Светодиодная подсветка своими руками.

Всем привет. Сегодня на ремонте Samsung UE32F5000AK с неисправностью «нет LED подсветки матрицы». Я очень редко ремонтирую такие телевизоры, так как ни оборудования, ни удобств, для ремонта такой техники у меня нет. Но тем не менее, в этот раз я решился попробовать, да и хозяин телевизора очень настаивал.

Итак, начнем.

Предварительная диагностика телевизора

При включении телевизора, появляется звук, но изображения нет. Телевизор реагирует на пульт и кнопки. Если присмотреться, то видно, что на матрице есть изображение, но нет LED подсветки. Из этого можно сделать вывод, что неисправен сам драйвер контроля подсветки, или сгорела какая-то линейка светодиодов.

Разборка телевизора

Определившись с возможной неисправностью, приступил к разборке. Положив телевизор матрицей на стол, первым делом снял подставку, которая держится на трёх болтах. Далее открутил остальные 10 болтов по периметру, после чего смог снять заднюю крышку.

При снятии задней крышки, необходимо следить за шлейфом от джойстика, который необходимо отсоединить, после чего крышку можно отставлять в сторону.

Телевизор состоит из трёх плат, а именно блока питания, на плате которого и собран драйвер подсветки, слева плата main, и снизу плата управления матрицей t-con.

Определение неисправности

В LED телевизорах все светодиоды подключены последовательно. Это означает, что при обрыве любого из светодиодов, вся подсветка LED перестанет работать. Как я говорил ранее, основных причин неисправности подсветки две: LED драйвер или светодиоды .

Если неисправен драйвер, то в большинстве своем, на светодиоды не поступает никакого напряжения. Если же неисправна линейка светодиодов, то на клему подачи питания будет идти напряжение порядка 200вольт, иногда оно может пульсировать от 150 до 200. Это говорит о том, что драйвер пытается засветить подсветку, но нагрузка в качестве светодиодов отсутствует, и драйвер выдает максимальное напряжение. Данный процесс я лично понимаю так.

Сняв плату блока питания, определил, что питание на светодиоды поступает через D9101C на конденсатор, после чего я решил померять на нем напряжение. Подключив мультиметр оказалось, что напряжение на нем гуляет в пределах 190-210в.

Это означает, что драйвер работает в холостую, и проблема в самой линейке светодиодов. Для меня это была не очень хорошая новость, так как я очень неохотно берусь за разборку матриц в силу неопытности и отсутствия условий для ремонта.

Разборка LED ЖК матрицы

С девизом «не навреди», приступил к разборке матрицы. Подготовив второй стол, на который буду слаживать матрицу, первым делом отключил шлейфа от ЖК панели к плате T-con. Осмотрев более детально строение телевизора, увидел, что сама матрица держится на 2-х рамках, которые крепятся на защелках. С начала снял первую рамку. Для этого телевизор подложил на заднюю стенку, и постепенно, начиная с верха, начал отщелкивать защелки. Особое внимание обращал на низ матрицы, чтоб не повредить шлейфы. Верхняя рамка снялась очень легко.

Далее, придерживая матрицу, положил телевизор на перед, шлейфами вниз.

Аккуратно вынул платы матрицы(дешифраторы) из пазов, чтоб они начали свободно свисать.

Снятые с защелок дешифраторы матрицы

Скажу сразу, это настолько кропотливый процесс, что нервы у меня были на пределе. Освободив дешифраторы с защелок, взял телевизор за вторую рамку и аккуратно поднял. Матрица осталась лежать на столе.

Снятая матрица

Убрав матрицу на другой стол, продолжил разборку. От щелкнув вторую рамку, снял рассеивающую пленку, добрался до светодиодов.

Под светодиодами стоит белый отражатель, который держится на 4 стопорных клипсах.

Сняв их, смог убрать отражатель.

Строение LED подсветки телевизора.

