Типы диодов и их применение. Полупроводниковые диоды: виды и характеристики

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в "семейство" диодов входит не один десяток полупроводниковых приборов, носящих название "диод". Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод - катод, один из которых обладает электропроводностью типа р, а другой - n.

Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)

Внутреннее сопротивление диода (открытого) - величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.

Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД"ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.

Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:

Вывода ~ подключаются к трансформатору, на схеме это будет выглядеть вот так:

Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.

Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать .

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:

Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.

Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:

Стабилитрон

Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.

Стабилитроны на схемах обозначаются следующим образом:

Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.

Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.

Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.

Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.

Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.

Симистор

Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.

Светодиод

Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

Обозначение на схемах:

Инфракрасный диод

Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне. Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.

Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.

Фотодиод

Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.

Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так.

Официальное определение диода гласит, что это элемент, который имеет различную проводимость, в зависимости от того, в каком направлении течёт электрический ток. Его использование необходимо в цепях, нуждающихся в ограничении пути его следования. Данная статья более подробно расскажет об устройстве диода, а также о том, какие существуют виды и как их различать.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов - di и odos. Первое с греческого переводится как "два", второе — "путь". Таким образом, слово "диод" означает «два пути».

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Как устроен диод?

В основном, корпус элемента изготовлен из стекла, металла или керамических соединений. Под покрытием расположены два электрода. Самый простой диод содержит в себе нить малого диаметра.

Внутри катода может находится особая проволока. Она обладает свойством нагреваться под воздействием электрического тока и называется «подогреватель».

Вещества, используемые при изготовлении, чаще всего кремний или германий. Одна сторона элемента обладает нехваткой электронов, вторая — наоборот их переизбытком. Между ними существует граница, которая и обеспечивает p-n переход. Именно он позволяет проводить ток в нужном направлении.

Характеристики диодов

При выборе элемента в основном ориентируются на два показателя — предельное обратное напряжение и максимальная сила тока.

Использование диодов в быту

Один из ярких примеров использования диодов — автомобильный генератор. В нем размещён комплекс из нескольких таких элементов, который называется «диодный мост».

Также элементы активно применяются в телевизорах или радиоприёмниках. В соединении с конденсаторами диоды могут выделять частоты из разнообразных модулированных сигналов.

Очень часто комплекс из диодов используется в схемах для защиты потребителей от поражения электрическим током.

Также стоит сказать о том, что любой блок питания многих электронных устройств обязательно содержит диоды.

Виды диодов

В основном, элементы можно разделить на две группы. Первая — вид полупроводниковых диодов, вторая — не полупроводниковые.

Широкое распространение получила именно первая группа. Название происходит от материалов, из которых изготовлен диод: два полупроводника либо полупроводник с металлом.

Также имеется целый ряд специальных видов диодов, которые применяются в особых схемах и приборах.

Диод Зенера или стабилитрон

Данный вид характерен тем, что при возникновении пробоя происходит резкое увеличение тока с высокой точностью. Эту особенность применяют в стабилизации напряжения.

Туннельный

Если говорить простыми словами, то данный вид диодов образует отрицательное сопротивление на вольт-амперной характеристике. Применяется в основном в усилителях и генераторах.

Обращённый диод

Обладает свойством значительно понижать напряжение в открытом режиме. Это также основано на туннельном эффекте, подобному предыдущему диоду.

Варикап

Относится к виду диодов полупроводниковых, которые обладают повышенной ёмкостью, управляемой электрически в случае изменения обратного напряжения. Используется в настройке и калибровке колебательных контуров.

Светодиод

Особенность данного заключается в том, что он излучает свет при течении тока в прямом направлении. В современном мире применяется практически везде, где требуется освещение с экономичным источником света.

Фотодиод

Имеет обратные предыдущему экземпляру свойства. То есть, начинает вырабатывать электрический заряд при попадании на него света.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте - буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором - типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Триоды

Данный вид электронных элементов чем-то схож с диодом, однако выполняет другие функции и имеет свою конструкцию.

Основное различие между диодом и триодом в том, что последний имеет три вывода и в его отношении чаще используется название «транзистор». Принцип работы основан на управлении токами в выходных цепях с помощью небольшого сигнала.

(транзисторы) применяются практически в каждом электронном устройстве. В том числе и процессорах.

Плюсы и минусы

Перед заключением можно обобщить всю информацию о диодах и составить список их преимуществ и недостатков.

