Составление таблицы истинности логической функции. Логические выражения и их преобразование

Информатика: аппаратные средства персонального компьютера Яшин Владимир Николаевич

4.3. Логические функции и таблицы истинности

Соотношения между логическими переменными и логическими функциями в алгебре логики можно отобразить также с помощью соответствующих таблиц, которые носят название таблиц истинности. Таблицы истинности находят широкое применение, поскольку наглядно показывают, какие значения принимает логическая функция при всех сочетаниях значений ее логических переменных. Таблица истинности состоит из двух частей. Первая (левая) часть относится к логическим переменным и содержит полный перечень возможных комбинаций логических переменных А, В, С… и т. д. Вторая (правая) часть этой таблицы определяет выходные состояния как логическую функцию от комбинаций входных величин.

Например, для логической функции F = A v B v C (дизъюнкции) трех логических переменных А, В, и С таблица истинности будет иметь вид, показанный на рис. 4.1. Для записи значений логических переменных и логической функции данная таблица истинности содержит 8 строк и 4 столбца, т. е. число строк для записи значений аргументов и функции любой таблицы истинности будет равно 2 n , где п – число аргументов логической функции, а число столбцов равно п + 1.

Рис. 4.1. Таблица истинности для логической функции F = A v В v С

Таблицу истинности можно составить для любой логической функции, например, на рис. 4.2 приведена таблица истинности логической функции F = A ? B ? C (эквиваленции).

Логические функции имеют соответствующие названия. Для двух двоичных переменных существует шестнадцать логических функций, названия которых приведены ниже. На рис. 4.3 представлена таблица, в которой приведены логические функции F 1 , F 2 , F 3 , … , F 16 двух логических переменных A и В.

Функция F 1 = 0 и называется функцией константы нуля, или генератора нуля.

Рис. 4.2. Таблица истинности для логической функции F = A ? B ? C

Рис. 4.3. Логические функции F 1 , F 2 , F 3 ,… F 16 двух аргументов А и В

Функция F 2 = A & B называется функцией конъюнкции.

А.

Функция F 4 = А А.

называется функцией запрета по логической переменной В.

Функция F 6 = В называется функцией повторения по логической переменной В.

называется функцией исключающее «ИЛИ».

Функция F 8 = A v В называется функцией дизъюнкции.

называется функцией Пирса.

называется функцией эквиваленции.

В.

Функция F 12 = B ? A B ? A.

называется функцией отрицания (инверсии) по логической переменной А.

Функция F 14 = A ? B называется функцией импликации A ? B .

называется функцией Шеффера.

Функция F 16 = 1 называется функцией генератора 1.

Среди перечисленных выше логических функций переменных можно выделить несколько логических функций, с помощью которых можно выразить другие логические функции. Операцию замены одной логической функции другой в алгебре логики называют операцией суперпозиции или методом суперпозиции. Например, функцию Шеффера можно выразить при помощи логических функций дизъюнкции и отрицания, используя закон де Моргана:

Логические функции, с помощью которых можно выразить другие логические функции методом суперпозиции, называются базовыми логическими функциями. Такой набор базовых логических функций называется функционально полным набором логических функций. На практике наиболее широко в качестве такого набора используют три логических функции: конъюнкцию, дизъюнкцию и отрицание. Если логическая функция представлена с помощью базовых функций, то такая форма представления называется нормальной. В предыдущем примере логическая функция Шеффера, выраженная через базовые функции, представлена в нормальной форме.

При помощи набора базовых функций и соответствующих им технических устройств, реализующих эти логические функции, можно разработать и создать любое логическое устройство или систему.

Рис. 4.4. Диалоговое окно «Мастер функций – шаг 1 из 2»

Как видно из рис. 4.4, в состав логических функций программы MS Excel входит функционально полный набор логических функций, состоящий из следующих логических функций: И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание). Таким образом, с помощью функционально полного набора логических функций программы MS Excel можно реализовать другие функции. Логическая функция ЕСЛИ (импликация), также входящая в логические функции MS Excel, выполняет логическую проверку и в зависимости от результата проверки выполняет одно из двух возможных действий. В данной программе она имеет следующий формат: = ЕСЛИ (арг1;арг2;арг3), где арг1 – логическое условие; арг2 – возвращаемое значение при условии, что значение аргумента арг1 выполняется (ИСТИНА); арг3 – возвращаемое значение при условии, что значение аргумента арг1 не выполняется (ЛОЖЬ). Например, если в произвольную ячейку листа программы MS Excel ввести выражение « = ЕСЛИ (А1 = 5; „пять“; „не пять“)», то при вводе числа 5 в ячейку А1 и нажатии клавиши «Enter» в ячейке А1 автоматически будет записано слово «пять», при вводе любого другого числа в ячейку А1 в ней запишется слово «не пять». Как уже отмечалось, с помощью логических функций программы MS Excel можно представить другие логические функции и соответствующие им таблицы истинности.

