Управление сервоприводом. Подключаем сервопривод к Arduino

Рассмотрим на этом занятии устройство и принцип работы сервоприводов. Разберем два простых скетча для управления сервоприводом с помощью потенциометра на Ардуино. Также мы узнаем новые команды в языке программирования C++ — servo.write , servo.read , servo.attach и научимся подключать в скетчах библиотеку для управления сервоприводами и другими устройствами через Ардуино.

Устройство сервомотора (servo)

Сервопривод (сервомотор) является важным элементом при конструировании различных роботов и механизмов. Это точный исполнитель, который имеет обратную связь, позволяющую точно управлять движениями механизмов. Другими словами, получая на входе значение управляющего сигнала, сервомотор стремится поддерживать это значение на выходе своего исполнительного элемента.

Сервоприводы широко используются для моделирования механических движений роботов. Сервопривод состоит из датчика (скорости, положения и т.п.), блока управления приводом из механической системы и электронной схемы. Редукторы (шестерни) устройства выполняют из металла, карбона или пластика. Пластиковые шестерни сервомотора не выдерживают сильные нагрузки и удары.

Сервомотор имеет встроенный потенциометр, который соединен с выходным валом. Поворотом вала, сервопривод меняет значение напряжения на потенциометре. Плата анализирует напряжение входного сигнала и сравнивает его с напряжением на потенциометре, исходя из полученной разницы, мотор будет вращаться до тех пор пока не выравняет напряжение на выходе и на потенциометре.


Управление сервоприводом с помощью широтно импульсной модуляции

Как подключить сервопривод к Ардуино

Схема подключения сервопривода к Arduino обычно следующая: черный провод присоединяем к GND, красный провод присоединяем к 5V, оранжевый/желтый провод к аналоговому выводу с ШИМ (Широтно Импульсная Модуляция). Управление сервоприводом на Ардуино достаточно просто, но по углам поворота сервомоторы бывают на 180° и 360°, что следует учитывать в робототехнике.

Для занятия нам понадобятся следующие детали:

  • Плата Arduino Uno / Arduino Nano / Arduino Mega;
  • Макетная плата;
  • USB-кабель;
  • 1 сервопривод;
  • 1 потенциометр;
  • Провода «папа-папа» и «папа-мама».

В первом скетче мы рассмотрим как управлять сервоприводом на Arduino с помощью команды myservo.write(0) . Также мы будем использовать стандартную библиотеку Servo.h . Подключите сервомашинку к плате Ардуино, согласно схеме на фото выше и загрузите готовый скетч. В процедуре void loop() мы будем просто задавать для сервопривода необходимый угол поворота и время ожидания до следующего поворота.

Скетч для сервопривода на Ардуино

#include Servo servo1; // объявляем переменную servo типа "servo1" void setup () { servo1.attach (11); // привязываем сервопривод к аналоговому выходу 11 } void loop () { servo1.write (0); // ставим угол поворота под 0 delay (2000); // ждем 2 секунды servo1.write (90); // ставим угол поворота под 90 delay (2000); // ждем 2 секунды servo1.write (180); // ставим угол поворота под 180 delay (2000); // ждем 2 секунды }

Пояснения к коду:

  1. Стандартная библиотека Servo.h содержит набор дополнительных команд, которая позволяет значительно упростить скетч;
  2. Переменная Servo необходима, чтобы не запутаться при подключении нескольких сервоприводов к Ардуино. Мы назначаем каждому приводу свое имя;
  3. Команда servo1.attach(10) привязывает привод к аналоговому выходу 10.
  4. В программе мы вращаем привод на 0-90-180 градусов и возвращаем в начальное положение, поскольку процедура void loop повторяется циклично.

Управление сервоприводом потенциометром


Подключение сервопривода и потенциометра к Ардуино Уно

Ардуино позволяет не только управлять, но и считывать показания с сервопривода. Команда myservo.read(0) считывает текущий угол поворота вала сервопривода и его мы можем увидеть на мониторе порта. Предоставим более сложный пример управления сервоприводом потенциометром на Ардуино. Соберите схему с потенциометром и загрузите скетч управления сервоприводом.

