led2Pin, OUTPUT); pinMode(led3Pin, OUTPUT); pinMode(led4Pin, OUTPUT); } void loop() { digitalWrite(led1Pin, HIGH);//зажечь светодиод delay(1000);//задержка 1 сек digitalWrite(led1Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек //do the same for the other 3 LEDs digitalWrite(led2Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led2Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led3Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led3Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led4Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led4Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек }

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

DigitalWrite (led4Pin, HIGH); delay (1000); digitalWrite (led4Pin, LOW); delay (1000);
полный код скетча во вложении (скачиваний: 1187)

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "~ ". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite() . analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.
//Меняем яркость светодиода int ledPin = 9;//к этому выводу подсоединен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на вывод } void loop() { analogWrite(ledPin, 255);//полная яркость (255/255 = 1) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 191);//яркость на 3/4 (191/255 ~= 0.75) delay(1000);//пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 127);//половина яркости (127/255 ~= 0.5) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 63);//четверть яркости (63/255 ~= 0.25) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек }

Попробуйте поменять значение ШИМ в команде analogWrite () ,чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно,конечно, скопировать кусок кода 255 раз
analogWrite(ledPin, brightness); delay(5);//short delay brightness = brightness + 1;
Но, сами понимаете - это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0
for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); }
delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness- " ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0 .Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч. //плавно меняем яркость int ledPin = 9;//к этому пину подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на выход } void loop() { //плавно увеличиваем яркость (0 to 255) for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек //плавно уменьшаем яркость (255 to 0) for (int brightness=255;brightness>=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек } }
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.



//RGB LED - test //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //включение/выключение красного светодиод digitalWrite(red, HIGH); delay(500); digitalWrite(red, LOW); delay(500); //включение/выключение зеленого светодиода digitalWrite(green, HIGH); delay(500); digitalWrite(green, LOW); delay(500); //включение/выключение синего светодиода digitalWrite(blue, HIGH); delay(500); digitalWrite(blue, LOW); delay(500); }

В следующем примере используются команды analogWrite() и , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.
//RGB LED - random colors //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //pick a random color analogWrite(red, random(256)); analogWrite(blue, random(256)); analogWrite(green, random(256)); delay(1000);//wait one second }

Random(256) -возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. (скачиваний: 326)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: (скачиваний: 365)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2) . Вы видите, что оба аргумента объявлены как int , и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так:
int multiplier(int number1, int number2){ int product = number1*number2; return product; }
Обратите внимание, как мы объявили Тип int в качестве типа возвращаемого значения вместо
void .
Внутри функции идут команды, которые вы уже использовали в предыдущем скетче, только номера выводов заменили на color1 и color2 . Вызывается функция fader , ее аргументы вычисляются как color1 = red и color2 = green . В архиве полный скетч с использованием функций (скачиваний: 272)

Кнопка

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.


Это значит, что пока кнопка не нажата, ток через неё не идёт, а после отпускания, кнопка возвращается в исходное положение.
В схеме, помимо кнопки используется резистор. В данном случае он не ограничивает ток, а "подтягивает" кнопку к 0в (GND). Т.е. пока кнопка не нажата на выводе Arduino, к которому она подключена, будет низкий уровень. Резистор, используемый в схеме 10 кОм.


//определяем нажатие кнопки int buttonPin = 7; void setup(){ pinMode(buttonPin, INPUT);//инициализируем пин на вход Serial.begin(9600);//инициализируем последовательный порт } void loop(){ if (digitalRead(buttonPin)==HIGH){//если кнопка нажата Serial.println("pressed"); // выводим надпись "pressed" } else { Serial.println("unpressed");// иначе "unpressed" } }
В этом скетче несколько новых команд.
-эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()

Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
- конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.
//button press detection with LED output int buttonPin = 7; int ledPin = 8; void setup(){ pinMode(buttonPin, INPUT);//this time we will set button pin as INPUT pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){ digitalWrite(ledPin,HIGH); Serial.println("pressed"); } else { digitalWrite(ledPin,LOW); Serial.println("unpressed"); } }

Аналоговый вход.

analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.
//analog input int potPin = A0;//к этому пину подсоединяется центральный вывод потенциометра void setup(){ //аналоговый пин по умолчанию включен на вход, поэтому инициализация не нужна Serial.begin(9600); } void loop(){ int potVal = analogRead(potPin);//potVal is a number between 0 and 1023 Serial.println(potVal); }
Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.
//button press detection with LED output and variable intensity int buttonPin = 7; int ledPin = 9; int potPin = A0; void setup(){ pinMode(buttonPin, INPUT); pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){//if button pressed int analogVal = analogRead(potPin); int scaledVal = map(analogVal, 0, 1023, 0, 255); analogWrite(ledPin, scaledVal);//turn on led with intensity set by pot Serial.println("pressed"); } else { digitalWrite(ledPin, LOW);//turn off if button is not pressed Serial.println("unpressed"); } }

Сегодня речь пойдет об использовании SD и micro SD карт в Arduino. Мы разберемся как можно подключить SD карты к Ардуино, как записывать и считывать информацию. Использование дополнительной памяти может быть очень полезно во многих проектах. Если вы не знаете что такое SPI, I2C и аналоговые выводы, то советую вам посмотреть прошлые уроки и разобраться с этими интерфейсами связи Ардуино.

В этом уроке мы поговорим о беспроводной связи между двумя платами Arduino. Это может быть очень полезно для передачи команд с одной ардуино на другую, или обменом информации между вашими самоделками. Возможность беспроводной передачи данных открывает новые возможности в создании своих проектов.

В этом уроке мы познакомимся с шиной I2C. I2C это шина связи, использующая всего две линии. С помощью этого интерфейса Arduino может по двум проводам обмениваться данными со множеством устройств. Сегодня мы разберемся как подключить датчики и сенсоры к Ардуино по шине I2C, как обращаться к конкретному устройству и как получать данные с этих устройств.

В этом уроке мы будем говорить о Serial интерфейсе связи Arduino. Мы уже использовали этот интерфейс в прошлых уроках, когда выводили значения с датчиков на экран компьютера. Сегодня мы подробнее разберем как работает это соединение, а так же мы узнаем как можно использовать данные переданные в монитор порта компьютера используя Processing.

Сегодня мы поговорим о транзисторах и подключении нагрузки к Arduino. Сама Ардуино не может выдать напряжение выше 5 вольт и ток больше 40 мА с одного пина. Этого достаточно для датчиков, светодиодов, но если мы хотим подключить устройства более требовательные по току, нам придется использовать транзисторы или реле.

В этом уроке мы поговорим об основах схемотехники, применительно к Arduino. И начнем, конечно же, с закона Ома, так как это основа всей схемотехники. Так же в этом уроке мы поговорим о сопротивлении, стягивающих и подтягивающих резисторах, расчете силы тока и напряжения.

Эта вводная статья для тех, кто уже успел распаковать со своим ребенком десяток-другой цветных коробок от конструкторов, построил сотни разнообразных конструкций и заполнил деталями от Лего все доступные емкости в чулане. Если вы готовы перейти на следующий уровень: с электроникой, микроконтроллерами, датчиками и умными устройствами – значит, пришло время для экспериментов с Ардуино!

В этой серии статей мы соберем самое главное, что нужно узнать об Ардуино, чтобы начать заниматься с детьми самостоятельно. Даже если вы никогда не брали в руки паяльник и слова «контроллер» и «контроллёр» для вас имеют примерно схожий смысл, можете быть уверенными – у вас все равно все получится! Мир электроники и робототехники сегодня полон простых и очень удобных решений, позволяющих практически с нуля создавать очень интересные проекты. Наш учебник поможет вам быстро сориентироваться и сделать первые шаги.

Говоря бытовым языком, Ардуино – это , в которую можно воткнуть множество разных устройств и заставить их работать вместе с помощью программы, написанной на языке Ардуино в специальной среде программирования.

Чаще всего плата выглядит вот так:

На рисунке показана одна из плат Ардуино – Arduino Uno. Мы изучим ее подробнее на следующих уроках.

В плату можно втыкать провода и подключать множество разных элементов. Чаще всего, для соединения используется макетная плата для монтажа без пайки. Можно добавлять светодиоды, датчики, кнопки, двигатели, модули связи, реле и создавать сотни вариантов интересных проектов умных устройств. Плата Ардуино – это умная розетка, которая будет включать и выключать все присоединенное в зависимости от того, как ее запрограммировали.




