Технологии передачи электричества по воздуху. Беспроводная передача электричества по теории тесла

Беспроводное электричествостало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.

На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.

Как это работает

Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.

Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.

  • Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.
  • Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.
  • При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.
  • На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.

Принципы передачи

До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.

Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.

Эксперимент позволил передать на частоте 20 кГц:

  1. 209 Вт на 5 м;
  2. 471 Вт на 4 м;
  3. 1403 Вт на 3 м.

Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.

Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:

  • Лазерное излучение . Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
  • Микроволновое излучение . Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.

Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.

Особенности

  • Самая реалистичная из технологий — беспроводное электричество на основе электромагнитной индукции. Но существуют ограничения. Ведутся работы по масштабированию технологии, но здесь появляются вопросы безопасности для здоровья.
  • Технологии передачи электричества при помощи ультразвука, лазера и микроволнового излучения также будут развиваться и тоже найдут свои ниши.
  • Орбитальные спутники с громадными солнечными батареями нуждаются в ином подходе, потребуется прицельная передача электроэнергии. Здесь уместен лазер и СВЧ. На данный момент нет идеального решения, однако имеется много вариантов со своими плюсами и минусами.
  • В настоящее время крупнейшие производители телекоммуникационного оборудования объединились в консорциум беспроводной электромагнитной энергии с целью создания всемирного стандарта для беспроводных зарядных устройств, которые действуют по принципу электромагнитной индукции. Из крупных производителей поддержку стандарта QI на ряде своих моделей обеспечивают Sony, Samsung, Nokia, Motorola Mobility, LG Electronics, Huawei, HTC. В скором времени QI станет единым стандартом для любых подобных устройств. Благодаря этому можно будет создавать беспроводные зоны подзарядки гаджетов в кафе, на транспортных узлах и в иных общественных местах.

Применение

  • Микроволновый вертолет. Модель вертолета имела ректенну и поднималась на высоту 15 м.
  • Беспроводное электричество применяется для питания электрических зубных щеток. Зубная щетка имеет полную герметичность корпуса и не имеет разъемов, что позволяет избежать удара током.
  • Питание самолетов при помощи лазера.
  • В продаже появились системы беспроводной зарядки мобильных устройств, которые можно использовать повседневно. Они работают на базе электромагнитной индукции.
  • Универсальная зарядная площадка. Они позволяют питать энергией большую часть популярных моделей смартфонов, которые не оборудованы модулем для беспроводной зарядки, в том числе обычные телефоны. Кроме самой зарядной площадки будет нужно купить чехол-приемник для гаджета. Он соединяется со смартфоном через USB-порт и через него заряжается.
  • На текущий момент на мировом рынке продается свыше 150 устройств до 5 Ватт, которые поддерживают стандарт QI. В будущем появится оборудование средней мощности до 120 Ватт.

Перспективы

Сегодня ведутся работы над крупными проектами, которые будут использовать беспроводное электричество. Это питание электромобилей «по воздуху» и бытовые электросети:

  • Густая сеть автозарядных точек позволит уменьшить аккумуляторы и значительно снизить себестоимость электромобилей.
  • В каждой комнате будут устанавливаться источники питания, которые будут передавать электроэнергию аудио- и видеоаппаратуре, гаджетам и бытовым приборам, оборудованными соответствующими адаптерами.

Достоинства и недостатки

Беспроводное электричество имеет следующие преимущества:

  • Не требуются источники питания.
  • Полное отсутствие проводов.
  • Упразднение необходимости использования батарей.
  • Требуется меньше технического обслуживания.
  • Огромные перспективы.

К недостаткам также можно отнести:

  • Недостаточная проработанность технологий.
  • Ограниченность по расстоянию.
  • Магнитные поля не являются полностью безопасными для человека.
  • Высокая стоимость оборудования.

По сути, в 1970-е им были технически реализованы мечты НАТО и США о постоянном воздушном патрулировании Ирака (Ливии, Сирии и т.д.) дронами с камерами, охотящиеся (или фиксирующие) "террористов" в режиме on-line 24 часа.

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.

Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий. За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли - порядка 70%÷75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/м², в центре приемной – 230 Вт/м².

Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый Magnetron Directional Amplifier - MDA).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.

Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», - рассказывал Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе.

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали (от Power Over WiFi).

На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер во время своей работы по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли, когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии.

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего, уже по технологии или от самолёта носителя):


Идея выглядит достаточно заманчиво. Вместо сегодняшних 20-30 минут полётного времени:



→ Intel управляла шоу беспилотников во время выступления Леди Гаги в перерыве Суперкубка США-
получить 40-80 минут благодаря подзарядке дронов посредством беспроводных технологий.

Поясню:
-обмен м/у дронами всё равно необходим (алгоритм роя);
-обмен м/у дронами и ЛА (маткой) также необходим (ЦУ, коррекция БЗ, перенацеливание, команда на ликвидацию, предотвращающая "дружественный огонь", передача развединформации и команд на применение ).

Кто следующий на очереди?

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².

Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV - Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 ).

В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).

В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).

Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах. Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам. Принятые и в США, и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь, базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.

Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько? А как будет с беспроводной передачей электроэнергии СВЧ технологиями?

Тут мощности не ватты и мили ватты, а уже кВт...

