Решить интеграл методом линейной замены переменной. Вычисление интегралов

Тип занятия: изучение нового материала.

Учебно-воспитательные задачи:

  • научить учащихся применять метод интегрирования подстановкой;
  • продолжать формировать умения и навыки применения интегрирования функций;
  • продолжать формировать интерес к математике посредством решения задач;
  • воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений;
  • напоминать, что только осознанное применение алгоритмов вычисления неопределенного интеграла позволит учащимся качественно усвоить изучаемую тему.

Обеспечение занятия:

  • таблица основных формул интегрирования;
  • карточки-задания для проверочной работы.

Студент должен знать: алгоритм вычисления неопределенного интеграла методом подстановки.

Студент должен уметь: применять полученные знания к вычислению неопределенных интегралов.

Мотивация познавательной деятельности студентов.

Преподаватель сообщает, что кроме метода непосредственного интегрирования существуют и другие методы вычисления неопределенных интегралов, одним из которых является метод подстановки. Это наиболее распространенный метод интегрирования сложной функции, состоящий в преобразовании интеграла с помощью перехода к другой переменной интегрирования.

Ход занятия

I . Организационный момент.

II . Проверка домашнего задания.

Фронтальный опрос:

III . Повторение опорных знаний учащихся.

1) Повторить таблицу основных формул интегрирования.

2) Повторить в чем заключается метод непосредственного интегрирования.

Непосредственным интегрированием называется такой способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам.

IV . Изучение нового материала.

Вычислить заданный интеграл непосредственным интегрированием удается далеко не всегда, а иногда это связано с большими трудностями. В этих случаях применяют другие приемы. Одним из наиболее эффективных приемов является метод подстановки или замены переменной интегрирования. Сущность этого метода заключается в том, что путем введения новой переменной интегрирования удается свести заданный интеграл к новому интегралу, который сравнительно легко берется непосредственно. Если после замены переменной интеграл стал проще, то цель подстановки достигнута. В основе интегрирования методом подстановки лежит формула

Рассмотрим этот метод.

Алгоритм вычисления неопределенного интеграла методом подстановки:

  1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).
  2. Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.
  3. Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.
  4. Производят замену под интегралом.
  5. Находят полученный интеграл.
  6. В результате производят обратную замену, т.е. переходят к старой переменной. Результат полезно проверять дифференцированием.

Рассмотрим примеры.

Примеры. Найти интегралы:

1) )4

Введем подстановку:

Дифференцируя это равенство, имеем:

V . Применение знаний при решении типовых примеров.

VI . Самостоятельное применение знаний, умений и навыков.

Вариант 1

Найти интегралы:

Вариант 2

Найти интегралы:

VII . Подведение итогов занятия.

VIII . Домашнее задание:

Г.Н. Яковлев, часть 1, §13.2, п.2, №13.13 (1,4,5), 13.15 (1,2,3)

Замена многочлена или. Здесь - многочлена степени, например, выражение - многочлен степени.

Допустим, у нас есть пример:

Применим метод замены переменной. Как ты думаешь, что нужно принять за? Правильно, .

Уравнение приобретает вид:

Производим обратную замену переменных:

Решим первое уравнение:

Решим второе уравнение:

… Что это означает? Правильно! Что решений не существует.

Таким образом, мы получили два ответа - ; .

Понял как применять метод замены переменной при многочлене? Потренируйся сделать подобное самостоятельно:

Решил? Теперь проверим с тобой основные моменты.

За нужно взять.

Мы получаем выражение:

Решая квадратное уравнение, мы получаем, что имеет два корня: и.

Решением первого квадратного уравнения являются числа и

Решением второго квадратного уравнения - числа и.

Ответ : ; ; ;

Подведем итоги

Метод замены переменной имеет основных типа замен переменных в уравнениях и неравенствах:

1. Степенная замена, когда за мы принимаем какое-то неизвестное, возведенное в степень.

2. Замена многочлена, когда за мы принимаем целое выражение, содержащее неизвестное.

3. Дробно-рациональная замена, когда за мы принимаем какое-либо отношение, содержащее неизвестную переменную.

Важные советы при введении новой переменной:

1. Замену переменных нужно делать сразу, при первой же возможности.

2. Уравнение относительно новой переменно нужно решать до конца и лишь затем возвращаться к старому неизвестному.