Скетч для сервопривода с потенциометром

#include // подключаем библиотеку для работы с сервоприводом Servo servo; // объявляем переменную servo типа "servo" void setup () { servo.attach (10); // привязываем сервопривод к аналоговому выходу 10 pinMode (A0, INPUT); // к аналоговому входу A0 подключим потенциометр Serial .begin (9600); // подключаем монитор порта } void loop () { servo.write (analogRead (A0)/4); // передает значения для вала сервопривода Serial .println (analogRead (A0)); // выводим показания потенциометра на монитор Serial .println (analogRead (A0)/4); // выводим сигнал, подаваемый на сервопривод Serial .println (); // выводим пустую строчку на монитор порта delay (1000); // задержка в одну секунду }

Пояснения к коду:

  1. В этот раз мы присвоили имя для сервопривода в скетче, как servo ;
  2. Команда servo.write(analogRead(A0)/4) передает значения для вала сервопривода — получаемое напряжение с потенциометра мы делим на четыре и оправляем данное значение на сервопривод.
  3. Команда Serial.println (servo.read(10)) считывает значение угла поворота вала сервопривода и передает его на монитор порта.

Сервомоторы часто используются в различных проектах на Ардуино для различных функций: повороты конструкций, движение частей механизмов. Так как мотор серво постоянно стремится удерживать заданный угол поворота, то будьте готовы к повышенному расходу электроэнергии. Это будет особенно чувствительно в автономных роботах, питающихся от аккумуляторов или батареек.

Также часто читают:

В данной статье рассмотрим устройство, принцип работы, характеристики и габаритные размеры сервоприводов.

Определение понятия сервопривод

Сервопривод (следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.
Сервоприводом является любой тип механического привода (устройства, рабочего органа), имеющий в составе датчик (положения, скорости, усилия и т. п.) и блок управления приводом (электронную схему или механическую систему тяг), автоматически поддерживающий необходимые параметры на датчике (и, соответственно, на устройстве) согласно заданному внешнему значению (положению ручки управления или численному значению от других систем).
Проще говоря, сервопривод является «автоматическим точным исполнителем» — получая на вход значение управляющего параметра (в режиме реального времени), он «своими силами» (основываясь на показаниях датчика) стремится создать и поддерживать это значение на выходе исполнительного элемента.

Используемые компоненты (купить в Китае):

Полезная вещь для проверки сервориводов

Разобравшись с определением перейдем к непосредственному разбору принципа работы сервопривода
Для большей наглядности сразу приведу схематичную картинку внутренностей сервопривода.

Приступим к разбору.
Для подключения к контроллеру от сервопривода тянется 3 провода обжатых чаще всего стандартным 3 пиновым разъемом с шагом 2.54мм (1). Цвета проводов могут варьироваться. Коричневый или черный - земля (минус), красный - плюс источника питания, оранжевый или белый - управляющий сигнал. Об управляющих сигналах расскажу чуть позже.
Итак, сигнал приходит на плату которая и будет данный сигнал преобразовывать в импульсы посылаемые непосредственно на двигатель (2). К ней мы вернемся чуть позже.
Наконец-то мы дошли до той детали, благодаря которой мы и можем считывать и задавать угол поворота сервопривода (3). В интернете нашел отличную GIFку демонстрирующую принцип работы потенциометра.