Реализуем с помощью логических функций ЕСЛИ и И модифицированную таблицу истинности логической функции F = А & В (конъюнкции), состоящую из двух строк и трех столбцов, которая позволяет при изменении значений (0 или 1) логических переменных А и В автоматически устанавливать, например, в ячейке Е6 значение функции F = А & В, соответствующее значениям этих логических переменных. Для этого в ячейку Е6 введем следующее выражение: «=ЕСЛИ(И(С6;D6);1;0)», тогда при вводе в ячейки С6 и D6 значений 0 или 1 в ячейке Е6 будет выполняться логическая функция F = А & В. Результат этих действий представлен на рис. 4.5.

Рис. 4.5. Реализация модифицированной таблицы истинности логической функции F = A & В

Данный текст является ознакомительным фрагментом. Из книги Информатика и информационные технологии: конспект лекций автора Цветкова А В

1. Логические команды Наряду со средствами арифметических вычислений, система команд микропроцессора имеет также средства логического преобразования данных. Под логическими понимаются такие преобразования данных, в основе которых лежат правила формальной

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Логические функции в Excel При расчетах часто приходится выбирать формулу в зависимости от конкретных условий. Например, при расчете заработной платы могут применяться разные надбавки в зависимости от стажа, квалификации или конкретных условий труда, которые вычисляются

Из книги Excel. Мультимедийный курс автора Мединов Олег

Логические функции Логические функции могут найти применение при математических, инженерных вычислениях или при сравнительном анализе данных. Мы рассмотрим одну логическую функцию на примере функции ЕСЛИ.С помощью функции ЕСЛИ вы можете создать логическое выражение и

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

4.1. Логические переменные и логические операции Информация (данные, машинные команды и т. д.) в компьютере представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Электрический сигнал, проходящий по электронным схемам и соединительным

Из книги Справочник по PHP автора

Логические функции определения типа переменной is_scalarПроверяет, является ли переменная простой.Синтаксис:bool is_scalar(mixed var)Возвращает true, если var имеет скалярный тип (чила, строки, логические значения), но не комплексный (массивы или объекты).is_nullПроверяет, является ли

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов автора Дронов Владимир

Логические операторы Логические операторы выполняют действия над логическими значениями. Все они приведены в табл. 14.5. А в табл. 14.6 и 14.7 показаны результаты выполнения этих операторов.Основная область применения логических операторов - выражения сравнения (о них см.

Из книги XSLT автора Хольцнер Стивен

Логические функции XPath XPath также поддерживает следующий набор логических функций: boolean(). Приводит аргумент к логическому значению; false(). Возвращает false (ложь); lang(). Проверяет, совпадает ли язык, установленный в атрибуте xml:lang, с языком, переданным в функцию; not().

Из книги Технология XSLT автора Валиков Алексей Николаевич

Логические операции В XSLT имеются две логические операции - or и and. Эти операции бинарны, то есть каждая из них определена для двух операндов. Если операнды не являются булевыми значениями, они неявным образом приводятся к булевому типу.Семантика or и and очевидна - они

Из книги Язык программирования Си для персонального компьютера автора Бочков C. О.

Логические операции Логические операции выполняют над своими операндами логические функции И (&&) и ИЛИ (||). Операнды логических операций могут иметь целый, плавающий тип, либо быть указателями. Типы первого и второго операндов могут различаться. Сначала всегда

Из книги Краткое введение в программирование на Bash автора Родригес Гарольд

Логические И и ИЛИ Вы уже видели, что такое управляющие структуры и как их использовать. Для решения тех же задач есть еще два способа. Это логическое И - "&&" и логическое "ИЛИ" - « || ». Логическое И используется следующим образом:выражение_1&&выражение_2Сначала

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Логические операторы Firebird предоставляет три логических оператора, которые могут работать с другими предикатами разными способами.* NOT задает отрицание условия поиска, к которому он применяется. Он имеет наивысший приоритет.* AND создает сложный предикат, объединяет два