Ссылки, использованные документы, фото и видео:
«(ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ!» N 12, 2007 (ЭЛЕКТРОЭНЕРГИЯ ИЗ КОСМОСА- СОЛНЕЧНЫЕ КОСМИЧЕСКИЕ ЭЛЕКТРОСТАНЦИИ, В. А. Банке)
«СВЧ-электроника -перспективы в космической энергетике» В.Банке, д.ф.-м.н.
www.nasa.gov
www. whdi.org
www.defense.gov
www.witricity.com
www.ru .pinterest .com
www. raytheon.com
www. ausairpower.net
www. wikipedia.org
www.slideshare.net
www.homes.cs.washington.edu
www.dailywireless.org
www.digimedia.ru
www. powercoup.by
www.researchgate.net
www. proelectro.info
www.youtube.com

Открыл закон (после названный в честь открывателя законом Ампера), показывающий, что электрический ток производит магнитное поле.

  • В 1831 году Майкл Фарадей открыл закон индукции , важный базовый закон электромагнетизма .
  • В 1864 году Джеймс Максвелл систематизировал результаты наблюдений и экспериментов, изучил уравнения по электричеству, магнетизму и оптике, создал теорию и составил строгое математическое описание поведения электромагнитного поля (см. уравнения Максвелла).
  • В 1888 году Генрих Герц подтвердил существование электромагнитного поля. «Аппарат для генерации электромагнитного поля » Герца представлял собой искровой передатчик «радиоволн» и создавал волны в диапазонах частот СВЧ или УВЧ .
  • В 1891 году Никола Тесла улучшил и запатентовал (патент номер 454,622; «Система электрического освещения») передатчик волн Герца для радиочастотного энергоснабжения.
  • В 1893 году Никола Тесла на всемирной выставке , проходившей в 1893 году в Чикаго , продемонстрировал беспроводное освещение люминесцентными лампами .
  • В 1894 году Никола Тесла зажёг без проводов фосфорную лампу накаливания в лаборатории на Пятой авеню , а позже в лаборатории на Хаустон-стрит в Нью-Йорке с помощью «электродинамической индукции », то есть посредством беспроводной резонансной взаимоиндукции .
  • В 1894 году Джагдиш Чандра Боше дистанционно воспламенил порох , что привело к удару по колоколу, с использованием электромагнитных волн, показывая, что сигналы связи можно посылать без проводов .
  • 25 апреля (7 мая) года Александр Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества .
  • В 1895 году Боше передал сигнал на расстояние около одной мили .
  • 2 июня 1896 года Гульельмо Маркони подал заявку на изобретение радио.
  • В 1896 году Тесла передал сигнал на расстояние около 48 километров .
  • В 1897 году Гульельмо Маркони передал текстовое сообщение азбукой Морзе на расстояние около 6 км, используя для этого радиопередатчик.
  • В 1897 году зарегистрирован первый из патентов Тесла по применению беспроводной передачи.
  • В 1899 году в Колорадо-Спрингс Тесла писал: «Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха » .
  • В 1900 году Гульельмо Маркони не смог получить патент на изобретение радио в Соединённых Штатах.
  • В 1901 году Маркони передал сигнал через Атлантический океан , используя аппарат Тесла.
  • В 1902 году Тесла и Реджинальд Фессенден конфликтовали из-за американского патента номер 21,701 («Система передачи сигналов (беспроводная). Избирательное включение ламп накаливания, электронные логические элементы в целом») .
  • В 1904 году на Всемирной выставке, проходившей в Сент-Луисе , предложена премия за успешную попытку управления двигателем дирижабля мощностью 0,1 л.с. (75 Вт ) от энергии, передаваемой дистанционно на расстояние менее 100 футов (30 м ) .
  • В 1917 году разрушена Башня Ворденклиф , построенная Никола Тесла для проведения опытов по беспроводной передаче больших мощностей.
  • В 1926 году Синтаро Уда и Хидэцугу Яги опубликовали первую статью «о регулируемом направленном канале связи с высоким усилением » , хорошо известном как «антенна Яги-Уда» или антенна «волновой канал ».
  • В 1945 году Семён Тетельбаум опубликовал статью «О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн», в которой впервые рассматривал эффективность микроволновой линии для беспроводной передачи электроэнергии .
  • В 1961 году Уильям Браун опубликовал статью по исследованию возможности передачи энергии посредством микроволн .
  • В 1964 году Уильям Браун и Уолтер Кроникт в эфире телеканала CBS News продемонстрировали модель вертолёта, получающего всю необходимую ему энергию от микроволнового луча.
  • В 1968 году Питер Глейзер предложил использовать беспроводную передачу солнечной энергии из космоса с помощью технологии «Энергетический луч» . Это считается первым описанием орбитальной энергетической системы .
  • В 1973 году в Лос-Аламосской Национальной лаборатории продемонстрирована первая в мире пассивная система RFID .
  • В 1975 году на комплексе дальней космической связи обсерватории Голдстоун проведены эксперименты по передаче мощности в десятки киловатт .
    • В 2007 году исследовательская группа под руководством профессора Марина Солячича из передала беспроводным способом на расстояние 2 м энергию мощностю, достаточной для свечения лампочки мощностью 60 ватт , с КПД , равным 40 % , с помощью двух катушек диаметром 60 см .
    • В 2008 году фирма «Bombardier» предложила систему для беспроводной передачи энергии, названную «primove» и предназначенную для применения в трамваях и двигателях малотоннажной железной дороги .
    • В 2008 году сотрудники фирмы Intel воспроизвели опыты Никола Тесла 1894 года и опыты группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с КПД , равным 75 % .
    • В 2009 году консорциум заинтересованных компаний, названный «Wireless Power Consortium», разработал стандарт беспроводного питания для малых токов, названный « » . Qi стал применяться в портативной технике.
    • В 2009 году норвежская компания «Wireless Power & Communication» представила разработанный ею промышленный фонарь, способный безопасно работать и перезаряжаться бесконтактным способом в атмосфере, насыщенной огнеопасным газом.
    • В 2009 году фирма «Haier Group» представила первый в мире полностью беспроводной LCD-телевизор, основанный на исследованиях профессора Марина Солячича по беспроводной передаче энергии и беспроводном домашнем цифровом интерфейсе (WHDI) .
    • В 2011 году «Wireless Power Consortium» приступил к расширению спецификаций стандарта Qi для средних токов.
    • В 2012 году начал работу частный петербургский музей «Гранд Макет Россия », в котором миниатюрные модели автомобилей получали электропитание беспроводным способом через модель дорожного полотна.
    • В 2015 году учёные из Вашингтонского университета выяснили, что электричество можно передавать посредством технологии Wi-Fi .

