Схема устройства солнечной батареи и принцип работы. Принцип действия солнечных батарей

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

Недостатки:

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Видео

Как устроена солнечная батарея, расскажет наше видео.

Когда-то, с помощью зеркал, нагревали воду, а сейчас создают целые электростанции на солнечных батареях. Разберем принцип работы солнечной батареи, и почему они так эффективны для получения энергии.

Фотоэлектрические преобразователи солнечной энергии (ФЭП)– это полное название солнечных батарей. Принципы их работы известны более 30 лет, но активно внедряться в быту они начали всего несколько лет назад. Для того чтобы правильно подобрать панели для системы альтернативного обеспечения энергией, необходимо понять принцип их работы.

Принцип работы солнечной батареи

Панель преобразователя состоит из двух тонких пластин из чистого кремния, сложенных вместе. На одну пластину наносят бор, а на вторую фосфор. В слоях, покрытых фосфором, возникают свободные электроны, а в покрытых бором – отсутствующие электроны. Под влиянием солнечного света электроны начинают движение частиц, и между ними возникает электрический ток. Чтобы снять ток с пластин их пропаивают тонкими полосками специально обработанной меди. Одной кремниевой пластины хватит для зарядки маленького фонарика. Соответственно, чем больше площадь панели, тем больше энергии она вырабатывает.

Спаянные между собой пластины,пропускающие УФ лучи, ламинируют пленкой и крепят на стекло. Скрепленные слои заключают в алюминиевую раму.

КПД солнечных батарей

Коэффициент полезного действия панелей преобразователя зависит от нескольких факторов и для традиционных солнечных батарей не превышает 25%, хотя сейчас, используя следящую систему, можно достигнуть показателя и в 40-50 %. Эта система устроена так, чтобы батарея поворачивалась в сторону солнца. Площадь батареи напрямую влияет на ее мощность – первые солнечные батареи, с которыми мы познакомились, были в калькуляторах. Для обеспечения нагрева воды потребуется минимум шесть панелей установленных на крыше.

Также КПД зависит от материала модулей. Пластины изготавливают из монокристаллического, поликристаллического и аморфного кремния и пленок. Самые распространенные и популярные на сегодня (благодаря доступной стоимости) тонкопленочные панели. Они сделаны из тех же материалов, но немного легче, правда, проигрывают по производительности. Максимальный КПД равен 25 %.

Фотоэлектрические системы

Для обеспечения жилья энергией солнца одних панелей не достаточно, для этого понадобится фотоэлектрическая система (ФЭС). Такие системы бывают трех типов:

  • автономные ФЭС – для отдельно стоящих частных домов, в нежилой местности
  • ФЭС соединенные с электросетью – часть приборов запитана от ФЭС, а часть – от централизованной электросети
  • резервные ФЭС – используется только в случае отключения централизованного энергоснабжения.

ФЭС любого типа обязательно состоит из кабелей, контроллера, инвертора и аккумулятора.

Будущее солнечных батарей

По данным исследований экологов и геологов, запасов нефти и газа осталось еще лет на 100. Источники природной энергии (воды, ветра и солнца) неисчерпаемы.

В передовых европейских странах обеспечение новостроек альтернативной энергией – прямая обязанность застройщиков уже с 2007 года. В нашей стране эти проекты продвигаются благодаря энтузиастам от экологии, собирающим вручную ФЭС из подручных материалов. Но таких единицы, веди самому сделать их довольно сложно.

Ряд украинских производителей («Аванте», «Атмосфера», «Ітнелкон України», «СІНТЕК», «Техно-АС») уже выпускают такие панели и обустраивают ФЭС по всей стране. Стоимость продукции, к сожалению, в том же диапазоне, что и зарубежные бренды (Buderus, Wolf, Rehau, Vaillant, Viessmann, Chromagen, Ferroli, Rucelf, Solver).

Когда-то фотоэлементы использовались почти исключительно в космосе, например, в качестве основного источника энергии спутников. С тех пор солнечные батареи все больше входят в нашу жизнь: ими покрывают крыши домов и машин, используют в наручных часах и даже в темных очках.

Но как же функционируют солнечные батареи? Каким образом удается преобразовывать энергию солнечных лучей в электричество?

Основные принципы

Солнечные панели состоят из фотоэлектрических ячеек, запакованных в общую рамку. Каждая из них сделана из полупроводникового материала, например, кремния, который чаще всего используется в солнечных батареях.

Когда лучи падают на полупроводник, тот нагревается, частично поглощая их энергию. Приток энергии высвобождает электроны внутри полупроводника. К фотоэлементу прилагается электрическое поле, которое направляет свободные электроны, заставляя их двигаться в определенном направлении. Этот поток электронов и образует электрический ток.