Вся работа над проектом разбивается на следующие этапы:

  1. Придумываем идею и проектируем.
  2. Собираем электрическую схему. Тут нам пригодится макетная плата, упрощающая монтаж элементов. Безусловно, понадобятся навыки работы с электронными приборами и умение .
  3. Подключаем к компьютеру через USB.
  4. и записываем ее в плату буквально нажатием одной кнопки на экране в .
  5. Отсоединяем от компьютера. Теперь устройство будет работать автономно – при включении питания оно будет управляться той программой, которую мы в него записали.

Программа и среда программирования выглядят вот так:

На экране показана программа (на сленге ардуинщиков текст программы называется “скетч”), которая будет мигать лампочкой, подсоединенной к 13 входу на плате Ардуино UNO. Как видим, программа вполне проста и состоит из понятных для знающих английский язык инструкций. В языке программирования Arduino используется свой диалект языка C++, но все возможности C++ поддерживаются.

Есть и другой вариант написания кода – визуальный редактор. Тут не нужно ничего писать – можно просто перемещать блоки и складывать из них нужный алгоритм. Программа загрузится в подключенную плату одним нажатием кнопки мыши!

В целом все выглядит довольно понятно, не так ли? Осталось разобраться в деталях.

Быстрый старт с Arduino

Для начала давайте поймем, с чем же и чем же мы собираемся заниматься. Что такое Ардуино и как его использовать? Если вы уже знакомы с темой – можете смело перескочить дальше. Если нет – давайте вместе выполним короткое погружение.

Ардуино – это…

Ардуино – это не бренд и не название поставщика конструкторов. Это общее название для целого семейства различных технологий и открытой платформы, в которую входят как аппаратные устройства (платы контроллеров и совместимое оборудование), так и софт, предназначенный для управления железками. По сути своей, Ардуино – это инфраструктура и среда, в которой можно собирать совместимые между собой электронные и механические компоненты в единое устройство, а потом через обычный компьютер за две минуты запрограммировать поведение этих самых железок так, как нам нужно.

Ардуино – это мостик из виртуального компьютерного мира в мир реальных вещей и устройств. Написав программу на обычном компьютере, мы управляем с ее помощью не виртуальными объектами, а вполне себе реальными датчиками, двигателями, экранами. Мы меняем мир вокруг себя – просто программируя на компьютере, используя бесплатный софт и множество уже готовых примеров библиотек.

Свое название технология получила, как это часто бывает, довольно случайно. Источником вдохновения послужил бар, в котором будущие создатели Ардуино любили выпить по кружечке чая. Называлось заведение именно так – Arduino, по имени главной исторической личности города Ивреа, короля Ардуино. Король какого-то яркого следа в истории не оставил и прослыл неудачником, но благодаря команде разработчиков новой платформы обрел новую популярность и сейчас известен миллионам людей по всему земному шару.

Почему Ардуино?

Вся прелесть Ардуино заключается в следующих простых преимуществах:

  1. Простота. Да, да – именно простота (хотя Лего и другие игрушки, без сомнения, привычнее, но мы сравниваем не с ними). Для юных разработчиков электроники Ардуино «прячет» огромное количество разнообразных технических вопросов. Многие достаточно сложные проекты можно создавать очень быстро, без длительного погружения в детали. А это ведь очень важно для ребенка – не утратить интерес до первого полученного своими руками результата.
  2. Популярность. Ардуино крайне популярна, вы сможете без труда найти ответы на любые вопросы на многочисленных форумах или сайтах. Сообщество Ардуино обширно и дружелюбно – там относительно мало прожженных жизнью снобов-инженеров и полно любителей и начинающих, с удовольствием делящихся своей радостью от найденного и узнанного. Это, конечно, откладывает отпечаток на качество советов, но как правило, даже самые сложные вопросы могут быть быстро решены с помощью форумов и сайтов.
  3. Доступность. И сама технология, и практически весь софт выпускаются под открытыми лицензиями и вы можете свободно использовать чужие наработки, схемы, причем во многих случаях даже для коммерческого использования. Это экономит много времени и позволяет двигаться большими шагами, опираясь на опыт предыдущих исследователей.
  4. Дешевизна. Комплект для первых занятий электроникой и программированием можно купить менее чем за 500 рублей. Полноценные курсы робототехники возможны при . Никакая другая технология не позволит вам так быстро и так эффективно войти в мир реальной учебной робототехники.