    Технологии

    Ультразвуковой способ

    Ультразвуковой способ передачи энергии изобретён студентами университета Пенсильвании и впервые широкой публике представлен на выставке «The All Things Digital» (D9) в 2011 году. Как и в других способах беспроводной передачи чего-либо, использовался приёмник и передатчик. Передатчик излучал ультразвук; приёмник, в свою очередь, преобразовывал слышимое в электричество. На момент презентации расстояние передачи достигало 7-10 метров , и была необходима прямая видимость приёмника и передатчика. Передаваемое напряжение достигало 8 вольт ; получаемая сила тока не сообщается. Используемые ультразвуковые частоты никак не действуют на человека. Также нет сведений и об отрицательном воздействии ультразвуковых частот на животных.

    Метод электромагнитной индукции

    При беспроводной передаче энергии методом электромагнитной индукции используется ближнее электромагнитное поле на расстояниях около одной шестой длины волны. Энергия ближнего поля сама по себе не является излучающей, однако некоторые радиационные потери всё же происходят. Кроме того, как правило, имеют место и резистивные потери. Благодаря электродинамической индукции, переменный электрический ток, протекающий через первичную обмотку, создаёт переменное магнитное поле, которое действует на вторичную обмотку, индуцируя в ней электрический ток. Для достижения высокой эффективности взаимодействие должно быть достаточно тесным. По мере удаления вторичной обмотки от первичной, всё большая часть магнитного поля не достигает вторичной обмотки. Даже на относительно небольших расстояниях индуктивная связь становится крайне неэффективной, расходуя большую часть передаваемой энергии впустую.

    Электрический трансформатор является простейшим устройством для беспроводной передачи энергии. Первичная и вторичная обмотки трансформатора прямо не связаны. Передача энергии осуществляется посредством процесса, известного как взаимная индукция . Основной функцией трансформатора является увеличение или уменьшение первичного напряжения. Бесконтактные зарядные устройства мобильных телефонов и электрических зубных щёток являются примерами использования принципа электродинамической индукции. Индукционные плиты также используют этот метод. Основным недостатком метода беспроводной передачи является крайне небольшое расстояние его действия. Приёмник должен находиться в непосредственной близости к передатчику для того, чтобы эффективно с ним взаимодействовать.

    Использование резонанса несколько увеличивает дальность передачи. При резонансной индукции передатчик и приёмник настроены на одну частоту. Производительность может быть улучшена ещё больше путём изменения формы волны управляющего тока от синусоидальных до несинусоидальных переходных формы волны. Импульсная передача энергии происходит в течение нескольких циклов. Таким образом, значительная мощность может быть передана между двумя взаимно настроенными LC-цепями с относительно невысоким коэффициентом связи. Передающая и приёмная катушки, как правило, представляют собой однослойные соленоиды или плоскую спираль с набором конденсаторов, которые позволяют настроить принимающий элемент на частоту передатчика.

    Обычным применением резонансной электродинамической индукции является зарядка аккумуляторных батарей портативных устройств, таких, как портативные компьютеры и сотовые телефоны, медицинские имплантаты и электромобили. Техника локализованной зарядки использует выбор соответствующей передающей катушки в структуре массива многослойных обмоток. Резонанс используется как в панели беспроводной зарядки (передающем контуре), так и в модуле приёмника (встроенного в нагрузку) для обеспечения максимальной эффективности передачи энергии. Такая техника передачи подходит универсальным беспроводным зарядным панелям для подзарядки портативной электроники, такой, например, как мобильные телефоны. Техника принята в качестве части стандарта беспроводной зарядки Qi .

    Резонансная электродинамическая индукция также используется для питания устройств, не имеющих аккумуляторных батарей, таких, как RFID-метки и бесконтактные смарт-карты, а также для передачи электрической энергии от первичного индуктора винтовому резонатору трансформатора Теслы, также являющемуся беспроводным передатчиком электрической энергии.