Если приложить металлические контакты к верху и к низу фотоэлемента, можно направить полученный ток по проводам и использовать его для работы различных устройств. Сила тока вместе с напряжением ячейки определяют мощность электроэнергии, производимой фотоэлементом.

Панель солнечной батареи

©depositphotos.com

Кремниевые полупроводники

Рассмотрим процесс высвобождения электронов на примере кремния. Атом кремния имеет 14 электронов в трех оболочках. Первые две оболочки полностью заполнены двумя и восемью электронами соответственно. Третья же оболочка наполовину пуста – в ней всего 4 электрона.

Благодаря этому кремний имеет кристаллическую форму; пытаясь заполнить пустоты в третьей оболочке, атомы кремния пытаются «делиться» электронами с соседями. Однако кристалл кремния в чистом виде – плохой проводник, поскольку практически все его электроны крепко сидят в кристаллической решетке.

Поэтому в солнечных батареях используют не чистый кремний, а кристаллы с небольшими примесями, т. е. в кремний вводятся атомы других веществ. На миллион атомов кремния приходится всего один атом, например, атом фосфора.

У фосфора пять электронов во внешней оболочке. Четыре из них образуют кристаллические связи с близлежащими атомами кремния, однако пятый электрон фактически остается «висеть» в пространстве, без всяких связей с соседними атомами.

Когда на кремний попадают солнечные лучи, его электроны получают дополнительную энергию, которой оказывается достаточно, чтобы оторвать их от соответствующих атомов. В результате на их месте остаются «дырки». Освободившиеся же электроны блуждают по кристаллической решетке как носители электрического тока. Встретив очередную «дырку», они заполняют ее.

Однако в чистом кремнии таких свободных электронов слишком мало из-за крепких связей атомов в кристаллической решетке. Совсем другое дело – кремний с примесью фосфора. Для высвобождения несвязанных электронов в атомах фосфора требуется приложить значительно меньшее количество энергии.

Большая часть таких электронов становится свободными носителями, которые можно эффективно направлять и использовать для получения электричества. Процесс добавления примесей для улучшения химических и физических свойств вещества называется легированием.

Кремний, легированный атомами фосфора, становится электронным полупроводником n-типа (от слова «negative», из-за отрицательного заряда электронов).

Кремний также легируют бором, у которого всего три электрона во внешней оболочке. В результате получается полупроводник p-типа (от «positive»), в котором возникают свободные положительно заряженные «дырки».

Устройство солнечной батареи

Что же произойдет, если соединить полупроводник n-типа с полупроводником p-типа? В первом из них образовалось множество свободных электронов, а во втором – много дырок. Электроны стремятся как можно быстрее заполнить дырки, но если это произойдет, оба полупроводника станут электрически нейтральными.

Вместо этого при проникновении свободных электронов в полупроводник p-типа, область на стыке обоих веществ заряжается, образуя барьер, перейти который не так просто. На границе p-n перехода возникает электрическое поле.

Энергии каждого фотона солнечного света хватает обычно на высвобождение одного электрона, а значит и на образование одной лишней дырки. Если это происходит вблизи p-n перехода, электрическое поле посылает свободный электрон на n-сторону, а дырку – на p-сторону.

Таким образом, равновесие нарушается еще больше, и если приложить к системе внешнее электрическое поле, свободные электроны потекут на p-сторону, чтобы заполнить дырки, создавая электрический ток.

К сожалению, кремний довольно хорошо отражает свет, а значит, значительная часть фотонов пропадает втуне. Чтобы уменьшить потери, фотоэлементы покрывают антибликовым покрытием. Наконец, чтобы защитить солнечную батарею от дождя и ветра, ее также принято покрывать стеклом.

Самое большое в мире судно на солнечных батареях PlanetSolar

©PlanetSolar/ Philip Plisson

Коэффициент полезного действия современных солнечных батарей не слишком высок. Большинство из них эффективно перерабатывают от 12 до 18 процентов попадающего на них солнечного света. Лучшие образцы перешли 40-процентный барьер КПД.

Получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей , которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при .
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн) . В цепи, следовательно, появляется ток (I) . При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.

Во все времена человечество стремилось использовать по максимуму блага предоставленные природой. Доказательство тому изобретённые солнечные батареи. Принцип работы солнечных батарей достаточно прост. Именно благодаря им ранее наши калькуляторы работали в любое время суток, летом и зимой, вне зависимости от вида и частой смены батарейки. Современный мир характеризуется применением солнечной энергии в разных сферах и масштабах, начиная от актуальных планшетов и заканчивая самолётами. О том, как устроена солнечная батарея, её виды и принцип работы Вас проинформирует данная статья.