Как можно увидеть из картинки, матрица телевизора состоит из пяти линек светодиодов по девять светодиодов каждая. Если взять во внимание, что каждый светодиод питается приблизительно от 3-х вольт, то имеем, что одна линейка светодиодов для работы использует около 27 вольт(3 * 9 = 27). Для того, чтоб проверить какой светодиод сгорел, сначала находимо найти в какой линейке произошел обрыв светодиода. Для этого, поочередно подключаем к линейке из 9-ти светодиодов питание 27в, и какая линейка не загорелась в той и обрыв. Далее, поочередно к каждому светодиоду подключаем питание 3в,и ищем какой светодиод не горит.

В моем случае, определить сгоревший светодиод оказалось очень легко, так как он очень сильно грелся, вследствие чего рассеивающая линза на нем сменила цвет и немного поправилась.

Температура была такая, что текстолит с обратной стороны так же прогорел.

Отковырнув линзу, выпаял светодиод. Для этого использовал паяльный фен. Нанес сверху светодиода флюс, подогревал плату снизу, пока тот не отпаялся. Таким образом решил запаивать и новый.

Поиски нового светодиода, это еще то задание. Пройдя несколько раз радио рынок, в одном из магазинов нашел похожие светодиоды, правда уже паяные. Человек выпаял их из телевизора, на котором была разбита матрица.

Впаивал светодиод так же при помощи паяльного фена. Залудив дорожки, положил на него светодиод нужной полюсовкой, и снизу потихоньку грел текстолит, пока светодиод не припаялся. Запаялось не сильно красиво, так как белая краска слезла, но зато надежно.

Многие люди сегодня используют светодиодную ленту для подсветки самых разнообразных элементов интерьера в дома. Причем нередко led подсветка располагается за телевизором. Такую подсветку достаточно легко организовать своими руками, если знать некоторые нюансы, о которых мы поговорим в этой статье.

Самым простым способом организовать такой тип подсветки – воспользоваться обычной светодиодной лентой или PaintPack. О том, какие преимущества несет подсветка телевизора светодиодной лентой, а также для чего нужна система PaintPack, расскажет наша сегодняшняя статья.

Зачем необходима подсветка телевизора

Известно, что просмотр телевизора в полной темноте очень вредит зрительной системе человека. Особенно сильно негативный эффект заметен у взрослых людей, тогда как у детей он сглаживается благодаря росту и развитию, а также сильным восстанавливающим способностям детского организма.

Обратите внимание! Вред в данной ситуации подтвержден как многими исследованиями, так и субъективными ощущениями людей.

Просмотр телевизора без хотя бы фоновой подсветки чреват рядом негативных явлений:

  • быстрая утомляемость глаз;
  • падение остроты зрения;
  • появление головных болей и т.д.

Обратите внимание! Все это, особенно быстрая утомляемость глаз, обуславливается наличием слишком яркого и заметного контраста между экраном телевизора и затемненным помещением. Кроме этого сама яркость экрана способна динамически меняться, что заставляет зрительную систему человека функционировать в экстремальных для себя условиях.

Яркий экран телевизора и темная комната — плохое сочетание для глаз

Длительный или еще хуже — постоянный просмотр телевизора, когда фоновая подсветка отсутствует, а все помещение находиться во мраке, приводит к развитию стресса, а также общей усталости. В конечном итоге наблюдается общее снижение здоровья человека, ухудшение защитных и адаптационных механизмов в его организме.

Решение проблемы: внешнее освещение

На сегодняшний день проблема просмотра телевидения ночью имеет достаточно простое решение, которое воплощается в жизнь своими руками. Решение это кроется в установке дополнительной подсветки для тех моделей, у которых отсутствует контурное освещение экрана, оборудованное производителем.
Но здесь имеются свои «подводные камни», без знания которых вред организму будет продолжать наноситься. В данной ситуации необходимо учитывать следующие нюансы:

  • потолочная общая подсветка здесь не подойдет, так как ее световой поток будет засвечивать экран. В результате этого у телевизора начнет снижаться контраст;

Потолочное освещение комнаты

  • несколько лучшим решением будет использование настенных бра, напольных торшеров и настольных светильников. Но в такой ситуации мы сталкиваемся с проблемой оптимального размещения осветительных приборов , ведь они не должны мешать просмотру телепередач. Если такие светильники будут находиться сзади зрителя, то они создадут на экране блики. А если их разместить вблизи телевизора, то они будут притягивать внимание, отвлекая;

Светильник рядом с телевизором

  • фоновая подсветка. Создание фоновой подсветки вокруг телевизора лишено всех недостатков ранее перечисленных способов размещения осветительных приборов. К плюсам данного метода относится и то, что такое освещение с помощью современных технологий (светодиодные ленты и PaintPack) можно легко организовать своими руками.