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Понимание истинности и ложности Семантически, если предикат возвращает "неопределенность", это не является ни истиной, ни ложью. В SQL при этом утверждения разрешаются только в виде "истина" или "ложь" - утверждение, которое не вычисляется как "истина", рассматривается как

Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

IV. Логические операции Обычно логические операции "считают" условные выражения операндами. Операция! имеет один операнд, расположенный справа. Остальные операции имеют два операнда: один слева и один справа. && Логическое И: результат операции имеет значение "истина",

Из книги C++ для начинающих автора Липпман Стенли

Логические нарушения Если накопитель исправен физически, но представляется как пустой или неформатированный, а находящиеся на нем данные не видны операционной системе, то в данном случае повреждены служебные таблицы файловой системы.Данные почти всегда остаются на

Из книги Описание языка PascalABC.NET автора Коллектив РуБоард

12.3.4. Логические объекты-функции Логические объекты-функции поддерживают операции "логическое И" (возвращает true, если оба операнда равны true, – применяет оператор &&, аcсоциированный с типом Type), "логическое ИЛИ" (возвращает true, если хотя бы один из операндов равен true, –

Из книги автора

Логические операции К логическим относятся бинарные операции and, or и xor, а также унарная операция not, имеющие операнды типа boolean и возвращающие значение типа boolean. Эти операции подчиняются стандартным правилам логики: a and b истинно только тогда, когда истинны a и b, a or b истинно

Основные логические операции

Отрицание (инверсия), от латинского inversio -переворачиваю:

Соответствует частице НЕ, словосочетанию НЕВЕРНО, ЧТО;

Обозначение: не A, A, -A;

таблица истинности:

Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна.

Пример: A = {На улице идет снег}.

A={Не верно, что на улице идет снег}

A={На улице не идет снег};

Логическое сложение (дизъюнкция), от латинского disjunctio - различаю:

Соответствует союзу ИЛИ;

Обозначение: +, или, or, V;

Таблица истинности:

Дизъюнкция ложна тогда и только тогда, когда оба высказывания ложны.

Пример: F={На улице светит солнце или дует сильный ветер};

Логическое умножение (конъюкция), от латинского conjunctio -связываю:

Соответствует союзу И

(в естественном языке: и А, и В, как А, так и В,А вместе с В,А, не смотря на В, А, в то время как В);

Обозначение: Ч, , &, и, ^, and;

Таблица истинности:

Конъюкция истинна тогда и только тогда, когда оба высказывания истинны.

Пример: F={На улице светит солнце и дует сильный ветер};

Любое сложное высказывание можно записать с помощью основных логических операций И, ИЛИ, НЕ.С помощью логических схем И, ИЛИ, НЕ можно реализовать логическую функцию, описывающую работу различных устройств компьютера.

2) Таблица истинности - это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (либо, либо).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики.

Конъю́нкция- логическая операция, по своему применению максимально приближённая к союзу "и".логи́ческое умноже́ние, иногда просто "И".

Дизъю́нкция-логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу». логи́ческое сложе́ние, иногда просто «ИЛИ».

Импликация - бинарная логическая связка, по своему применению приближенная к союзам «если…то…».Импликация записывается как посылка следствие; применяются также стрелки другой формы и направленные в другую сторону (остриё всегда указывает на следствие).

Эквивале́нция (или эквивале́нтность) - двуместная логическая операция. Обычно обозначается символом ≡ или ↔.

7 . Логические выражения, таблицы истинности логических выражений.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0)

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

Логические операции и таблицы истинности

Логическое умножение КОНЪЮНКЦИЯ - это новое сложное выражение будет истинным только тогда, когда истинны оба исходных простых выражения. Конъюнкция определяет соединение двух логических выражений с помощью союза И.

Логическое сложение – ДИЗЪЮНКЦИЯ - это новое сложное выражение будет истинным тогда и только тогда, когда истинно хотя бы одно из исходных (простых) выражений. Дизъюнкция определяет соединение двух логических выражений с помощью союза ИЛИ

Логическое отрицание: ИНВЕРСИЯ - если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным/ Данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО

Логическое следование: ИМПЛИКАЦИЯ - связывает два простых логических выражения, из которых первое является условием (А), а второе (В)– следствием из этого условия. Результатом ИМПЛИКАЦИИ является ЛОЖЬ только тогда, когда условие А истинно, а следствие В ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ … , ТО …

Логическая равнозначность: ЭКВИВАЛЕНТНОСТЬ - определяет результат сравнения двух простых логических выражений А и В. Результатом ЭКВИВАЛЕНТНОСТИ является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности"

Порядок выполнения логических операций в сложном логическом выражении:

1. инверсия

2. конъюнкция

3. дизъюнкция

4. импликация

5. эквивалентность

Для изменения указанного порядка выполнения операций используются скобки.