С чего начать?

Если вы хотите заниматься робототехникой с использованием Ардуино, то вам понадобится такой вот джентельменский набор:

  1. с USB кабелем для подключения к компьютеру.
  2. и провода.
  3. Комплект базовых электронных компонентов и переходник для батарейки типа крона.
  4. Установленная на компьютер среда

Все оборудование продается в наборах, называемых стартовыми –

В дальнейшем, если занятия действительно увлекут и будет желание продолжить эксперименты, то список оборудования будет расширяться:

  1. Экраны и индикаторы.
  2. Двигатели и , реле и .
  3. Модули связи.
  4. Разнообразные дополнительные модули и (шилды)

Если первые шаги дадут результат, со временем вы будете узнавать половину людей, стоящих в очереди на почте (если до сих пор вы их еще не знаете), а почтальоны при встрече будут узнавать вас в лицо и нервно перебегать на другую сторону дороги.

Как купить Ардуино?

Прежде чем узнать что-то полезное, надо сначала купить что-то полезное. Для экспериментов с электроникой вам понадобится та сама электроника в виде конструктора или отдельных плат. Рекомендуется купить не очень дорогой отечественный набор с основными компонентами и затем уже заказать себе с Алиэкспресса датчики, двигатели, контроллеры и другие сокровища. можно найти в инернете (не только на нашем сайте). Если вы живете в большом городе, то покупка всего необходимого займет максимум два дня. Найти нужный магазин легко в интернете.

Пару слов о . Сегодня их на совершенно легальных условиях может делать любой производитель: как крупный, такой как Intel, так и мелкие noname поставщики из Китая. Надежность и удобство «китайских» и «официальных» платы Ардуино в большинстве случаев одинаковые. Поэтому незачем переплачивать – для своих учебных проектов можете смело покупать аналоги, которые легко найти в интернете.

Как отличить «оригинал» от «совместимой платы»:

  1. «Китайские» платы не имеют права ставить логотип Ардуино.
  2. «Китайские» платы стоят гораздо дешевле.
  3. «Китайские» часто используют другой чип для обслуживания соединения с компьютером, на который нужны специальные драйвера. Драйвера устанавливаются за секунду и практически никогда не вызывают каких-либо проблем.

Еще раз подчеркнем, использование не оригинальных плат совершенно легально. Ардуино – открытая архитектура и разработчики дают возможность собрать свою версию платы всем желающим.

Нет возможности купить?

Если вы живете в Антарктиде или у вас действительно не хватает средств даже на самые простые наборы, то не отчаивайтесь – можно начать изучение Ардуино на виртуальных тренажерах. Самый мощный, простой и популярный сегодня вариант – это онлайн сервис Tinkercad от известной компании Autodesk. Вы сможете создавать электронные схемы, подключая множество разнообразных компонентов, а затем «включать» питание и измерять все электрические показатели. В библиотеке устройств есть и плата Ардуино, и даже встроенный редактор для программирования (включая визуальный!). Вы можете найти на нашем сайте отдельную статью

Вам понадобится

  • - плата Arduino UNO,
  • - кабель USB (USB A - USB B),
  • - персональный компьютер,
  • - светодиод,
  • - резистор 220 Ом,
  • - пара проводов 5-10 см,
  • - при наличии - макетная плата (breadboard).

Инструкция

Загрузите среду разработки Arduino для своей операционной системы (поддерживаются ОС Windows, Mac OS X, Linux) на странице http://arduino.cc/en/Main/Software, можно установщик, можно . Скачанный файл содержит также и драйверы для плат Arduino.

Установите драйвер. Рассмотрим вариант для ОС Windows. Для этого дождитесь, когда операционная система предложит установить драйвер. Откажитесь. Нажмите Win + Pause, запустите Диспетчер устройств. Найдите раздел "Порты (COM & LPT)". Увидите там порт с названием "Arduino UNO (COMxx)". Кликните правой кнопкой мыши на нём и выберите "Обновить драйвер". Далее выбираете расположение драйвера, который вы только что скачали.

Среда разработки уже содержит в себе множество примеров для изучения работы платы. Откройте пример "Blink": Файл > Примеры > 01.Basics > Blink.

Укажите среде разработки свою плату. Для этого в меню Сервис > Плата выберите "Arduino UNO".