    Электростатическая индукция

    Лазерный метод

    В том случае, если длина волны электромагнитного излучения приближается к видимой области спектра (от 10 мкм до 10 нм ), энергию можно передать путём её преобразования в луч лазера , который затем может быть направлен на фотоэлемент приёмника.

    Лазерная передача энергии по сравнению с другими методами беспроводной передачи обладает рядом преимуществ:

    • передача энергии на большие расстояния (за счёт малой величины угла расходимости между узкими пучками монохроматической световой волны);
    • удобство применения для небольших изделий (благодаря небольшим размерам твердотельного лазера - фотоэлектрического полупроводникового диода);
    • отсутствие радиочастотных помех для существующих средств связи, таких, как Wi-Fi и сотовые телефоны (лазер не создаёт таких помех);
    • возможность контроля доступа (получить электроэнергию могут только приёмники, освещённые лазерным лучом).

    У данного метода есть и ряд недостатков:

    • преобразование низкочастотного электромагнитного излучения в высокочастотное, которым является свет, неэффективно. Преобразование света обратно в электричество также неэффективно, так как КПД фотоэлементов достигает 40-50 % , хотя эффективность преобразования монохроматического света значительно выше, чем эффективность солнечных панелей;
    • потери в атмосфере;
    • необходимость прямой видимости между передатчиком и приёмником (как и при микроволновой передаче).

    Технология передачи мощности с помощью лазера ранее, в основном, исследовалась при разработке новых систем вооружений и в аэрокосмической промышленности, а в настоящее время разрабатывается для коммерческой и потребительской электроники в маломощных устройствах. Системы беспроводной передачи энергии с применением в потребительских целях должны удовлетворять требованиям лазерной безопасности стандарта IEC 60825. Для лучшего понимания лазерных систем следует принимать во внимание то, что распространение лазерного луча гораздо в меньшей степени зависит от дифракционных ограничений, как пространственное и спектральное согласование характеристик лазеров позволяют увеличить рабочую мощность и дистанцию, как длина волны влияет на фокусировку.

    Драйденский лётно-исследовательский центр НАСА продемонстрировал полёт лёгкого беспилотного самолёта-модели, питаемого лазерным лучом. Это доказало возможность периодической подзарядки посредством лазерной системы без необходимости приземления летательного аппарата.

    Переменный ток может передаваться через слои атмосферы, имеющие атмосферное давление менее 135 мм рт. ст . Ток протекает посредством электростатической индукции через нижние слои атмосферы примерно в 2-3 милях (3,2-4,8 километрах ) над уровнем моря и благодаря потоку ионов, то есть электрической проводимости через ионизированную область, расположенную на высоте выше 5 км . Интенсивные вертикальные пучки ультрафиолетового излучения могут быть использованы для ионизации атмосферных газов непосредственно над двумя возвышенными терминалами, приводя к образованию плазменных высоковольтных линий электропередач, ведущих прямо к проводящим слоям атмосферы. В результате между двумя возвышенными терминалами образуется поток электрического тока, проходящий до тропосферы, через неё и обратно на другой терминал. Электропроводность через слои атмосферы становится возможной благодаря ёмкостному плазменному разряду в ионизированной атмосфере .

    Никола Тесла обнаружил, что электроэнергия может передаваться и через землю, и через атмосферу. В ходе своих исследований он добился возгорания лампы на умеренных расстояниях и зафиксировал передачу электроэнергии на больших дистанциях. Башня Ворденклиф задумывалась как коммерческий проект по трансатлантической беспроводной телефонии и стала реальной демонстрацией возможности беспроводной передачи электроэнергии в глобальном масштабе. Установка не была завершена из-за недостаточного финансирования .

    Земля является естественным проводником и образует один проводящий контур. Обратный контур реализуется через верхние слои тропосферы и нижние слои стратосферы на высоте около 4,5 миль (7,2 км ) .

    Глобальная система передачи электроэнергии без проводов, так называемая „Всемирная беспроводная система“, основанная на высокой электропроводности плазмы и высокой электропроводности земли, была предложена Николой Тесла в начале 1904 года и вполне могла стать причиной Тунгусского метеорита , возникшего в результате „короткого замыкания“ между заряженной атмосферой и землей .

    Всемирная беспроводная система

    Ранние эксперименты известного сербского изобретателя Никола Теслы касались распространения обычных радиоволн, то есть волн Герца, электромагнитных волн, распространяющихся в пространстве.

    В 1919 году Никола Тесла писал: «Считается, что я начал работу над беспроводной передачей в 1893 году, но на самом деле два предыдущих года я проводил исследования и конструировал аппаратуру. Для меня было ясно с самого начала, что успеха можно достичь благодаря ряду радикальных решений. Высокочастотные генераторы и электрические осцилляторы должны были быть созданы в первую очередь. Их энергию необходимо было преобразовать в эффективных передатчиках и принять на расстоянии надлежащими приёмниками. Такая система была бы эффективна в случае исключения любого постороннего вмешательства и обеспечения её полной исключительности. Со временем, однако, я осознал, что для эффективной работы устройств такого рода они должны разрабатываться с учётом физических свойств нашей планеты».