Построение таблиц истинности для сложных выражений:

Количество строк = 2n + две строки для заголовка (n - количество простых высказываний)

Количество столбцов = количество переменных + количество логических операций

При построении таблицы надо учитывать все возможные сочетания логических значений 0 и 1 исходных выражений. Затем – определить порядок действий и составить таблицу с учетом таблиц истинности основных логических операций.

ПРИМЕР: составить таблицу истинности сложного логического выражения D = неA & (B+C)

А,В, С - три простых высказывания, поэтому:

количество строк = 23 +2 = 10 (n=3, т.к. на входе три элеманта А, В, С)

количество столбцов: 1) А

4) не A это инверсия А (обозначим Е)

5) B + C это операция дизъюнкции (обозначим F)

6) D = неA & (B+C), т.е. D = E & F это операция конъюнкции

А В С E = не А (не 1) F = В+С (2+3) D = E&F (4*5)

Таблица истинности - это таблица, которая описывает логическую функцию. Логическая функция здесь - это функция, у которой значения переменных и значение самой функции выражают истинность. Например, они принимают значения «истина» либо «ложь» (true либо false, 1 либо 0).

Таблицы истинности применяются для определения значения какого-либо высказывания для всех возможных случаев значений истинности высказываний, которые его составляют. Количество всех существующих комбинаций в таблице находится по формуле N=2*n; где N - общее количество возможных комбинаций, n - число входных переменных. Таблицы истинности нередко используются в цифровой технике и булевой алгебре, чтобы описать работу логических схем.

Таблицы истинности для основных функций

Примеры : конъюнкция - 1&0=0, импликация - 1→0=0.

Порядок выполнения логических операций

Инверсия; Конъюнкция; Дизъюнкция; Импликация; Эквиваленция; Штрих Шеффера; Стрелка Пирса.

Последовательность построения (составления) таблицы истинности:

  1. Определить количество N используемых переменных в логическом выражении.
  2. Вычислить количество всевозможных наборов значений переменных M = 2 N , равное количеству строк в таблице.
  3. Подсчитать количество логических операций в логическом выражении и определить количество столбцов в таблице, которое равно количеству переменных плюс количество логических операций.
  4. Озаглавить столбцы таблицы названиями переменных и названиями логических операций.
  5. Заполнить столбцы логических переменных наборами значений, например, от 0000 до 1111 с шагом 0001 в случае для четырех переменных.
  6. Заполнить таблицу истинности по столбцам со значениями промежуточных операций слева направо.
  7. Заполнить окончательный столбец значений для функции F.

Таким образом, можно составить (построить) таблицу истинности самостоятельно.

Составить таблицу истинности онлайн

Заполните поле ввода и нажмите OK. T - истина, F - ложь. Рекомендуем добавить страницу в закладки или сохранить в социальной сети.

Обозначения

  1. Множества или выражения большими буквами латинского алфавита: A, B, C, D...
  2. A" - штрих - дополнения множеств
  3. && - конъюнкция ("и")
  4. || - дизъюнкция ("или")
  5. ! - отрицание (например, !A)
  6. \cap - пересечение множеств \cap
  7. \cup - объединение множеств (сложение) \cup
  8. A&!B - разность множеств A∖B=A-B
  9. A=>B - импликация "Если..., то"
  10. AB - эквивалентность

Учимся составлять логические выражения из высказываний, определяем понятие “таблица истинности”, изучаем последовательность действий построения таблиц истинности, учимся находить значение логических выражений посредством построения таблиц истинности.