Как видим, фоновая подсветка в данной ситуации является лучшим вариантом.

Особенности фоновой подсветки: что нужно учитывать

Фоновая подсветка, которая организуется своими руками позади телевизора, должна отвечать ряду требований:

  • быть ненавязчивой, чтобы не привлекать к себе излишнее внимание;
  • давать оптимальный уровень светового потока, чтобы предотвращать утомление глаз от длительного просмотра телепередач в темное время суток;

Фоновое освещение

  • легко и быстро монтироваться своими руками;
  • источники света, с помощью которых она формируется, не должны нагреваться. Этот фактор может привести к риску развития пожароопасной ситуации, так как сам телевизор, даже современные модели, нагревается в процессе своей работы;
  • светильники, применяемые для фоновой подсветки, должны быть экологически чистыми и не содержать вредных веществ. Такие требования связаны с тем, что размещаясь за техникой подобного рода, они подвержены риску механического повреждения. Особенно, если в доме имеются малые дети, постоянно снующие вблизи техники.

Из всего разнообразия осветительных приборов, активно используемых в системе наружного и внутреннего освещения, в данной ситуации максимально полно под перечисленные выше требования подходит светодиодная продукция, а именно – светодиодные ленты.

Преимущества светодиодного освещения телевизора в фоновом режиме

Использование светодиодной ленты в качестве фоновой подсветки любой техники в доме несет в себе следующие преимущества:

  • возможность выбрать подсветку любого цвета. Светодиодная продукция отличается довольно обширным спектром всех возможных цветов и оттенков;

Светодиодная подсветка

  • простой монтаж своими руками. Благодаря наличию самоклеящейся основы такую продукцию можно наклеить на любую поверхность, даже заднюю крышку техники;
  • отличный световой поток, который в разы превосходит все остальные источники света;
  • отсутствие значительного нагрева во время работы;
  • полностью экологически чистая продукция, которая не может разбиться и поранить ребенка;
  • низкое потребление электроэнергии;
  • длительный период службы.

Отдельно стоит отметить, что как декоративная и фоновая подсветка телевизора, светодиодная лента способна придать любому помещению атмосферы праздника, романтики или сказочности.
С такими достоинствами неудивительно, что именно светодиодная лента стала наиболее широко применяться в качестве фоновой подсветки не только телевизоров, но и различных декоративных элементов интерьера.

Варианты установки светодиодной подсветки за телевизор

Как мы уже выяснили, самым простым и доступным способом сделать своими руками фоновую подсветку является установка на заднюю крышку телевизора светодиодной ленты. Эта процедура не займет у вас много времени и потребует следующих действий:

  • кладем телевизор на заранее подготовленный стол, который накрыт тканью. Делать это нужно аккуратно, чтобы не повредить экран;
  • по периметру задней крышки клеем светодиодную ленту. Помните, что она может иметь любой цвет свечения;
  • поскольку телевизор в процессе своей работы будет нагреваться, то ленту дополнительно следует сажать на клей каждые 5-10 см;

Установка ленты

  • далее в углу припаиваем полоски ленты. Здесь можно купить специальные угловые соединители;
  • затем подключаем к ним блок питания с нужной мощностью для используемой в подсветке ленты. В схему нужно будет включить реле или преобразователь 5→12 вольт. Это необходимо, если у прибора имеются USB-выходы;

Схема соединения

  • выключатель подсветки можно прикрепить в углу.

Обратите внимание! Лента должна прочно держаться, чтобы не провоцировать появление короткого замыкания.

Система PaintPack

Кроме этого можно использовать системы подсветки PaintPack.