3. При возврате к изначальному неизвестному (да и вообще на протяжении всего решения), не забывай проверять корни на ОДЗ.

Новая переменная вводится аналогичным образом, как в уравнениях, так и в неравенствах.

Разберем 3 задачи

Ответы на 3 задачи

1. Пусть, тогда выражение приобретает вид.

Так как, то может быть как положительным, так и отрицательным.

Ответ:

2. Пусть, тогда выражение приобретает вид.

решения нет, так как.

Ответ:

3. Группировкой получаем:

Пусть, тогда выражение приобретает вид
.

Ответ:

ЗАМЕНА ПЕРЕМЕННЫХ. СРЕДНИЙ УРОВЕНЬ.

Замена переменных - это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.

Перечислю основные типы замен.

Степенная замена

Степенная замена.

Например, с помощью замены биквадратное уравнение приводится к квадратному: .

В неравенствах все аналогично.

Например, в неравенстве сделаем замену, и получим квадратное неравенство: .

Пример (реши самостоятельно):

Решение:

Это дробно-рациональное уравнение (повтори ), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение степени, поэтому применяется замена переменных.

Все станет намного проще после замены: . Тогда:

Теперь делаем обратную замену:

Ответ: ; .

Замена многочлена

Замена многочлена или.

Здесь − многочлен степени, т.е. выражение вида

(например, выражение - многочлен степени, то есть).

Чаще всего используется замена квадратного трехчлена: или.

Пример:

Решите уравнение.

Решение:

И опять используется замена переменных.

Тогда уравнение примет вид:

Корни этого квадратного уравнения: и.

Имеем два случая. Сделаем обратную замену для каждого из них:

Значит, это уравнение корней не имеет.

Корни этого уравнения: и.

Ответ. .

Дробно-рациональная замена

Дробно-рациональная замена.

и − многочлены степеней и соответственно.

Например, при решении возвратных уравнений, то есть уравнений вида

обычно используется замена.

Сейчас покажу, как это работает.

Легко проверить, что не является корнем этого уравнения: ведь если подставить в уравнение, получим, что противоречит условию.

Разделим уравнение на:

Перегруппируем:

Теперь делаем замену: .

Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x:

Отсюда следует, что.

Вернемся к нашему уравнению:

Теперь достаточно решить квадратное уравнение и сделать обратную замену.

Пример:

Решите уравнение: .

Решение:

При равенство не выполняется, поэтому. Разделим уравнение на:

Уравнение примет вид:

Его корни:

Произведем обратную замену:

Решим полученные уравнения:

Ответ: ; .

Еще пример:

Решите неравенство.

Решение:

Непосредственной подстановкой убеждаемся, что не входит в решение этого неравенства. Разделим числитель и знаменатель каждой из дробей на:

Теперь очевидна замена переменной: .

Тогда неравенство примет вид:

Используем метод интервалов для нахождения y:

при всех, так как

при всех, так как

Значит, неравенство равносильно следующему:

при всех, так как.

Значит, неравенство равносильно следующему: .

Итак, неравенство оказывается равносильно совокупности:

Ответ: .

Замена переменных - один из важнейших методов решения уравнений и неравенств.

Напоследок дам тебе пару важных советов :

ЗАМЕНА ПЕРЕМЕННЫХ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ.

Замена переменных - метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.

Виды замены переменной:

  1. Степенная замена: за принимается какое-то неизвестное, возведенное в степень - .
  2. Дробно-рациональная замена: за принимается какое-либо отношение, содержащее неизвестную переменную - , где и - многочлены степеней n и m, соответственно.
  3. Замена многочлена: за принимается целое выражение, содержащее неизвестное - или, где - многочлен степени.

После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену.

Замена переменной в неопределенном интеграле используется при нахождении интегралов, в которых одна из функций является производной другой функции. Пусть есть интеграл $ \int f(x) dx $, сделаем замену $ x=\phi(t) $. Отметим, что функция $ \phi(t) $ является дифференцируемой, поэтому можно найти $ dx = \phi"(t) dt $.

Теперь подставляем $ \begin{vmatrix} x = \phi(t) \\ dx = \phi"(t) dt \end{vmatrix} $ в интеграл и получаем, что:

$$ \int f(x) dx = \int f(\phi(t)) \cdot \phi"(t) dt $$

Эта и есть формула замены переменной в неопределенном интеграле .