Цели урока:

  1. Обучающие:
    1. Научить составлять логические выражения из высказываний
    2. Ввести понятие “таблица истинности”
    3. Изучить последовательность действий построения таблиц истинности
    4. Научить находить значение логических выражений посредством построения таблиц истинности
    5. Ввести понятие равносильности логических выражений
    6. Научить доказывать равносильность логических выражений, используя таблицы истинности
    7. Закрепить навыки нахождения значений логических выражений посредством построения таблиц истинности
  2. Развивающие:
    1. Развивать логическое мышление
    2. Развивать внимание
    3. Развивать память
    4. Развивать речь учащихся
  3. Воспитательные:
    1. Воспитывать умение слушать учителя и одноклассников
    2. Воспитывать аккуратность ведения тетради
    3. Воспитывать дисциплинированность

Ход урока

Организационный момент

Здравствуйте, ребята. Мы продолжаем изучать основы логики и тема нашего сегодняшнего урока «Составление логических выражений. Таблицы истинности». Изучив данную тему, вы научитесь, как из высказываний составляются логические формы, и определять их истинность посредством составления таблиц истинности.

Проверка домашнего задания

Записать решение домашних задач на доску
Все остальные откройте тетради, я пройду, проверю, как вы выполнили домашнее задание
Давайте еще раз повторим логические операции
В каком случае в результате операции логического умножения составное высказывание будет истинно?
Составное высказывание, образованное в результате операции логического умножения, истинно тогда и только тогда, когда истинны все входящие в него простые высказывания.
В каком случае в результате операции логического сложения составное высказывание будет ложно?
Составное высказывание, образованное в результате операции логического сложения, ложно тогда, когда ложны все входящие в него простые высказывания.
Как влияет инверсия на высказывание?
Инверсия делает истинное высказывание ложным и, наоборот, ложное – истинным.
Что вы можете сказать об импликации?
Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».
Обозначается А -> В
Составное высказывание, образованное с помощью операции логического следования (импли­кации), ложно тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание).
Что вы можете сказать о логической операции эквивалентности?
Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно с помощью оборота речи “... тогда и только тогда, когда…”, “…в том и только в том случае…”
Составное высказывание, образованное с помощью логической операции эквивалентности истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Объяснение нового материала

Хорошо, повторили пройденный материал, переходим к новой теме.

На прошлом уроке мы находили значение составного высказы­вания путем подстановки исходных значений входящих логических переменных. А сегодня мы узнаем, что можно построить таблицу истинности, которая определяет истинность или лож­ность логического выражения при всех возможных комбинациях исходных значе­ний простых высказываний (логических переменных) и, что можно определить значения исходных логических переменных, зная какой нам нужен результат.

Еще раз рассмотрим наш пример с прошлого урока

и построим таблицу истинности для этого составного высказывания

При построении таблиц истинности есть определенная последовательность действий. Давайте запишем

  1. Необходимо определить количество строк в таблице истинности.
  • количество строк = 2 n , где n – количество логических переменных
  • Необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.
  • Необходимо построить таблицу истинности с указанным количеством строк и столбцов, ввести названия столбцов таблицы в соответствии с последовательностью выполнения логических операций с учетом скобок и приоритетов;
  • Заполнить столбцы входных переменных наборами значений
  • Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной последовательностью.
  • Записали. Строим таблицу истинности
    Что мы делаем во-первых?
    Определить количество столбцов в таблице
    Как мы это делаем?
    Считаем количество переменных. В нашем случае логическая функция содержит 2 переменные
    Какие?
    А и В
    Значит сколько строк будет в таблице?
    Количество строк в таблице истинности должно быть равно 4.
    А если 3 переменных?
    Количество строк = 2³ = 8
    Верно. Что делаем дальше?
    Определяем количество столбцов = количеству логических переменных плюс количество логических операций.
    Сколько будет в нашем случае?
    В нашем случае количество переменных равно двум, а количество логических операции - пяти, то есть количество столбцов таблицы истинности равно семи.
    Хорошо. Дальше?
    Строим таблицу с указанным количеством строк и столбцов, обозначаем столбцы и вносим в таблицу возможные наборы значений исходных логических переменных и заполняем таблицу истинности по столбцам.
    Какую операцию будем выполнять первой? Только учитывайте скобки и приоритеты
    Можно сначала выполнить логическое отрицание или найти значение сначала в первой скобке, затем инверсию и значение во второй скобке, затем значение между этими скобками

    ┐Аv┐В

    (AvB)&(┐Av┐B)

    Теперь мы можем определить значение логической функции для любого набора значении логических переменных
    Теперь записываем пункт “Равносильные логические выражения”.
    Логические выра­жения, у которых последние столбцы таблиц истинности сов­падают, называются равносильными. Для обозначения равносильных логических выражений используется знак “ = “,
    Докажем, что логические выражения ┐ А& ┐В и AvB равносильны. Построим сначала таблицу истинности логического выражения