Система PaintPack представляет собой корпус небольшого размера. К нему с двух сторон подключаются светодиодные ленты съемного типа. PaintPack также оснащен индикатором, разъемом для питания и microUSB, через который возможно подключение в компьютеру. Также в состав PaintPack входит мастер-разъем. С его помощью можно последовательно подключать два устройства.

Обратите внимание! Данное приспособление отлично подходит для фонового освещения и монитора компьютера.

Корпус системы следует установить на задней панели телевизора. Далее по вышеописанному алгоритму монтируем и подключаем светодиодные ленты,.
если планируется подключать PaintPack через USB-разъем к компьютеру, нужно будет установить требуемые драйверы, а также провести настройку прибора в комплектной программе. Для этого вам понадобится пакет AmbiBox.

Заключение

Решаясь на создание фоновой подсветки телевизора лучшего источника света, чем светодиодная лента вам не найти. В данной ситуации все манипуляции довольно легко проводятся своими руками, что является еще одним плюсом. Более того, используя PaintPack, вы добьетесь большей технологичности фоновой подсветки, созданной своими руками.


Освещение на кухне малогабаритной квартиры

весёлый усач 8 августа 2012 в 23:52

Делаем яркую и экономичную светодиодную подсветку из разбитой LED матрицы (как заставить работать подсветку матрицы без ноутбука)

  • Чулан *

Привет всем. Решил написать еще один пост в песочницу (возможно последний, мне начинает казаться что подобная тематика тут не приветствуется) и снова на DIY тему, в котором хочу подать интересную идею, ну а как уж её использовать решайте сами. Сейчас подавляющее большинство мониторов и ноутбуков оснащаются экранами с лед подсветкой (думаю мало кого удивил сказав это). Частенько матрицы разбивают и вот после таких ремонтов у меня обычно остается колотая матрица, не подлежащая восстановлению. О том как использовать светодиоды и плату с матрицы для их питания и пойдет речь.

Конечно можно оставить её как донора, но время показало что матрицы с диодной подсветкой дохнут крайне редко (у меня так, в основном носят разбитые). И пришла в голову мысль использовать линейку диодов со штатным питателем в своих целях.

Плюсы - достаточно яркий источник света, по идее довольно экономична(за счет преобразователя), стабильная яркость, долговечность, широкий диапазон напряжения питания (обычно от 8 до 19вольт), минусы - габаритная плата электроники (можно побороть от части, об этом ниже), возможно кому то - необходимость паять. Что же представляет из себя модуль подсветки? Это линейка с диодами на которой размещены несколько цепочек соединенных последовательно светодиодов

И сама микросхема преобразователя, размещенная на плате матрицы на которую подается напряжение питания и два управляющих сигнала - один на включение подсветки, второй на управление её яркостью. Для включения подсветки мы будем подавать питание (10-19вольт) а выводы включения подсветки и управления яркостью соединяем вместе и подаем на них 3.3вольта.Распиновка разъема приведена ниже.Авторство этой картинки принадлежит человеку с сайта rom.by (к слову все остальные изображения мои и сделаны специально для этой статьи, а это решил взять готовое и не перерисовывать).

Общий провод берем с контакта GND, на LEDVDD подаем питание а inwt_pwm и dispoff# соединяем вместе и подаем на них три вольта.
Также нам потребуется стабилизатор для получения 3.3 вольта. В самом простейшем случае им может выступать схема приведенная ниже. Для расчета резистора формула R=(Uпитания-Uстабилитрона)/Iстабилитрона.Берем средний ток и среднее предполагаемое напряжение питания. То есть к примеру берем среднее питание 15вольт, стабилитрон на 3.3 вольта с током стабилизации 10ма и получаем 1,1к.
Полагаю что у компьютерщиков не имеющих отношение к электронике могут возникнуть проблемы с поиском стабилитрона - его можно заменить на TL431+любой маломощный кремниевый диод (в примере 1N4148). И то и другое можно выдрать из дохлого БП АТХ от ПК.Обе схемы даны ниже.Конденсатор в принципе практически любой 1-10мкф. для второго варианта с tl431 можно не считать а взять резистор в районе 2-3к, при этом все стабильно работает.Я думаю что даже проще собирать по второй схеме.Схемы представлены ниже.inwt_pwm и dispoff# на схемах соответствуют PWM и LED_EN соответственно.