Принцип работы потенциометра прост. Потенциометр имеет 3 вывода. На крайние выводы подается плюс и минус питания (полярность не имеет значения), между выводами имеется резистивное вещество, по которому и движется ползунок соединенный со средним выводом. В нашем случае договоримся что на крайнем левом у нас плюс, на крайнем правом минус. Вращая крутилку из левого крайнего положения в крайнее правое положение мы увеличиваем сопротивление, а вместе с тем и уменьшаем напряжение от входного до условно минимального, которое будем снимать со среднего вывода. Значение минимального напряжения будет зависеть от величины максимального сопротивления у конкретно взятого потенциометра. В рассматриваемых нами сервоприводах чаще всего устанавливают потенциометры на 5 килоОм.
С устройством мы разобрались, теперь вернемся к сервоприводу. Крутилка сервопривода у нас состыкована с выходным валом сервопривода, следовательно при повороте выходного вала мы меняем значение на потенциометре. Условно примем входное напряжение (ручка потенциометра в крайнем правом положении) равное пяти вольтам, пускай при крайнем левом положении потенциометр погасит все напряжение и минимальное напряжение будет равным нулю, а в средней точке тогда у нас будет два с половиной вольта. Из данных условий у нас получается что при угле в 180° на выходе потенциометра у нас 5 вольт, при 90° 2,5 вольта, а при 0° 0 вольт. Для чего я это так подробно рассказываю? Возвращаемся снова к управляющей плате.
Сервопривод находится в положении 0°. На вход платы управления мы подаем управляющий сигнал который несет в себе информацию о повороте сервопривода на 90°. Электронная начинка платы считывает показания потенциометра, на потенциометре видит 0 вольт, а в программе забито что должно быть 2,5. Вот и весь смысл. Плата анализирует разницу, затем выбирает направление вращения мотора и будет вращать его до тех пор пока напряжение на выходе потенциометра не станет равным двум с половиной вольтам.
Едем дальше. Чтоб не листать страницу снова вверх, в поисках картинки, приведу её ещё раз.

Микромоторчик (4) не в состоянии развить мощное усилие на валу (момент), однако обладает высокой скоростью вращения. Для преобразования высокой угловой скорости с малым моментом в низкую с высоким, которая нам как раз и нужна, следует использовать редуктор. Редуктор представлен шестернями соединяющими вал моторчика и выходной вал (5). Шестерня с меньшим количеством зубцов ведет шестерню с большим. от этого снижается скорость но повышается момент, Более наглядно понять принцип работы редуктора можно взяв в руки сервопривод и попытаться повернуть качалку сервопривода. Сложно? Конечно, ведь с обратной стороны редуктор превращается в мультипликатор, механическое устройство которое наоборот преобразует низкооборотный мощный момент в высокооборотный слабый.


Основные характеристики сервоприводов:

. Усилие на валу

Усилие на валу, он же момент это один из самых важных показателей сервопривода и измеряется в кг/см. В характеристиках обычно указывается для двух вариантов напряжения питания, чаще всего для 4.8В и 6.0В.
Момент в 15 кг/см означает что сервопривод способен удержать неподвижно в горизонтальном положении качалку с плечом в 1 см и подвешенным к ней грузом массой 15 кг либо же удержать груз в 1 кг на качалке с плечом в 15 см.
Длина плеча качалки обратно пропорциональна массе удерживаемого груза. Для данного привода при длине в 2 см мы получим 7.5 кг, а уменьшив длину рычага до 0,5 см получим уже целых 30кг

. Скорость поворота

Скорость поворота также является одной из самых важных характеристик. Ее принято указывать во временном эквиваленте требуемом для изменения положения выводного вала сервопривода на 60°. Данную характеристику также чаще всего указывают для 4.8В и 6.0В.
Например характеристика 0.13сек/60° означает что поворот данной сервы на 60° может быть совершен минимум за 0.13 секунды.

. Тип сервоприводов

Цифровые либо аналоговые

. Напряжение питания

Для большинства хоббийных сервоприводов колеблется в диапазоне от 4.8 до 7.2В

. Угол поворота

Это максимальный угол на который может повернуть выходной вал. Сервоприводы по углам поворота в основном бывают на 180° и 360°.

. Сервопривод постоянного вращения

Выпускаются сервоприводы и постоянного вращения. Если нет возможности приобрести такой, но очень нужно, то можно переделать обычный сервопривод.

. Тип редуктора

Редукторы сервопривода выполняют из металла, карбона, пластика либо компонуют из металлических и пластиковых шестерней.