    Сколько столбцов будет в таблице? 5
    Какую операцию будем выполнять первой? Инверсию А, инверсию В

    ┐А&┐В

    Теперь построим таблицу истинности логического выражения AvB
    Сколько строк будет в таблице? 4
    Сколько столбцов будет в таблице? 4

    Мы все понимаем, что, если нужно найти отрицание для всего выражения, то приоритет, в нашем случае, принадлежит дизъюнкции. Поэтому сначала выполняем дизъюнкцию, а затем инверсию. К тому же мы можем переписать наше логическое выражение AvB. Т.к. нам нужно найти отрицание всего выражения, а не отдельных переменных, то инверсию можно вынести за скобки ┐(AvB), а мы знаем, что сначала находим значение в скобках

    ┐(AvB)

    Построили таблицы. Теперь давайте, сравним значения в последних столбцах таблиц истинности, т.к. именно последние столбцы являются результирующими. Они совпадают, следовательно, логические выражения равносильны и мы можем поставить между ними знак “=”

    Решение задач

    1.

    Сколько переменных содержит данная формула? 3
    Сколько строк и столбцов будет в таблице? 8 и 8
    Какова будет в нашем примере последовательность операций? (инверсия, операции в скобках, операцию за скобкой)

    Bv┐B (1)

    (1) =>┐C

    Av(Bv┐B=>┐C)

    2. Докажите с помощью таблиц истинности равносильность следую­щих логических выражений:

    (А → B) И (Av┐B)

    Какой делаем вывод? Данные логические выражения не равносильны

    Домашнее задание

    Доказать, используя таблицы истинности, что логические выражения

    ┐A v ┐B и А&В равносильны

    Объяснение нового материала (продолжение)

    Мы уже несколько уроков подряд используем понятие “таблица истинности”, а что же такое таблица истинности , как вы думаете?
    Таблица истинности – это таблица, устанавливающая соответствие между возможными наборами значений логических переменных и значениями функций.
    Как вы справились с домашним заданием, какой у вас получился вывод?
    Выражения равносильны
    Помните, на предыдущем уроке мы из составного высказывания составляли формулу, заменяя простые высказывания 2*2=4 и 2*2=5 переменными А и В
    Теперь давайте учиться составлять логические выражения из высказываний

    Запишите задание

    Записать в виде логической формулы высказывания:

    1) Если Иванов здоров и богат, то он здоров

    Анализируем высказывание. Выявляем простые высказывания

    А – Иванов здоров
    В – Иванов богат

    Хорошо, тогда как будет выглядеть формула? Только не забудьте, чтобы не терялся смысл высказывания, расставить скобки в формуле

    2) Число является простым, если оно делится только на 1 и само на себя

    А - число делится только на 1
    В - число делится только на себя
    С - число является простым

    3) Если число делится на 4, оно делится на 2

    А - делится на 4
    В - делится на 2

    4) Произвольно взятое число либо делится на 2,либо делится на 3

    А - делится на 2
    В - делится на 3

    5) Спортсмен подлежит дисквалификации, если он некорректно ведет себя по отношению к сопернику или судье, и если он принимал «допинг».

    А - спортсмен подлежит дисквалификации
    В - некорректно ведет себя по отношению к сопернику
    С - некорректно ведет себя по отношению к судье
    D - принимал «допинг».

    Решение задач

    1. Построить таблицу истинности для формулы

    ((p&q)→ (p→ r)) v p

    Объясняем сколько строк и столбцов будет в таблице? (8 и 7) Какова будет последовательность операций и почему?

    (p&q)→ (p→ r)

    ((p&q)→ (p→ r)) v p

    Посмотрели на последний столбец и сделали вывод, что при любом наборе входных параметров формула принимает истинное значение, такая формула называется тавтологией. Запишем определение:

    Формула называется законом логики, или тавтологией, если она принимает тождественно значение “истина” при любом наборе значений переменных, входящих в эту формулу.
    А если все значения будут ложны, как вы думаете, что можно сказать о такой формуле?
    Можно сказать, что формула невыполнима

    2. Записать в виде логической формулы высказывания:

    Администрация морского порта издала следующее распоряжение:

    1. Если капитан корабля получает специальное указание, то он должен покинуть порт на своем корабле
    2. Если капитан не получает специального указания, то он не должен покидать порт, или он впредь лишается допуска в этот порт
    3. Капитан или лишается допуска в этот порт, или не получает специального указания

    Выявляем простые высказывания, составляем формулы

    • А - капитан получает специальное указание
    • В - покидает порт
    • С - лишается допуска в порт
    1. ┐А→(┐В v С)
    2. С v ┐А

    3. Записать составное высказывание “(2*2=4 и 3*3 = 9) или (2*2≠4 и 3*3≠9)” в форме логического выражения. Построить таблицу истинности.