  • Немного из истории
  • Классификация

Немного из истории

Как известно, солнечная батарея является не первым изобретением, использующим всеохватывающую энергию Солнца в качестве альтернативы электрической энергии. Первые попытки применения солнечного света — терминальные электростанции, которые имеют более распространённое название как «коллекторы». Принцип их действия заключался в нагревании воды до 100 ° С при помощи солнечных лучей, итогом чего становилась выработка электричества. Работа коллекторов состояла из многоступенчатой трансформации энергии: скопление солнечных лучей, кипячение жидкости, образование пара, движение парового двигателя и преобразование тепловой энергии в механическую.

В отличие от коллектора солнечная батарея напрямую трансформируют продукцию Солнца в электрическую энергию. Также следует отметить такую особенность солнечной батареи, как использование света, а не тепла, что позволяет образовывать электроэнергию даже зимой.

На сегодняшний день принцип работы этих приспособлений основывается на преобразовании действия лучей в электрический ток (фотоэлектрический эффект) при помощи специальных полупроводников, которые и составляют всю батарею.

Первооткрывателями фотоэлектрического эффекта являются три заслуженных учёных физика. Само явление такового процесса описал физик французского происхождения — Александр Эдмон Беккерель в 1839 году. Далее в 1873 году был открыт первый полупроводник для осуществления действия фотоэлектрического эффекта английским инженером-электриком Уиллоуби Смит. А более подробно были описаны принцип работы, схема солнечной батареи и подтверждены законы предыдущих открывателей в 1905 году всемирно известным лауреатом Нобелевской премии Альбертом Эйнштейном.

Определение и основы трансформации энергии

Устройство солнечной батареи состоит из пластины, оснащённой цепочкой соединённых полупроводников (фотоэлементов). Фотоэлементы выполняют функцию преобразования солнечного света в электрический ток. Поэтому для того, чтобы понять принцип действия данного приспособления, следует изучить его основы, а именно фотоэлементы.

Фотоэлементы – полупроводники, трансформирующие действие квантов электромагнитного излучения, способных двигаться лишь со скоростью света, в электрическую энергию. Процесс данной трансформации называется фотоэлектрическим эффектом, появляющимся под воздействием солнечного света на структуры фотоэлемента. Особенность структуры заключается в неоднородности, которую создают при помощи сплавов различных материалов и примесей для изменения её свойств с точки зрения физики и химии.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Эти самые примеси создают отрицательные и положительные переходы (р- n), которые являются основой работы двух полупроводников и проводимости между ними. Помимо этого метода, образующего неоднородность структуры фотоэлементов, применяются также такие:

  • объединение, различающихся по ширине запрещённой зоны, полупроводников;
  • изменение химического состава фотоэлемента с целью образования варизонной структуры;
  • комбинирование вышеперечисленных способов.

Трансформация энергии напрямую зависит от физических и электрических свойств структуры и электрической проводимости полупроводников (фотопроводимость). Фотоэлемент состоит из разного типа электронов и слоёв их. В качестве электрода, на котором возникает заряд, выступает отрицательный тип, и соответственно, анодом (приёмником) этого заряда является положительный тип. Накопление солнечной энергии происходит таким образом: выходящие из отрицательного слоя под воздействием солнечных лучей, электроны принимают аноды. Выходя из слоя положительных электронов, они возвращаются в исходное место. Далее действия повторяются. Ввиду чего энергия Солнца остаётся внутри устройства.

Классификация

В зависимости от материала и метода изготовления различают такие виды солнечных батарей: кремниевые и плёночные.

Кремневые батареи – приспособления, основным действующим материалом которых является кремний. Кремний характеризуется высокой производительностью сравнительно с другими материалами, используемыми для создания данных устройств, поэтому пользуется большим спросом. По своей структуре кремниевые устройства делятся на три подвида:


Плёночные устройства делятся на такие виды:

  • на основе теллурида кадмия с использованием плёночного технологии;
  • на основе сплава меди, индия и селена, КПД таких устройств составляет 16-20%;
  • полимерные плёночные устройства, производимые из органических фотоэлементов, КПД их составляет 5-6 %.

Схема подключения солнечных батарей заключается в расчете нагрузки и настройке контролёра заряда. Самую простую схему можно рассмотреть на примере садового фонаря. Такие садовые фонари постепенно обретают широкое распространение за счёт яркого освещения дорожек, газонов и приусадебных участков. Зимой свет садовых фонарей на солнечном питании отличается меньшей яркостью, чем в другую пору. Схема в данном случае состоит из светочувствительного элемента, накопительного аккумулятора, солнечной батареи.

На сегодняшний день ведутся разработки по производству масштабных полей солнечных батарей на территории Антарктики. Такие электростанции будут накапливать энергии в течение полугодового полярного дня, наступающего на северных территориях – в летнее время, а на юге – в зимнее. Солнечная энергия является достойной альтернативой электрическому току, поэтому спектр её применения широк. Батареи, работающие от солнечного света, используют даже для производства космических аппаратов.