Пластиковые шестерни слабо выдерживают нагрузки и удары, зато обладают очень малым износом. Карбоновые прочнее пластиковых, но намного дороже. Металлические выдерживают большие нагрузки, удары, падения, однако износ у этого типа шестерней самый большой.
Также хочется отметить что и выходной вал на различных сервоприводах устанавливается по разному. На большинстве вал скользит на втулках скольжения, на более мощных сервоприводах уже используются шариковые подшипники.

Типоразмеры сервоприводов:

Сервоприводы делятся на 4 основных типоразмера. Далее приводятся типы сервоприводов с указанием веса и размеров. Размеры различных сервоприводов могут незначительно откланяться от приведенных ниже.

Микро: 24мм x 12мм x 24мм, вес: 8-10 г.

Мини: 30мм x 15мм x 35мм, вес 23-25 г.

Стандарт: 40мм x 20мм x 37мм, вес: 50-80 г.

Гигант: 49x25x40 мм, вес 50-90 г.

Цикл статей о сервоприводах:

Купить в России

Учимся управлять сервомотором с использованием Arduino.

Сначала мы рассмотрим как обеспечить вращение выходного вала серводвигателя в автоматическом режиме "вперед" и в обратном направлении. После этого дополнительно включим в схему потенциометр, который обеспечит управление поворотом сервопривода.

Необходимые узлы

Для того, чтобы освоить приведенные в статье методики управления сервоприводом вам понадобятся:

1 переменный резистор (потенциометр) на 10 кОм



1 микроконтроллер Arduino Uno



1 конденсатор на 100 мкФ (не обязательно)


Схема подключения для "Sweep" (автоматическое вращение)

Для этого эксперимента вам надо подключить к Arduino только сервомотор.


На сервомоторе 3 контакта. Цвет контактов может отличаться в зависимости от фирмы производителя, но красный - это всегда контакт 5 В. Контакт GND (земля) может быть черным или коричневым. Оставшийся третий контакт - это сигнал, который используется для управления положением ротора сервы. Обычно он желтого или желтого цветов. Этот контакт мы подключаем к цифровому пину 9 на Arduino.

На контактах сервы предусмотрены разъемы, в которые можно установить коннекторы (провода) и соединить из макетной платой, а потом с Arduino.


Серводвигатель дергается

Иногда при подключении сервы не отрабатывают заданные команды или отрабатывают некорректно. Причем происходить это может только при подключении к определенным USB портам. Причина в том, что сервы требуют достаточно большую мощность для питания, особенно в начале движения ротора. Эти резкие скачки потребляемой мощности могут сильно "просаживать" напряжение на Arduino. Может произойти даже перезагрузка платы.

Если подобное происходит, вам надо добавить конденсатор (470 мкФ или больше) между рельсами GND и 5V на вашей макетке.


Конденсатор выполняет роль своебразного резервуара для электрического тока. Когда серводвигатель начинает работать, он получает остатки заряда с конденсатора и от источника питания Arduino одновременно.

Длинная нога конденсатора - это позитивный контакт, она подключается к 5V. Отрицательный контакт часто маркируется символом "-".

Скетч Arduino "Sweep" (автоматическое вращение)

Загрузите на Arduino скетч, который рассмотрен ниже. После загрузки ротор сервы должен начать вращаться в одном направлении, а потом в противоположном.

Программа основана на стандартном скетче "sweep", который вы можете найти в меню Arduino Examples в папке "servo".

#include <Servo.h>

int servoPin = 9;

int angle = 0; // угол сервы в градусах

servo.attach(servoPin);

// инкремент от 0 до 180 градусов

for(angle = 0; angle < 180; angle++)

servo.write(angle);

// теперь в обратном направлении от 180 до 0 градусов

for(angle = 180; angle > 0; angle--)

servo.write(angle);

Сервомоторы управляются серией импульсов. Для того, чтобы упростить управление сервами, написана специальная библиотека (Arduino library). С помощью этой библиотеки вы можете управлять сервой, задавая фактический угол поворота вала на выходе.