Подсветку запустили и можно придумывать применение.

Но как наверное многие справедливо заметят - у нас есть весьма неудобная большая плата от которой мы можем использовать лишь малую часть. К сожалению тут могу дать лишь общий совет - вызваниваете от разъема контакты до элементов рядом с микросхемой подсветки, припаиваете на них провода, убеждаетесь что все работает и отрезаете большую часть платы надеясь на ваше везение. К слову дополню что питание LEDVDD обычно приходит на предохранитель стоящий рядом с преобразователем и разъемом для подключения светодиодов, он обычно обозначается F1 / F2. А вот управляющие сигналы могут быть выведены на контактные площадки рядом и подписаны как угодно или вообще присутствуют только на ножках элементов.

Ну и на последок фото того что получилось у меня. Фото в выключенном и включенном виде сделаны в одно время, фоткал на автомате, светит очень ярко и поэтому во включенном виде фото получилась с темным фоном.



И крупным планом фото переделки другой платы. Тут снимал телефоном - вышло лучше.



Скажу что уже опробовал штук 15 плат. Одна наотрез отказалась запускаться(возможно конечно что неисправна, но на всякий случай упоминаю). Остальные запустились, две пострадали от того что я слишком коротко обрезал плату (видимо во внутренних слоях оказались какие то критичные цепи, которые попали в место разреза) и после отрезания «лишней» части работать перестали. Также пробовал подавать на выводы управления ради эксперимента вместо 3вольт полное питание матрицы дабы сократить трудозатраты.Было взято 5 подопытных - две платы вышли из строя сразу же, еще две спустя полтора дня, одна работает. Поэтому от этой идеи отказался и во всех последующих питаю управляющие выводы так как описано выше. В статье не рассмотрено управление яркостью подсветки - пока не было такой нужды поэтому это оставил на потом.

Применение ограничивается лишь фантазией - можно сделать подсветку на рабочем месте, использовать для моддинга в системнике, в качестве подсветки в машине и еще уйму вещей. Ну и если у кого то возникнуть вопросы - постараюсь проконсультировать.

Теги: D.I.Y, светодиоды, led, освещение, матрица

Модели телевизоров с LED подсветкой доминируют на рынке вполне заслуженно. В этой статье мы рассмотрим разновидности LED подсветок современных телевизоров и оценим их эффективность.

LED телевизоры

Начнем с того, что LED TV не является новым типом HDTV. В отличие от плазменных и OLED телевизоров, которые изготавливаются на основе излучающих технологий, где каждый пиксель является отдельным источником света, в жидкокристаллических моделях каждый пиксель LCD матрицы требует освещения (сзади, или сбоку через систему линз). Так что модели LED HDTV являются теми же жидкокристаллическими (LCD или ЖК) телевизорами, но несут в себе встроенную светодиодную (LED) подсветку, которая заменяет стандартную на люминесцентных лампах с холодным катодом (обозначается аббревиатурой CCFL).

2 разновидности LED подсветки по конструктивному исполнению: матричное и боковое


LED подсветка с локальным затемнением.
Сперва, телевизоры обладающие LED подсветкой , использовали для освещения ячеек LCD матрицы «полный массив » (full array) из светодиодов, по аналогии со стандартными телевизорами на основе подсветки с использование CCFL ламп. Но для изменения толщины телевизоров в меньшую сторону, разработчики отказались от применения полного массива LED светодиодов сзади экрана, установив линейки источников света сбоку от LCD панели. Таким образом распределение света от LED источников по всей площади экрана осуществляется с помощью светодиодов специальной формы. Данные модели LCD телевизоров называют ТВ с боковой или краевой LED подсветкой , которые как раз-таки доминируют сегодня.

LED подсветка, обладающая системой местного затемнения позволяет автоматически снижать яркость или полностью отключать отдельные группы источников подсветки. Большинство современных LCD телевизоров с задней LED подсветкой в виде размещаемого позади LCD панели массива LED источников (full array) оснащаются динамической технологией подсветки называемой еще локальным или местным затемнением. Используя локальное затемнение, определенные участки общего массива светодиодов подсветки становятся темнее или светлее в зависимости от яркости и цвета соответствующей части изображения на экране.