Выберите порт, которому назначена плата Arduino. Чтобы узнать, к какому порту подключена плата, запустите диспетчер устройств и найдите раздел Порты (COM & LPT). В скобках после названия платы будет указан порта. Если платы нет в списке, попробуйте её от компьютера и, выждав несколько секунд, снова.

Отключите плату от компьютера. Соберите схему, как показано на рисунке. Обратите внимание, что короткая ножка светодиода должна быть соединена с выводом GND, длинная через резистор с цифровым пином 13 платы Arduino. Удобнее пользоваться макетной , но при её отсутствии можно соединить провода скруткой.
Важное примечание! Цифровой пин 13 уже имеет свой резистор на плате. Поэтому при подключении светодиода к плате внешний резистор использовать не обязательно. При подключении светодиода к любым другим выводам Ардуино использование обязательно!

Теперь можно загрузить программу в память платы. Подключите плату к компьютеру, подождите несколько секунд, пока происходит инициализация платы. Нажмите кнопку "Загрузить", и Ваш запишется в память платы Arduino. Программирование под Arduino весьма интуитивно и совсем не сложно. Посмотрите на изображение - в комментариях к программе есть небольшие пояснения. Этого достаточно чтобы разобраться с вашим первым экспериментом.

Видео по теме

Обратите внимание

Будьте внимательны при работе с платой Arduino - это электронное изделие, которое требует бережного отношения. Снизу платы есть оголённые проводники, и если Вы положите плату на токопроводящую поверхность, есть вероятность сжечь плату. Также не трогайте плату влажными или мокрыми руками и избегайте при работе сырых помещений.

Полезный совет

В сети есть множество сайтов, посвящённых Arduino. Читайте, осваивайте, не бойтесь экспериментировать и познавать новое!

Источники:

  • Мигаем светодиодом

Программирование привлекает и интересует многих современных людей, в особенности - молодых и начинающих специалистов, которые только начинают выбирать будущую профессию. Они нередко встают перед вопросом - с чего начать в изучении программирования? Если вы решили научиться программировать, не стоит совершать распространенную ошибку - не беритесь сразу за сложные системы и языки (например, Си). Начав со слишком сложного языка, вы можете сформировать неправильное впечатление о программировании в целом. Начинающим рекомендуется работать с самыми простыми системами - например, учиться писать программы в Бейсик. Изучение этого языка позволит в короткие сроки добиться хороших результатов. Усвоить PureBasic несложно - этот универсальный компилируемый язык, имеющий широкие возможности, поможет вам понять основы программирования и совершенствовать свои умения в дальнейшем.

Инструкция

На изучение основ программирования у вас может уйти около года. Вам предстоит узнать особенности процедурного и объектно-ориентированного программирования, принципы работы с бинарными деревьями, массивами, списками и т.д. Только после изучения основ переходите к более сложным задачам.

Посещайте сайты разработчиков языков программирования, изучайте документацию. Обязательно общайтесь на форумах программистов, они, как правило, отвечают на большинство вопросов новичков.

Математика

Если вы хотите научиться программировать, вам просто необходимо знать математику. В процессе работы вам предстоит столкнуться с большим количеством проблем, которые невозможно будет решить без знания основ этой науки. Существует большое количество математических , систем и теорий (ряды Фурье, числа Фибоначчи и т.д.), которые значительно упрощают процесс программирования.

Обучение не заканчивается

Эволюция языков программирования не стоит на месте, их развитие идет постоянно. Старайтесь читать как можно больше литературы, посвященной той области программирования, в которой вы планируете работать. Всегда ищите альтернативные пути решения возникающих проблем, это поможет вам постоянно повышать эффективность работы создаваемого вами программного кода. Беседуйте с профессиональными программистами, они всегда смогут посоветовать, как справиться с той или иной проблемой. Чтение кодов их программ также принесет вам большую пользу.
Невозможно постоянно держать все в уме. Не стесняйтесь пользоваться справочниками по языкам программирования.

Задачи программирования, какими бы простыми они ни были, никогда не решаются с наскока. Они всегда требуют выработки правильного алгоритма действий, эффективного в данной конкретной ситуации. Поиск оптимальных алгоритмов требует постоянной практики и тренировки. Старайтесь чаще решать небольшие задачи по программированию (найти их можно на специализированных сайтах), это поможет вам постепенно оттачивать свои навыки в этой области.