Управляющие команды для серв подобны встроенным в Arduino, но так как вы используете их далеко не во всех проектах, они хранятся в отдельной библиотеке. Если вы хотите использовать команды из библиотеки для серводвигателей, вам надо включить библиотеку в ваш скетч в Arduino IDE с помощью следующей строки:

#include <Servo.h>

Используем переменную "servoPin" для определения порта, который управляет сервой.

Следующая строка:

инициализирует новую переменную "servo" типа "Servo". Библиотека предоставляет нам новый тип данных наподобие "int" или "float", который отвечает за серву. Таким образом вы можете инициализировать восемь серводвигателей. Например, если у нас две сервы, можно записать следующее:

В теле функции "setup" мы должны согласовать переменную "servo" с пином, который будет управлять серводвигателем, используя команду:

servo.attach(servoPin);

Переменная "angle" используется для указания текущего угла поворота сервы в градусах. В теле функции "loop" мы используем используем два цикла "for". Один - для увеличения угла поворота в одном направлении и второй - для возврата, когда мы совершили поворот на 180 градусов.

servo.write(angle);

Сообщает серве, что надо обновить угол поворота выходного вала сервомотора в соответствии с углом, который указан в качестве параметра.

Схема подключения сервы с потенциометром ("Knob")

Следующий этап - добавить , чтобы управлять положением выходного вала сервы с помощью поворота ручки переменного резистора.

Надо просто добавить на макетную плату потенциометр и проводник от контакта сигнала с потенциометра на пин A0 на Arduino.


Скетч Arduino "Knob" (управление сервой с помошью потенциометра)

Программа, в которой положение выходного вала сервы контролируется углом поворота ручки потенциометра даже проще, чем рассмотренный ранее автоматический поворот и возврат в исходное положение.

#include <Servo.h>

int servoPin = 9;

servo.attach(servoPin);

int reading = analogRead(potPin); // от 0 до 1023

int angle = reading / 6; // от 0 до 180

servo.write(angle);

В скетче добавлена переменная с именем "potPin".

Для того, чтобы вывести вал сервы в положение, мы считываем значение с контакта Arduino A0. Значение с этого контакта будет находится в диапазоне между 0 и 1023. Так как серва может поворачиваться только на 180 градусов, нам надо масштабировать полученные значения. Разделив значения с контакта A0 на 6 мы получаем угол в диапазоне от 0 до 170, что нас вполне устраивает.

Сервомоторы - общая информация

Сервомоторы - один из типов двигателей , коотрые часто используются в робототехнике, мехатронных проектах, проектах на Arduino.

Положение выходного вала сервомотора определяется длиной импульса. Серва может получать импульсы каждые 20 миллисекунд. Если импульс high длится 1 миллисекунду, угол поворота сервы будет равен нулю. Если 1.5 миллисекунды, тогда серва выйдет в свое центральное положение, а если 2 миллисекунды - выйдет в положение, которое соответствует 180 градусам.


Крайние положения сервомоторов могут отличаться. Кроме того, многие сервы могут поворачиваться на 170 градусов. Есть и "continuous" сервы, которые совершают оборот на полные 360 градусов.

Внутри сервы

На видео, которое приведено ниже, показано, что происходит внутри сервомотора.

Будьте аккуратны. Если вы разберете серву подобным образом, есть вероятность, что собрать обратно ее не получится.

Дальнейшие эксперименты с сервой и Arduino

Откройте скетч "sweep" и попробуйте сократить задержки с 15 миллисекунд до, скажем, 5 миллисекунд. Обратите внимание, насколько быстрее начали вращаться сервы.

Попробуйте изменить скетч "knob". Вместо того, чтобы ориентироваться на значения с потенциометра, реализуйте управление сервой с помощью значений, которые вы указываете в окне серийного моитора Arduino IDE.

Небольшая подсказка: для того, чтоьы скетч считывал значения угла с серийного монитора, вы можете использовать функцию Serial.parseInt(). Эта функция парсит (считывает) числовые значения с серийного монитора.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Серводвигатели используются не только в авиамоделизме и робототехнике, их можно так же использовать в устройствах бытового назначения. Небольшие размеры, высокая производительность, а так же проста управления серводвигателем делают их наиболее подходящими для осуществления дистанционного управления различными устройствами.