Возможность затемнения определенной области экрана способно уменьшить количество света, которое проходит через закрытые пиксели LCD панели, что положительно сказывается на передаче черного цвета, который становится более темным и весьма реалистичным. По той причине, что уровни черного имеют определяющее значение для контрастности, восприятия глубины черных поверхностей, полноцветное изображение становится более выразительным и четким. Технология локального затемнения обладает единственным минусом – эффектом местного помутнения, который образуется когда часть света из более ярких зон просачивается в соседние более темные, что в последствии осветляет на границе темный цвет. Заметить эффект помутнения на большинстве моделей довольно трудно, так как недостаток непосредственно связан с количеством зон локального затемнения позади экрана, а производители предоставляют подобную информацию далеко не всегда.

При использовании стандартной подсветки с использованием CCFL ламп и в большинстве LCD телевизоров с боковой LED подсветкой, все источники подсветки светлеют или тускнеют одновременно (так называемое «глобальное затемнение» ), но среди моделей телевизоров Samsung и LG редко встречаются дисплеи с боковой LED подсветкой, которые также могут работать по принципу локального затемнения (» precision dimming » у Samsung и «LED Plus» у LG). Говоря проще, это бутафория локального затемнения.

Тонкие модели с боковой LED подсветкой конечно страдают от неравномерности засветки экрана, но далеко не все. Основная особенность телевизоров с боковой LED подсветкой тонкий корпус, в связи с этим трудно обеспечить равномерность распределения светового потока по всей плоскости экрана. При покупке телевизора воспроизведите на экране дисплея с боковой LED подсветкой изображение белой поверхности, чтобы проверить отсутствие по краям экрана более яркие областей. Аналогично, когда экран заполнен черным полем, края не должны выглядеть более светлыми (серыми).

Стоит также отметить, что LED подсветка вне зависимости от разновидности не улучшает углы обзора LCD панели. Уровень черного цвета при использовании LED подсветки и возможном смещении угла зрения на 1-2 метра влево или вправо падает.

Нельзя забывать и о энергоэффективности LED подсветки. Конечно, на потребление любой модели значительно влияют размер экрана и яркость источников подсветки. LCD модели телевизоров обеих разновидностей LED подсветки значительно более энергоэкономичны, в сравнении с плазменными моделями.

Светодиодные подсветки для ЖК-дисплеев делятся на категории по следующим признакам:

  • цвет свечения: белый или RGB;
  • равномерность освещения: статическая или динамическая;
  • конструктив: матричное либо боковое (об этом более подробно написано выше)

RGB-подсветка применяется для осуществления возможности тонкой подстройки спектра свечения. Кроме того, часто применяется дополнительная компенсация изменения спектра излучения светодиодов со временем. В LED-телевизорах с подсветкой RGB LED разные участки экрана подсвечиваются в зависимости от цвета изображения. Цветная подсветка обеспечивает усиленный контраст и глубокий черный цвет, что наглядно демонстрируют многие LED-телевизоры Sony.

Edge LED: лучшая цветопередача

Компания Sony в новых флагманских моделях телевизоров - например, линейке W905 - использует технологию Triluminos . Встроенная в рамку телевизора со всех сторон экрана светодиодная подсветка (Edge LED) дополняется так называемыми квантовыми точками - фрагментами полупроводника размером в несколько сотен атомов, излучающими свет в строго заданном диапазоне. Технология Triluminos призвана минимизировать цветовые искажения и обеспечить усиление оттенков красного и зеленого. Это позволит добиться передачи исключительно однородного и естественного изображения со значительно более широким цветовым охватом. Тесты первых устройств с поддержкой Triluminos нас не разочаровали: цветовой охват модели Sony KDL-46W905A сопоставим с охватом решений на базе органических светодиодов (OLED) и недостижим для ЖК-телевизоров со светодиодной подсветкой. В устройствах серий W805 и W605, которые также появились в продаже в этом году, Triluminos не используется, благодаря чему их стоимость существенно ниже. В будущем производители смогут полностью отказаться от светодиодной подсветки в пользу квантовых точек.