    Одним из условий создания всемирной беспроводной системы является строительство резонансных приёмников. Заземлённый винтовой резонатор катушки Теслы и расположенный на возвышении терминал могут быть использованы в качестве таковых. Тесла лично неоднократно демонстрировал беспроводную передачу электрической энергии от передающей к приёмной катушке Теслы. Это стало частью его беспроводной системы передачи (патент США № 1119732 от 18 января 1902 года, «Аппарат для передачи электрической энергии»). Тесла предложил установить более тридцати приёмо-передающих станций по всему миру. В этой системе приёмная катушка действует как понижающий трансформатор с высоким выходным током. Параметры передающей катушки тождественны приёмной.

    Целью мировой беспроводной системы Теслы являлось совмещение передачи энергии с радиовещанием и направленной беспроводной связью, которое бы позволило избавиться от многочисленных высоковольтных линий электропередачи и содействовало бы объединению электрических генераторов в глобальном масштабе.

    См. также

    • WiTricity

    Примечания

    1. «Electricity at the Columbian Exposition», by John Patrick Barrett. 1894, pp. 168-169 (англ.)
    2. Experiments with Alternating Currents of Very High Frequency and Their Application to Methods of Artificial Illumination, AIEE, Columbia College, N.Y., May 20, 1891 (англ.)
    3. Experiments with Alternate Currents of High Potential and High Frequency, IEE Address, London, February 1892 (англ.)
    4. On Light and Other High Frequency Phenomena, Franklin Institute, Philadelphia, February 1893 and National Electric Light Association, St. Louis, March 1893 (англ.)
    5. The Work of Jagdish Chandra Bose: 100 years of mm-wave research (англ.)
    6. Jagadish Chandra Bose (англ.)
    7. Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony and Transmission of Power, pp. 26-29. (англ.)
    8. June 5, 1899, Nikola Tesla Colorado Spring Notes  1899-1900, Nolit, 1978 (англ.)
    9. Nikola Tesla: Guided Weapons & Computer Technology (англ.)
    10. The Electrician (London), 1904 (англ.)
    11. Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi
    12. Тетельбаум С. И. О беспроводной передаче электроэнергии на большие расстояния с помощью радиоволн // Электричество. - 1945. - № 5 . - С. 43-46 .
    13. Костенко А. А. Квазиоптика: исторические предпосылки и современные тенденции развития // Радиофизика и радиоастрономия. - 2000. - Т. 5 , № 3 . - С. 231 .
    14. A survey of the elements of power Transmission by microwave beam, in 1961 IRE Int. Conf. Rec., vol.9, part 3, pp.93-105 (англ.)
    15. IEEE Microwave Theory and Techniques, Bill Brown’s Distinguished Career (англ.)
    16. Power from the Sun: Its Future, Science Vol. 162, pp. 957-961 (1968)
    17. Solar Power Satellite patent (англ.)
    18. History of RFID (англ.)
    19. Space Solar Energy Initiative (англ.)
    20. Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology (англ.)
    21. W. C. Brown: The History of Power Transmission by Radio Waves: Microwave Theory and Techniques, IEEE Transactions on September, 1984, v. 32 (9), pp. 1230-1242 (англ.)
    22. Wireless Power Transfer via Strongly Coupled Magnetic Resonances (англ.) . Science (7 June 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года. ,
      Заработал новый способ беспроводной передачи электричества (рус.) . MEMBRANA.RU (8 июня 2007). Проверено 6 сентября 2010. Архивировано 29 февраля 2012 года.
    23. Bombardier PRIMOVE Technology
    24. Intel imagines wireless power for your laptop (англ.)
    25. wireless electricity specification nearing completion
    26. Global Qi Standard Powers Up Wireless Charging - HONG KONG, Sept. 2 /PRNewswire/
    27. TX40 and CX40, Ex approved Torch and Charger (англ.)
    28. Haier’s wireless HDTV lacks wires, svelte profile (video) (англ.) ,
      Беспроводное электричество поразило своих создателей (рус.) . MEMBRANA.RU (16 февраля 2010). Проверено 6 сентября 2010.

    Вопросом передачи электричества без проводов ученые занимаются уже третий век. В последнее время вопрос не то чтобы не потерял актуальности, а наоборот сделал шаг вперед, что только радует. Читателям сайта мы решили подробно рассказать как развивалась беспроводная передача электроэнергии на расстояния от начала и до наших дней, а также какие технологии уже практикуются.

    История развития

    Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.

    В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

    М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно мы рассматривали в статье ранее.

    Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

    Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

    Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:

    Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

    Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

    Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

    Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

    1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
    2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
    3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

    Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

    И к 1899 году Тесла приходит к выводу:

    Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

    Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.

    В наши дни

    Технологии беспроводной передачи электроэнергии сильно шагнули вперед, в основном в области передачи данных. Так значительных успехов достигла радиосвязь, беспроводные технологии типа Bluetooth и Wi-fi. Особых нововведений не произошло, в основном изменялись частоты, способы шифровки сигнала, представление сигнала перешло из аналогового в цифровой вид.

    Если вести речь о передаче электроэнергии без проводов для питания электрооборудования, стоит упомянуть о том, что в 2007 году исследователи из Массачусетского института передали энергию на 2 метра и зажгли 60-ваттную лампочку таким образом. Эта технология получила названия WiTricity, в её основе электромагнитный резонанс приемника и передатчика. Стоит отметить, что приемник получает порядка 40-45% электроэнергии. Обобщенная схема устройства для передачи энергии через магнитное поле изображена на рисунке ниже:

    На видео пример применения этой технологии для зарядки электромобиля. Суть заключается в том, что на дно электромобиля крепят приемник, а в гараже или на другом месте устанавливают передатчик на полу.