  • Невысокая цена диодов.
  • Отличный КПД.
  • Высокий ресурс работы.
  • Маленькие размеры, что позволяет удобно их размещать на схемах.
  • Возможность использования диода в переменном токе.

Из минусов, пожалуй, можно выделить то, что не существует полупроводникового типа для высоких напряжений в несколько киловольт. Поэтому придется применять более старые ламповые аналоги. Также воздействие высоких температур неблагоприятно сказывается на работе и состоянии элемента.

Первые экземпляры выпускались с применением малой точности. Поэтому разброс получившихся характеристик диодов был очень большим, вследствие чего уже готовые приборы приходилось, что называется, «разбраковывать». То есть, некоторые диоды, казалось бы, одной серии могли получить совершенно разные свойства. После отсева, элементы маркировались в соответствии с фактическими характеристиками.

Диоды, изготовленные в стеклянном корпусе, имеют одну интересную особенность — чувствительность к свету. То есть если прибор, в составе которого имеется такой элемент, имеет открывающуюся крышку, то работать вся схема может по-разному в закрытом и открытом состоянии.

Заключение

В общем, чтобы полностью понять и разобраться, как правильно применять и где использовать диоды, нужны изучить больше литературы. Для определения типа элемента на глазок потребуется соответствующий опыт. Ну а новичкам в этом могут помочь таблицы и справочники по маркировкам.

Также необходимо иметь хотя бы базовые представления об электрическом токе, его свойствах. Конечно, это все проходилось в школе, но кто сейчас навскидку сможет вспомнить даже закон Ома?

Поэтому без базовых знаний нырять в мир электроники будет очень проблематично.

Диод – простейший полупроводниковый или вакуумный прибор, имеющий два контакта. Главное свойство этого элемента – так называемая односторонняя проводимость.

Это означает, что в зависимости от полярности, полупроводник имеет кардинально разную проводимость. Меняя направление тока, можно открывать или закрывать диод. Свойство широко применяется в самых разных областях схемопостроения.

Принцип действия следующий:
Радиоэлемент состоит из токового перехода с интегрированными рабочими контактами – анодом и катодом.
Прикладывая к электродам прямое напряжение (анод – положительный, катод – отрицательный), мы открываем переход, сопротивление диода становится ничтожно малым, и через него протекает электрический ток, именуемый прямым.

Если поменять местами полярность: то есть на анод подать отрицательный потенциал, а на катод – положительный, сопротивление перехода возрастает настолько, что принято считать его стремящимся к бесконечности. Электрический ток (обратный) фактически равен нулю.

Основные разновидности диодов – не полупроводниковые и полупроводниковые

Первый вид широко использовался в эпоху радиоламп, до начала масштабного применения полупроводников. В колбе, являющейся корпусом радиодетали, мог быть специальный газ или вакуум. Надежность и мощность газонаполненных (вакуумных) диодов не вызывает нареканий, однако крупные габариты и необходимость прогрева для выхода на рабочие характеристики, ограничивает применение.

Для работы требовалось предварительно разогреть один из электродов – катод. После чего внутри лампы возникала электронная эмиссия, и между рабочими электродами протекал ток (в одном направлении).

Это интересно! Несмотря на архаичность вакуумных ламп, ценители хорошей музыки предпочитают усилители, собранные на этих элементах. Считается, что звук будет естественнее и чище, чем в полупроводниковых системах.

Усилитель собран из вакуумных диодов

Полупроводниковые диоды. Рабочим элементом является полупроводниковый материал с интегрированными контактами-электродами.

Поскольку кристалл может работать в любых условиях (ток протекает непосредственно в его теле), необходимости помещения в вакуум или особую газовую среду нет. Требуется лишь механическая защита, ибо все полупроводниковые материалы хрупкие.

Что такое диод? Для того чтобы ответить на этот вопрос, надо копнуть вглубь, в самое начало, а именно, с чего начинается полупроводник.

Вступление из теории

Проводник

Попробуем представить себе кусок материала проводника, например, меди. Чем он характеризуется: в нем есть свободные носители заряда – электроны. Причем таких отрицательных частиц в нем очень много.

Если на эту область подать плюс, то все эти отрицательные элементы устремятся к нему, то есть потечет ток через медь. Это известный факт, поэтому в качестве токопроводящих материалов применяют именно медь. К проводникам также относятся такие элементы периодической таблицы Менделеева, как алюминий, железо, золото и многие другие.

Диэлектрик

Диэлектрик – это материал, который свободных носителей заряда не имеет и, следовательно, ток не проводит.