    А={2*2=4} B={3*3 = 9}

    (А&В) v (┐А&┐В)

    ┐А&┐В

    (А&В) v (┐А&┐В)

    Домашнее задание

    Выбрать составное высказывание, имеющее ту же таблицу истинно­сти, что и не (не А и не (В и С)).

    1. АиВ или СиА;
    2. (А или В) и (А или С);
    3. А и (В или С);
    4. А или (не В или не С).

    Проблема определения истинности выражения встаёт перед многими науками. Любая доказательная дисциплина должна опираться на некоторые критерии истинности доказательств. Наука, изучающая эти критерии, называется алгеброй логики. Основной постулат алгебры логики заключается в том, что любое самое витиеватое утверждение может быть представлено в виде алгебраического выражения из более простых утверждений, истинность или ложность которых легко определить.

    Для любого "алгебраического" действия над утверждением задаётся правило определения истинности или ложности измененного утверждения, исходя из истинности или ложности исходного утверждения. Эти правила записываются через таблицы истинности выражения . Прежде, чем составлять таблицы истинности, надо поближе познакомиться с алгеброй логики.

    Алгебраические преобразования логических выражений

    Любое логическое выражение, как и его переменные (утверждения), принимают два значения: ложь или истина . Ложь обозначается нулём, а истина - единицей. Разобравшись с областью определения и областью допустимых значений, мы можем рассмотреть действия алгебры логики.

    Отрицание

    Отрицание и инверсия - самое простое логическое преобразование. Ему соответствует частица "не." Это преобразование просто меняет утверждение на противоположное. Соответственно, значение утверждения тоже меняется на противоположное. Если утверждение А истинно, то "не А" - ложно. Например, утверждение "прямой угол - это угол, равный девяносто градусов" - истина. Тогда его отрицание "прямой угол не равен девяноста градусам" - ложь.

    Таблица истинности для отрицания будет такова:

    Дизъюнкция

    Эта операция может быть обычной или строгой , их результаты будут различаться.

    Обычная дизъюнкция или логическое сложение соответствует союзу "или". Она будет истинной если хотя бы одно из утверждений, входящих в неё - истина. Например, выражение "Земля круглая или стоит на трёх китах" будет истинным, так как первое утверждение - истинно, хоть второе и ложно.В таблице это будет выглядеть так:

    Строгую дизъюнкцию или сложение по модулю также называют "исключающим или" . Эта операция может принимать вид грамматической конструкции "одно из двух: либо..., либо...". Здесь значение логического выражения будет ложным, если все утверждения, входящие в него, имеют одинаковую истинность. То есть, оба утверждения либо вместе истинны, либо вместе ложны.

    Таблица значений исключающего или

    Импликация и эквивалентность

    Импликация представляет собой следствие и грамматически может быть выражена как "из А следует Б". Здесь утверждение А будет называться предпосылкой, а Б - следствием. Импликация может быть ложной, только в одном случае: если предпосылка истинна, а следствие ложно. То есть, ложь не может следовать из истины. Во всех остальных случаях импликация истинна. Варианты, когда оба утверждения имеют одинаковую истинность, вопросов не вызывают. Но почему верное следствие из неверной предпосылки - истина? Дело в том, что из ложной предпосылки может следовать что угодно. Это и отличает импликацию от эквивалентности.

    В математике (и других доказательных дисциплинах) импликация используется для указания необходимого условия. Например, утверждение А - "точка О - экстремум непрерывной функции", утверждение Б - "производная непрерывной функции в точке О обращается в ноль". Если О, действительно, точка экстремума непрерывной функции, то производная в этой точке будет, и вправду, равна нулю. Если же О не является точкой экстремума, то производная в этой точке может быть нулевой, а может не быть. То есть Б необходимо для А, но не достаточно.

    Таблица истинности для импликации выглядит следующим образом:

    Логическая операция эквивалентность, по сути, является взаимной импликацией . "А эквивалентно Б" означает, что "из А следует Б" и "из Б следует А" одновременно. Эквивалентность верна, когда оба утверждения либо одновременно верные, либо одновременно неверные.