    Вы должны поставить машину так, чтобы приемник располагался над передатчиком. Устройство передает достаточно много электроэнергии без проводов – от 3,6 до 11 кВт в час.

    Компания в перспективе рассматривает обеспечение электричеством такой технологией и бытовой техники, а также всей квартиры в целом. В 2010 году компания Haier представила беспроводной телевизор, который получает питание с помощью аналогичной технологии, а также видеосигнал без проводов. Подобные разработки ведут и другие передовые компании, такие как Intel, Sony.

    В быту широко распространены технологии беспроводной передачи электроэнергии, например, для зарядки смартфона. Принцип аналогичный – есть передатчик, есть приемник, КПД порядка 50%, т.е. для заряда током в 1А передатчик будет потреблять 2А. Передатчик обычно в таких комплектах называется базой, а та часть, что подключается к телефону – приемником или антенной.

    Другой нишей является беспроводная передача электричества с помощью микроволн или лазера. Это обеспечивает больший радиус действия, нежели пара метров, которые обеспечивает магнитная индукция. В микроволновом способе на принимающее устройство устанавливают ректенну (нелинейная антенна для преобразования электромагнитной волны в постоянный ток), а передатчик направляет своё излучение в эту сторону. В таком варианте беспроводной передачи электричества отсутствует необходимость прямой видимости объектов. Минусом является то, что микроволновое излучение небезопасно для окружающей среды.

    В заключение хотелось бы отметить — беспроводная передача электричества, безусловно, удобна для использования в повседневной жизни, но у неё есть свои плюсы и минусы. Если говорить об использовании таких технологий для заряда гаджетов, то плюсом является то, что вам не придется постоянно вставлять и вынимать из разъёма вашего смартфона штекер, соответственно разъём не выйдет из строя. Минусом является низкий КПД, если для смартфона потери энергии не существенны (несколько Ватт), то для беспроводной зарядки электромобиля – это весьма большая проблема. Основной целью развития в этой технологии является повысить КПД установки, ведь на фоне повсеместной гонки за энергосбережением использование технологий с низким КПД весьма сомнительно.

    Похожие материалы:

    Нравится(0 ) Не нравится(0 )

    Беспроводная передача для доставки электричества имеет возможность поставлять основные достижения в области промышленности и приложениях, зависящих от физического контакта разъема. Оно, в свою очередь, может быть ненадежным и привести к неудачам. Передача беспроводной электроэнергии была впервые продемонстрирована Никола Тесла в 1890-х годах. Однако только в последнее десятилетие технология была использована до такой степени, что она предлагает реальные, ощутимые преимущества для приложений реального мира. В частности, развитие резонансной беспроводной системы питания для рынка бытовой электроники показало, что зарядка по индукции обеспечивает новые уровни удобства для миллионов повседневных устройств.

    Рассматриваемая мощность широко известна многими терминами. Включая индуктивную передачу, связь, резонансную беспроводную сеть и такую же отдачу напряжения. Каждое из этих условий, по существу, описывает один и тот же фундаментальный процесс. Беспроводную передачу электроэнергии или мощности от источника питания до напряжения нагрузки без разъемов через воздушный зазор. Основой являются две катушки - передатчика и приемника. Первая возбуждается переменным током для генерации магнитного поля, которое, в свою очередь, индуцирует напряжение во второй.

    Как работает рассматриваемая система

    Основы беспроводной мощности включают раздачу энергии от передатчика к приемнику через колебательное магнитное поле. Для достижения этого постоянный ток, подаваемый источником питания, преобразуется в высокочастотный переменный. С помощью специально разработанной электроники, встроенной в передатчик. Переменный ток активирует катушку медного провода в раздатчике, которая генерирует магнитное поле. Когда вторая (приемная) обмотка размещается в непосредственной близости. Магнитное поле может вызывать переменный ток в принимающей катушке. Электроника в первом устройстве затем преобразует переменный обратно в постоянный, который становится потребляемой мощностью.

    Схема беспроводной передачи электроэнергии

    Напряжение «сети» преобразуется в сигнал переменного тока, который затем посылается на катушку передатчика через электронную цепь. Протекающий через обмотку раздатчика, индуцирует магнитное поле. Оно, в свою очередь, может распространяться на катушку приемника, которая находится в относительной близости. Затем магнитное поле генерирует ток, протекающий через обмотку приемного устройства. Процесс, посредством которого энергия распространяется между передающей и приемной катушками, также упоминается как магнитная или резонансная связь. И достигается с помощью обеих обмоток, функционирующих на той же частоте. Ток, текущий в катушке приемника, преобразуется в постоянный с помощью схемы приемника. Затем может использоваться для питания устройства.

    Что значит резонанс

    Расстояние, на которое может передаваться энергия (или мощность), увеличивается, если катушки передатчика и приемника резонируют на одной и той же частоте. Подобно тому, как настраиваемая вилка колеблется на определенной высоте и может достигать максимальной амплитуды. Это относится к частоте, с которой объект естественным образом вибрирует.