OLED телевизоры: яркость и красочность на высоте

Телевизоры с OLED-экранами уже добрались до магазинов, а разработчики поспешили для вас выпустить новые модели с вогнутыми дисплеями. Компания LG еще в прошлом году планировала вывести на рынок OLED-телевизор с диагональю экрана 55 дюймов, однако в продаже он появился только этим летом. В России модель 55EM9600 и ее усовершенствованный аналог 55EM9700 обойдутся покупателю в 500 000 рублей. Помимо этого устройство продается в Европе, США и некоторых других странах.

Преимущества OLED телевизоров: это не тип подсветки, а иная технология

  • точная передача цвета
  • больший запас яркости относительно других технологий
  • высокая контрастность по сравнению с ЖК-моделями (другая технология формирования изображения).
  • отсутствие ЖК-матрицы и светодиодной подсветки - их место заняла матрица, изготовленная из светоизлучающих органических диодов.

Компании Samsung и LG независимо друг от друга разработали OLED-телевизоры с вогнутыми экранами (Curved OLED). Подобная конструкция призвана минимизировать искажения по краям изображения и повысить детализацию. Новинки пока доступны в ограниченных количествах в Южной Корее, США и некоторых европейских странах. 55-дюймовая модель Samsung KN55S9C оценена производителем в $9000 (300 000 рублей).

Особый интерес также вызывает технология Multi-View, реализованная во многих моделях OLED-телевизоров как с плоским, так и вогнутым экранами. Ввиду исключительно малого времени отклика подобные устройства позволяют одновременно демонстрировать две или четыре программы в формате высокой четкости (Full HD) либо два различных фильма в формате 3D. Для разделения изображения используются очки затворного типа. Каждый зритель с помощью расположенных на очках элементов управления может выбрать индивидуальную программу для просмотра. При этом благодаря встроенным наушникам обеспечивается воспроизведение соответствующей фильму звуковой дорожки.

Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.

Разбираем монитор

На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса


2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:


Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.
4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):


5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:


По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе. Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке - т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:


И блок с подсветкой отдельно:


Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».
Вот собственно и все - мы разобрали монитор.

Подсветка светодиодной лентой

Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 - 120 светодиодов на метр. Первое что оказалось - ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) - 7 мм (на самом деле бывают лампы подсветки двух стандартов - 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано - сделано:


Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т.е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится - прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.


On - сигнал с платы управления на включение подсветки (+5V)
Dim - ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):


В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off - нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:


Расчет выходного напряжения для LM2941 производится по формуле:

Vout = Vref * (R1+R2)/R1

Где Vref = 1.275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:

R2=R1*(Vout/Vref-1)

Максимальное необходимое нам напряжение для ленты - 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится - около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм - 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 - 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).

Монтаж светодиодной ленты

Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):


Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):


После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:




Питание и сигнал управления On заводились с платы блока питания:


Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:

Pd = (Vin-Vout)*Iout +Vin*Ignd

Для моего случая составляет Pd = (13.6-13)*0.7 +13.6*0.006 = 0.5 Ватт поэтому было решено обойтись самым маленьким радиатором для LM2941 (посажен через диэлектрическую прокладку т.к. от земли он в LM2941 не изолирован).
Окончательная сборка показала вполне себе работоспособность конструкции:


Из достоинств:

  • Используется стандартная светодиодная лента
  • Простая плата управления
Из недостатков:
  • Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
  • Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
  • Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)
Вполне хороший, простой и бюджетный вариант ремонта подсветки. Вполне комфортно смотреть фильмы или использовать монитор в качестве кухонного телевизора, но для каждодневной работы наверное не подойдет.