Совместное применение серводвигателей с радиомодулями примема-передачи не создает никаких трудностей, достаточно на стороне приемника просто подключить к серводвигателю соответствующий разъем, содержащий питающее напряжение и управляющий сигнал, и дело сделано.

Но если мы хотим управлять серводвигателем «вручную», например, с помощью потенциометра, нам необходим генератор импульсного управления. Ниже представлена достаточно простая схема генератора на основе интегральной микросхемы 74HC00.

Данная схема позволяет осуществлять ручное управление серводвигателями путем подачи управляющих импульсов шириной 0,6 до 2 мс. Схему можно применить, например, для поворота небольших антенн, наружных прожекторов, камер видеонаблюдения и т.д.

Управления серводвигателем. Описание контроллера

Основой схемы является микросхема 74HC00 (IC1) представляющая собой 4 логических элемента И-НЕ. На элементах IC1A и IC1B создан генератор, на выходе которого образуются импульсы с частотой 50 Гц. Эти импульсы активируют RS-триггер, состоящий из логических элементов IC1C и IC1D.

С каждым импульсом идущим с генератора выход IC1D устанавливается в «0» и конденсатор С2 разряжается через резистор R2 и потенциометр P1. Если напряжение на конденсаторе С2 снижается до определенного уровня, то RC-цепь переводит элемент в противоположное состояние. Таким образом, мы на выходе получаем прямоугольные импульсы с периодом 20 мс. Ширина импульсов устанавливается потенциометром P1.

Например, сервопривод Futaba S3003 изменяет угол вращения вала на 90 градусов за счет управляющих импульсов продолжительностью от 1 до 2 мс. Если мы изменим ширину импульса от 0,6 до 2 мс, то угол поворота составит до 120 °. Компоненты в схеме подобраны таким образом, что выходной импульс находится в диапазоне от 0,6 до 2 мс, и поэтому угол установки составляет 120 °. Серводвигатель S3003 от Futaby имеет достаточно большой крутящий момент, и ток потребления может составлять от десятков до сотен мА в зависимости от механической нагрузки.

Конструкция

Схема управления серводвигателем собрана на двусторонней печатной плате размером 29 х 36 мм. Монтаж очень простой, так что со сборкой устройства вполне может справиться даже начинающий радиолюбитель.

Является элементом точной кинематики, позволяющий достигать точное позиционирование механизмов. Но в отличии от шагового двигателя, сервопривод имеет обратную связь, позволяющую в любой момент отследить точный угол поворота вала. В качестве источника обратной связи могут быть использованы различные типы энкодеров и потенциометры.

В статье рассмотрим подключение и работу с младшими представителями сервоприводов - т.н. сервомашинками - горячо любимыми среди роботостроителей и моделистов.

Конструктив

Сервомашинка состоит из корпуса, в котором заключен небольшой коллекторный электромотор, редуктор и управляющая электроника.

В качестве обратной связи применяются потенциометры. Поэтому эти сервы имеют ограничения по углу поворота вала вокруг оси. Так, в приобретенных мной сервах Futaba S3003, угол поворота выходного вала составляет 225°.

Технические характеристики Futaba S3003

Параметр Напряжение питания, В
4,8 6,0
Усилие на валу 3,2 кг/см 4,1 кг/см
Скорость позиционирования 0,23 sec/60° 0,19 sec/60°
Размер, Д х Ш х В 41мм х 20мм х 36мм
Масса, г 37

Потенциометр обратной связи посажен прямо на выходной вал, благодаря ему блок управления сервомашинки отслеживает точное положение вала: сопротивление потенциометра изменяется пропорционально углу поворота . Считав сопротивление, блок управления сравнивает это значение с тем, которое должно быть при заданном положении вала. Если эти значения отличаются, блок управления дает команду двигателю повернуть вал в заданном направлении, уменьшая разницу значений. Достигнув положения вала, когда значение с потенциометра совпадает с заданным значением, двигатель останавливается. Считывание значения с потенциометра и его сравнение происходит с большой частотой, поэтому выходной вал будет стремиться занять заданное положение при изменении внешней нагрузки.