Алгоритм метода замены переменной

Таким образом, если в задаче задан интеграл вида: $$ \int f(\phi(x)) \cdot \phi"(x) dx $$ Целесообразно выполнить замену переменной на новую: $$ t = \phi(x) $$ $$ dt = \phi"(t) dt $$

После этого интеграл будет представлен в виде, который легко взять основными методами интегрирования: $$ \int f(\phi(x)) \cdot \phi"(x) dx = \int f(t)dt $$

Не нужно забывать также вернуть замененную переменную назад к $ x $.

Примеры решений

Пример 1

Найти неопределенный интеграл методом замены переменной: $$ \int e^{3x} dx $$

Решение

Выполняем замену переменной в интеграле на $ t = 3x, dt = 3dx $:

$$ \int e^{3x} dx = \int e^t \frac{dt}{3} = \frac{1}{3} \int e^t dt = $$

Интеграл экспоненты всё такой же по таблице интегрирования, хоть вместо $ x $ написано $ t $:

$$ = \frac{1}{3} e^t + C = \frac{1}{3} e^{3x} + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int e^{3x} dx = \frac{1}{3} e^{3x} + C $$

Интегрирование заменой переменной (метод подстановки) — один из самых часто встречающихся методов нахождения интегралов.

Цель введения новой переменной — упростить интегрирование. Лучший вариант — заменив переменную, получить относительно новой переменной табличный интеграл. Как определить, какую замену нужно сделать? Навыки приходят с опытом. Чем больше примеров решено, тем быстрее решаются следующие. На начальном этапе используем следующие рассуждения:

То есть. если под знаком интеграла мы видим произведение некоторой функции f(x) и ее производной f ‘(x), то то эту функцию f(x) нужно взять в качестве новой переменной t, поскольку дифференциал dt=f ‘(x)dx уже есть.

Рассмотрим, как работает метод замены переменной, на конкретных примерах.

Вычислить интегралы методом замены переменой:

Здесь 1/(1+x²) — производная от функции arctg x. Поэтому в качестве новой переменной t возьмем arctg x. Далее — воспользуемся :

После того, как нашли интеграл от t, выполняем обратную замену:

Если взять за t синус, то должна быть и его производная, косинус (с точностью до знака). Но косинуса в подынтегральном выражении нет. А вот если в качестве t взять экспоненту, все получается:

Чтобы получить нужный дифференциал dt, изменим знак в числителе и перед интегралом:

(Здесь (ln(cosx))’ — .)

А способы приведения интегралов к табличным мы Вам перечислили:

    метод замены переменной;

    метод интегирования по частям;

    Метод непосредственного интегрирования

    способы представления неопределенных интегралов через табличные для интегралов от рациональных дробей;

    методы представления неопределенных интегралов через табличные интегралы для интегралов от иррациональных выражений;

    способы выражения неопределенных интегралов через табличные для интегралов от тригонометрических функций.

Неопределенный интеграл степенной функции

Неопределенный интеграл експоненты показательной функции

А вот неопределенный интеграл логарифма не является табличным интегралом, вместо него табличной является формула:

Неопределенные интегралы тригонометрических функций: Интегралы синуса косинуса и тангенса

Неопределенные интегралы с обратными тригонометрическими функциями

Приведение к табличному виду или метод непосредственного интегрирования . С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов.

Пример

Задание. Найти интеграл

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

Ответ.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

Подведение функции под знак дифференциала. – Собственно замена переменной.

Подведение функции под знак дифференциала

Пример 2

Выполнить проверку.

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на . Далее используем табличную формулу :

Проверка: Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой. В данном случае напрашивается: Вторая по популярности буква для замены – это буква . В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак: Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место. Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко: Теперь по правилам пропорции выражаем нужный нам :

В итоге: Таким образом: А это уже самый что ни на есть табличный интеграл (таблица, интегралов, естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Проведем замену:

Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче. Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Интегрирование по частям. Примеры решений

Интегралы от логарифмов

Пример 1

Найти неопределенный интеграл.

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрироватьправую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: . Вот кстати, и образец чистового решения с небольшими пометками:

Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям и формула – это два взаимно обратных правила.

Интегралы от экспоненты, умноженной на многочлен

Общее правило: за

Пример 5

Найти неопределенный интеграл.

Используя знакомый алгоритм, интегрируем по частям:

Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле .

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом или даже

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.