Регулировка яркости с помощью ШИМ

Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:


Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)

Более плотная LED подсветка

Для решения проблемы недостаточной яркости (а заодно и равномерности) подсветки было решено поставить больше светодиодов и чаще. Поскольку оказалось что покупать светодиоды поштучно дороже чем купить 1.5 метра ленты и выпаять их оттуда был выбран более экономный вариант (выпаивать светодиоды из ленты).
Сами светодиоды 3528 разместились на 4-х полосках 6 мм шириной и 238 мм длиной по 3 светодиода последовательно в 15 параллельных сборках на каждой из 4-х полосок (разводка плат для светодиодов прилагается). После припайки светодиодов и проводов получается следующее:




Полоски закладывается по две вверху и внизу проводами к краю монитора в стык в центре:




Номинальное напряжение на светодиодах 3.5В (диапазон от 3.2 до 3.8 В), так что сборка из 3-х последовательных светодиодов должна питаться напряжением порядка 10.5В. Так что параметры регулятора нужно пересчитать:


Максимальное необходимое нам напряжение для ленты - 10.5В. Т.е. максимальное значение R2 = 1000*(10.5/1.275-1) = 7.23кОм. Минимальное напряжение при котором сборка из светодиодов еще хоть как-то светится - около 4.5 вольт, т.е. минимальное значение R2 = 1000*(4.5/1.275-1) = 2.53кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 7.23кОм - 2.53кОм = 4.7кОм, а RV2 выставляем примерно в 7.23-4.7 = 2.53 кОм и регулируем в собранной схеме для получения 10.5В на выходе LM2941 при максимальном сопротивлении RV1.
В полтора раза больше светодиодов потребляют 1.2А тока (номинально), поэтому рассеиваемая мощность на LM2941 будет равна Pd = (13.6-10.5)*1.2 +13.6*0.006 = 3.8 Ватт, что уже требует более солидного радиатора для отвода тепла:


Собираем, подключаем, получаем гораздо лучше:


Достоинства:
  • Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
  • Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
  • Все еще простая и дешевая плата управления
Недостатки:
  • Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
  • LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса

Плата управления на основе Step-down регулятора

Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:


Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:

Vout=Vref*(1+R2/R1)

Где Vref = 1.23V. При заданном R1 можно получить R2 по формуле:

R2=R1*(Vout/Vref-1)

В расчетах R1 эквивалентно R4 в схеме, а R2 эквивалентно RV1+RV2 в схеме. В нашем случае для регулировки напряжения в диапазоне от 7.25В до 10.5В возьмем R4=1.8кОм, переменный резистор RV1=4.7кОм а подстроечный резистор RV2 на 10кОм с начальным приближением в 8.8кОм (после сборки схемы лучше всего выставить его точное значение измеряя напряжение на выходе LM2576 при максимальном сопротивлении RV1).
Для этого регулятора решил сделать плату (размеры значения не имели, т.к. в мониторе достаточно место для монтажа даже габаритной платы):


Плата управления в сборе:


После монтажа в мониторе:


Все в сборе:


После сборки вроде все работает:


Итоговый вариант:


Достоинства:

  • Достаточная яркость
  • Step-down регулятор не греется и не греет монитор
  • Нет ШИМ а значит ничего не моргает ни с какой частотой
  • Аналоговая (ручная) регулировка яркости
  • Нет ограничений на минимальную яркость (для тех кто любит работать по ночам)
Недостатки:
  • Немного смещен баланс белого в сторону зеленых тонов (но не сильно)
  • При малой яркости (очень малой) видна неравномерность в свечении светодиодов разных сборок из-за разброса параметров

Варианты улучшения:

  • Баланс белого регулируется как в настройках монитора, так и в настройках почти любой видеокарты
  • Можно попробовать поставить другие светодиоды, которые не будут заметно сбивать баланс белого
  • Для исключения неравномерного свечения светодиодов при малой яркости можно использовать: а) ШИМ (регулировать яркость с помощью ШИМ всегда подавая номинальное напряжение) или б) соединить все светодиоды последовательно и питать их регулируемым источником тока (если соединить последовательно все 180 светодиодов, то понадобится 630В и 20мА), тогда через все светодиоды должен проходить один и тот же ток, а на каждом будет падать свое напряжение, яркость регулируется изменением тока а не напряжения.
  • Если хочется сделать схему на основе ШИМ для LM2576 можно использовать схему И-НЕ на входе On/Off этого Step-down регулятора (по аналогии с приведенной схемой для LM2941), но лучше поставить диммер в разрыв минусового провода светодиодов через logic-level mosfet