Конструкция сервомашинки выполнена таким образом, что крутящий момент от двигателя к выходному валу передается через редуктор с большим передаточным числом, поэтому при малых размерах и энергозатратах, сервомашинки могут обеспечивать большую тягу.


Управление

В качестве управляющего сигнала служит импульсный сигнал с периодом 20 мс и с длительностью от 0,8 до 2,2 мс. Это некий стандарт управления сервомашинок. Чем длинее пришел импульс, тем на больший угол повернется вал сервомашинки. Для разгона сервомашинки период следования импульсов можно уменьшить до 10 мс.


Управляющий сигнал подается на серву по сигнальному проводу S. В моей сервомашинке он белый, в некоторых моделях - желтый. Помимо сигнального провода из сервомашинки выходят два провода - линии питания - земля (черный) и питание (красный)


Программная часть

Как видно управлять сервой достаточно просто - достаточно гнать импульсный сигнал с нужной частотой и скважностью. Этот сигнал можно генериовать ШИМ , или написать свою функцию обработки прерывания по таймеру. Но в Bascom-AVR уже есть встроенная команда для управления сервомашинками - Servo . Ее и рассмотрим.

Для начала необходимо сконфигурировать подключение сервомашинок:

Config Servos = X , Servo1 = Portb . 0 , Servo2 = Portb . 1 , Reload = Var

Servos = X ; указывается количество подключаемых сервомашинок, возможно подключение до 14 серв.

Servo1 = Portb . 0 ; указывается порт подключения первой сервы

Servo2 = Portb . 1 ; указывается порт подключения второй сервы

Reload = Var ; здесь Var время в микросекундах, которое проходит между прерываниями от таймера.

По умолчанию для организации прерываний используется Timer0, поэтому использовать его в своих целях уже не получиться. Bascom-AVR позволяет перебросить обслуживание прерываний на любой другой таймер, например чтобы освободить Timer0 и задествовать Timer1 достаточно указать это в строке конфигурации:

Config Servos = 2 , Servo1 = Portb . 0 , Servo2 = Portb . 1 , Reload = 10 , Timer = Timer1


После того как все сконфигурировали остается только рулить нашей сервомашинкой. Это делается следующей командой

Servo ( a) = F

а - порядковый номер сервомашинки

F - переменная, значение которой задает угол поворота вала сервы

Тестовый код целиком:


$regfile = "m8def.dat" "микроконтроллер ATmega8
$crystal = 8000000 "частота работы 8МГц

"конфигурируем порты для подключения сервоприводов
Config Portb . 0 = Output
Config Portb . 1 = Output

"настраиваем подключения двух сервомашинок
Config Servos = 2 , Servo1 = Portb . 0 , Servo2 = Portb . 1 , Reload = 15

Dim F As Byte "переменная для первой сервы
Dim S As Byte "переменная для второй сервы

"разрешаем прерывания
Enable Interrupts

F = 15 "значением переменной задается угол поворота вала сервомашинки
S = 70

Do

Servo (1 ) = F
Servo (2 ) = S

Loop

End


Схему подключения не привожу, думаю один сигнальный провод проблем не вызовет;) Его можно подключать к порту микроконтроллера напрямую, а можно через резистор сопротивлением пару сотен ом - для перестраховки.

Меняя значения перемменных F и S можем менять угол поворота первой и второй сервомашинок соответственно. Чем меньше значение параметра Reload, тем шустрее наши сервомашинки будут поворачиваться на нужный угол.

Для своих серв подобрал рабочий диапаз он значений Servo(a), в которых вал может вращаться. Крайнее положения вал занимает при значении 0 и 150, соответственно при значении 75 вал занимает промежуточное положение.


Servo(a) =0 Servo(a) =75 Servo(a) =150