    Преимущества беспроводной передачи

    В чем заключаются преимущества? Плюсы:

    • сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
    • большее удобство для зарядки обычных электронных устройств;
    • безопасная передача в приложения, которые должны оставаться герметически закрытыми;
    • электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
    • надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
    • обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.

    Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.

    Эффективность рассматриваемой передачи энергии

    Общая эффективность беспроводной системы питания является самым важным фактором в определении ее производительности. Результативность системы измеряет количество мощности, передаваемой между источником питания (то есть, настенной розеткой) и принимающим устройством. Это, в свою очередь, определяет такие аспекты как скорость зарядки и дальность распространения.

    Системы беспроводной связи различаются в зависимости от их уровня эффективности, основанного на таких факторах, как конфигурация и дизайн катушки, расстояние передачи. Менее результативное устройство будет генерировать больше выбросов и приведет к меньшей мощности, проходящей через приемное устройство. Как правило, беспроводные технологии передачи электроэнергии для таких устройств как смартфоны, могут достигать 70% производительности.

    Как измеряется эффективность

    В смысле, как количество мощности (в процентах), которое передается от источника питания к приемному устройству. То есть, беспроводная передача электроэнергии для смартфона с КПД 80% означает, что 20% входной мощности потеряно между настенной розеткой и батареей для заряжаемого гаджета. Формула для измерения эффективности работы: производительность = постоянный ток исходящий, деленный на входящий, полученный результат умножить на 100%.

    Беспроводные способы передачи электроэнергии

    Мощность может распространяться по рассматриваемой сети почти по всем неметаллическим материалам, включая, но не ограничиваясь ими. Это такие твердые вещества, как древесина, пластмасса, текстиль, стекло и кирпич, а также газы и жидкости. Когда металлический или электропроводящий материал (то есть, помещается в непосредственной близости от электромагнитного поля, объект поглощает мощность из него и в результате нагревается. Это, в свою очередь, влияет на эффективность системы. Вот как работают индукционные приготовления, к примеру, неэффективная передача мощности из варочной панели создает тепло для приготовления пищи.

    Чтобы создать систему беспроводной передачи электроэнергии, необходимо вернуться к истокам рассматриваемой темы. А,точнее, к успешному ученому и изобретателю Никола Тесла, который создал и запатентовал генератор, способный брать питание без различных материалистических проводников. Итак, для реализации беспроводной системы необходимо собрать все важные элементы и части, в результате будет реализована небольшая Это устройство, которое создает электрическое поле высокого напряжения в воздухе, вокруг него. При этом имеется небольшая входная мощность, она обеспечивает беспроводную передачу энергии на расстоянии.

    Одним из наиболее важных способов передачи энергии является индуктивная связь. Он в основном используется для ближнего поля. Охарактеризован на том факте, что при прохождении тока по одному проводу на концах другого индуцируется напряжение. Передача мощности осуществляется путем взаимности между двумя материалами. Общий пример - это трансформатор. Микроволновая передача энергии, как идея, была разработана Уильямом Брауном. Вся концепция включает в себя преобразование питания переменного тока в радиочастотное и передачу его в пространстве и повторное в переменную мощность на приемнике. В этой системе напряжение генерируется с использованием микроволновых источников энергии. Таких как клистрон. И эта мощность передается через волновод, который защищает от отраженной мощности. А также тюнер, который соответствует импедансу микроволнового источника с другими элементами. Приемная секция состоит из антенны. Она принимает мощность микроволн и схему согласования импеданса и фильтра. Эта приемная антенна вместе с выпрямляющим устройством может быть диполем. Соответствует выходному сигналу с подобным звуковым оповещением выпрямительного блока. Блок приемника также состоит из подобной секции, состоящей из диодов, которые используются для преобразования сигнала в оповещение постоянного тока. Эта система передачи использует частоты в диапазоне от 2 ГГц до 6 ГГц.

    Беспроводная передача электроэнергии с помощью который реализовал генератор с применением подобных магнитных колебаний. Суть заключается в том, что это устройство работало благодаря трем транзисторам.

    Использование пучка лазера для передачи мощности в виде световой энергии, которая преобразуется в электрическую на приемном конце. Непосредственно сам материал получает питание с использованием источников, таких как Солнце или любой генератор электроэнергии. И, соответственно, реализует фокусированный свет высокой интенсивности. Размер и форма пучка определяются набором оптики. И этот передаваемый лазерный свет принимается фотогальваническими ячейками, которые преобразуют его в электрические сигналы. Он обычно использует оптоволоконные кабели для передачи. Как и в базовой солнечной энергетической системе, приемник, используемый в распространении на основе лазера, представляет собой массив фотоэлектрических элементов или солнечной панели. Они, в свою очередь, могут преобразовывать бессвязный в электричество.

    Сущностные особенности работы устройства

    Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:

    1. длина 30 см ПВХ (чем больше, тем лучше);
    2. медная эмалированная проволока (вторичный провод);
    3. березовая доска для основания;
    4. 2222A транзистор;
    5. подсоединение (первичный) провод;
    6. резистор 22 кОм;
    7. переключатели и соединительные провода;
    8. аккумулятор 9 вольт.