Полупроводник

Полупроводник – это и металл, и неметалл. Материал, который и проводит ток, и не проводит. В нем мало свободных носителей заряда. Типичными полупроводниками являются кремний, германий.

Что такое диод

Кремний является четырехвалентным элементом. Чтобы его превратить в проводник, к нему подмешивают пятивалентный мышьяк. В результате этого соединения появляются лишние электроны, то есть свободные носители заряда. А если добавить к кремнию трехвалентный индий, в материале появятся позитроны, частицы с нехваткой электрона. Из таких областей и состоит диод.

Полученная структура называется PN элементом или PN-переходом. P – позитивная часть, N – негативная. Одна часть материала обогащена плюсовыми позитронами, другая – минусовыми электронами.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов.

Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:

  • подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов;
  • отсутствие напряжения все возвращает в исходное состояние;
  • смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой.

В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона. Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток.

Для информации. Слово происходит от di (double) + -ode. Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет.

Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.

Диоды – это полупроводники, состоящие из областей P и N. Благодаря свойствам PN-перехода диод проводит ток только в одном направлении. Таков принцип действия этих устройств. Для чего нужны они?

Назначение диодов

Диоды бывают различного исполнения: от громоздких советских до миниатюрных современных. Может устройство быть одной и той же мощности, но из-за времени выпуска различаться по габаритам. Диоды на большой ток нуждаются в охлаждении, поэтому производятся с креплением под радиатор. Соответственно, устройства без радиатора рассчитаны на малый ток.

Применение диодов

Устройства диодов могут быть ориентированы на ограничение или приостановление движения тока. Чрезвычайно распространенным приложением является его использование в качестве выпрямителя.

Выпрямители

Поскольку диод позволяет току течь лишь в одном направлении, то переменный ток проходит через диод только положительную или отрицательную часть напряжения синусоидальной волны. Это означает, что можно эффективно преобразовывать переменный ток в постоянный ток, применяя диоды, расположенные в виде полноволнового выпрямителя.

Например, имеется источник переменного тока. На выходе из него в цепь поставлен диод, через который подключена нагрузка. Что получится? Если источник дает синусоиду, то на выходе диода пройдет только положительная полуволна. И так до следующей полуволны. Но если развернуть диод другой стороной, то на выходе получится отрицательная полуволна, то есть устройство пропускает ток только в одном направлении.

Если поставить на место диода мост, состоящий из четырех диодов, то на выходе будет сигнал в форме полуволн, напоминающих верблюжий горб. Полуволны будут развернуты все в одном направлении. При установке после диодов дополнительного конденсатора получатся те же полуволны, только сглаженные.

Варикапы

Графический значок варикапа очень напоминает условное изображение полупроводникового диода. Варикап – это и есть обыкновенный диод. Работа устройства основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Если напряжение подается маленькое, емкость получается большая, если подается большое напряжение – емкость становится маленькой. Реально варикапы изменяют свою емкость в несколько раз (до 7 раз).

Стабилитроны

Стабилитрон – это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. Выбирают стабилитрон с большим запасом рассеиваемой мощности, потому что он постоянно работает в режиме пробоя. Основное назначение стабилитронов – стабилизация напряжения.

Основной целью стабилизатора напряжения является поддержание постоянного напряжения на нагрузке, независимо от изменений входного напряжения и тока нагрузки. При изменяющихся условиях тока нагрузки стабилитрон может использоваться для получения стабилизированного выходного напряжения. Это основная причина использования стабилитрона в качестве стабилизатора напряжения.

Диоды Шоттки

Диод Шоттки – это низковольтное устройство, в котором используются в качестве электродов металл и обогащенный электронами полупроводник. Напряжение такого диода составляет примерно 0,2-0,4 В, в сравнение с обычным диодом эта величина в два раза меньше.

Зона применения диода Шоттки ограниченная, поскольку он не может работать без стабилитрона. В основном диоды Шоттки используются в устройствах, работающих в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Светодиоды

Светоизлучающие диоды в настоящее время широко применяются в качестве диодных блоков легких энергосберегающих лампочек. Они становятся незаменимыми для жизни людей, поскольку способствуют снижению возрастающих цен на электроэнергию.

Для информации. Мигающие светодиоды часто применяют в различных сигнальных цепях, для украшения домашнего интерьера. Существуют схемы, с помощью которых можно заставить мигать светодиоды. Сделать мигающие светодиоды – вполне выполнимая задача.