    В математике эквивалентность используется для определения необходимого и достаточного условия. Например, утверждение А - "Точка О является точкой экстремума непрерывной функции", утверждение Б - "В точке О производная функции обращается в ноль и меняет знак". Эти два утверждения эквивалентны. Б содержит необходимое и достаточное условие для А. Обратите внимание, что в данном примере утверждений Б на самом деле является конъюнкцией двух других: "производная в точке О обращается в ноль" и "производная в точке О меняет знак".

    Прочие логические функции

    Выше были рассмотрены основные логические операции, которые часто используются. Есть и другие функции, которые используются:

    • Штрих Шеффера или несовместимость представляет собой отрицание конъюнкции А и Б
    • Стрелка Пирса представляет сбой отрицание дизъюнкции.

    Построение таблиц истинности

    Чтобы построить таблицу истинности для какого-либо логического выражения, надо действовать в соответствии с алгоритмом:

    1. Разбить выражение на простые утверждения и обозначить каждое из них как переменную.
    2. Определить логические преобразования.
    3. Выявить порядок действий этих преобразований.
    4. Сосчитать строки в будущей таблице. Их количество равно два в степени N, где N - число переменных, плюс одна строка для шапки таблицы.
    5. Определить число столбцов. Оно равно сумме количества переменных и количества действий. Можно представлять результат каждого действия в виде новой переменной, если так будет понятней.
    6. Шапка заполняется последовательно, сначала все переменные, потом результаты действий в порядке их выполнения.
    7. Заполнение таблицы надо начать с первой переменной. Для неё количество строк делится пополам. Одна половина заполняется нулями, вторая - единицами.
    8. Для каждой следующей переменной нули и единицы чередуются вдвое чаще.
    9. Таким образом заполняются все столбцы с переменными и для последней переменной значение меняется в каждой строке.
    10. Потом последовательно заполняются результаты всех действий.

    В итоге последний столбец отобразит значение всего выражения в зависимости от значения переменных.

    Отдельно следует сказать о порядке логических действий . Как его определить? Здесь, как и в алгебре, есть правила, задающие последовательность действий. Они выполняются в следующем порядке:

    1. выражения в скобках;
    2. отрицание или инверсия;
    3. конъюнкция;
    4. строгая и обычная дизъюнкция;
    5. импликация;
    6. эквивалентность.

    Примеры

    Для закрепления материала можно попробовать составить таблицу истинности для ранее упомянутых логических выражений. Рассмотрим три примера:

    • Штрих Шеффера.
    • Стрелка Пирса.
    • Определение эквивалентности.

    Штрих Шеффера

    Штрих Шеффера - это логическое выражение, которое можно записать в виде "не (А и Б)". Здесь две переменные, и два действия. Конъюнкция в скобках, значит, она выполняется первой. В таблице будет шапка и четыре строки со значениями переменных, а также четыре столбца. Заполним таблицу:

    А Б А и Б не (А и Б)
    Л Л Л И
    Л И Л И
    И Л Л И
    И И И Л

    Отрицание конъюнкции выглядит как дизъюнкция отрицаний. Это можно проверить, если составить таблицу истинности для выражения "не А или не Б". Проделайте это самостоятельно и обратите внимание, что здесь будет уже три операции.

    Стрелка Пирса

    Рассматривая Стрелку Пирса, которая представляет собой отрицание дизъюнкции "не (А или Б)", сравним её с конъюнкцией отрицаний "не А и не Б". Заполним две таблицы:

    А Б не А не Б не А и не Б
    Л Л И И И
    Л И И Л Л
    И Л Л И И
    И И Л Л Л

    Значения выражений совпали. Изучив два эти примера, можно прийти к выводу, как раскрывать скобки после отрицания: отрицание применяется ко всем переменным в скобках, конъюнкция меняется на дизъюнкцию, а дизъюнкция - на конъюнкцию.

    Определение эквивалентности

    Про утверждения А и Б можно сказать, что они эквивалентны, тогда и только тогда, когда из А следует Б и из Б следует А. Запишем это как логическое выражение и построим для него таблицу истинности. "(А эквивалентно Б) эквивалентно (из А следует Б) и (из Б следует А)".

    Здесь две переменных и пять действий. Строим таблицу:

    В последнем столбце все значения истинные. Это значит, что приведенное определение эквивалентности верно при любых значениях А и Б. Значит, оно всегда истинно. Именно так с помощью таблицы истинности можно проверить корректность любых определений и логических построений.