    Этапы реализации устройства Тесла

    Для начала необходимо поместить небольшой слот в верхнюю часть трубы, чтобы обернуть один конец провода вокруг. Медленно и осторожно обматывать катушку, следя за тем, чтобы не перекрывать провода и, при этом, не создавать пробелов. Этот шаг - самая сложная и утомительная часть, но потраченное время даст очень качественную и хорошую катушку. Каждые 20, или около того, поворотов помещаются кольца маскирующей ленты вокруг обмотки. Они выступают в качестве барьера. В случае, если катушка начнет распутываться. По завершении нужно обернуть плотную ленту вокруг верхней и нижней части обмотки и распылить ее 2 или 3 слоями эмали.

    Затем необходимо подключить первичный и вторичный аккумулятор к батарее. После - включить транзистор и резистор. Меньшая обмотка является основной, а более длительная обмотка - вторичной. Можно дополнительно установить алюминиевую сферу сверху трубы. Кроме того, соединить открытый конец вторичной с добавленной, которая будет действовать как антенна. Необходимо создавать все с тщательной осторожностью, чтобы не дотрагиваться до вторичного устройства при включении питания.

    При самостоятельной реализации существует опасность возгорания. Нужно перевернуть выключатель, установить лампу накаливания рядом с беспроводным устройством передачи энергии и наслаждаться световым шоу.

    Беспроводная передача через систему солнечной энергии

    Традиционные проводные конфигурации реализации энергии обычно требуют наличия проводов между распределенными устройствами и потребительскими единицами. Это создает множество ограничений как стоимость системных затрат на кабели. Потери, понесенные в передаче. А также растраты в распределении. Только сопротивление линии передачи приводит к потере около 20-30% генерируемой энергии.

    Одна из самых современных беспроводных систем передачи энергии основана на передаче солнечной энергии с использованием микроволновой печи или луча лазера. Спутник размещен на геостационарной орбите и состоит из фотоэлектрических элементов. Они преобразуют солнечный свет в электрический ток, который используется для питания микроволнового генератора. И, соответственно, реализует мощность микроволн. Это напряжение передается с использованием радиосвязи и принимается на базовой станции. Она представляет собой комбинацию антенны и выпрямителя. И преобразуется обратно в электричество. Требует питания переменного или постоянного тока. Спутник может передавать до 10 МВт мощности радиочастоты.

    Если говорить о системе распространения постоянного тока, то даже это невозможно. Так как для этого требуется разъем между источником питания и устройством. Существует такая картина: система полностью лишена проводов, где можно получить мощность переменного тока в домах без каких-либо дополнительных устройств. Там, где есть возможность зарядить свой мобильный телефон без необходимости физически подключаться к гнезду. Конечно, такая система возможна. И множество современных исследователей пытаются создать нечто модернизированное, при этом, изучив роль разработки новых способов беспроводной передачи электроэнергии на расстоянии. Хотя, с точки зрения экономической составляющей, для государств это будет не совсем выгодно, если внедрять такие устройства повсеместно, и заменять стандартное электричество на природное.

    Истоки и примеры беспроводных систем

    Эта концепция, на самом деле, не является новой. Вся эта идея была разработана Николасом Тесла в 1893 году. Когда он разработал систему освещающих вакуумных ламп с использованием техники беспроводной передачи. Невозможно себе представить, чтобы мир существовал без различных источников зарядки, которые выражены в материальном виде. Чтобы стали возможными мобильные телефоны, домашние роботы, MP3-плееры, компьютер, ноутбуки и другие транспортируемые гаджеты, которые заряжались бы самостоятельно, без каких-либо дополнительных подключений, освобождая пользователей от постоянных проводов. Некоторые из этих устройств могут даже не требовать большого количества элементов. История беспроводной передачи энергии достаточно насыщена, причем, в основном, благодаря разработкам Тесла, Вольта и др. Но, сегодня это остается лишь данными в физической науке.

    Основной принцип заключается в преобразовании питания переменного тока в постоянное напряжение с помощью выпрямителей и фильтров. А затем - в возращение в исходное значение на высокой частоте с использованием инверторов. Эта низковольтная с высшими колебаниями мощность переменного тока затем переходит от первичного трансформатора к вторичному. Преобразуется в постоянное напряжение с использованием выпрямителя, фильтра и регулятора. Сигнал переменного тока становится прямым благодаря звуку тока. А также использованию секции выпрямителя моста. Полученный сигнал постоянного тока проходит через обмотку обратной связи, которая действует как схема генератора. При этом заставляет транзистор его проводить в первичный преобразователь в направлении слева направо. Когда ток проходит через обмотку обратной связи, соответствующий ток протекает к первичной части трансформатора в направлении справа налево.

    Таким образом работает ультразвуковой способ передачи энергии. Сигнал формируется через первичный преобразователь для обоих полупериодов оповещения переменного тока. Частота звука зависит от количественных показателей колебаний цепей генератора. Этот сигнал переменного тока появляется на вторичной обмотке трансформатора. А когда он подключен к первичному преобразователю другого объекта, напряжение переменного тока составляет 25 кГц. Появляется показание через него в понижающем трансформаторе.

    Это напряжение переменного тока выравнивается с помощью мостового выпрямителя. И затем фильтруется и регулируется, чтобы получить выход 5 В для управления светодиодом. Выходное напряжение 12 В от конденсатора используется для питания двигателя вентилятора постоянного тока для его работы. Итак, с точки зрения физики, передача электроэнергии - достаточно развитая область. Однако, как показывает практика, беспроводные системы не до конца развиты и усовершенствованы.