Водяное охлаждение для ПК: плюсы и минусы. Жидкостное охлаждение для компьютеров

ВведениеВ конце позапрошлого века появились первые автомобили, послужившие вехой технического прогресса и мобилизации человечества. Их двигатели сначала были примитивны, маломощны, шумны и работали на воздушном охлаждении. Но вот не проходит и десяти лет, и вместе с ростом мощности и более сбалансированной работой двигатель внутреннего сгорания получает гораздо более эффективное жидкостное охлаждение. Этот способ охлаждения миллионов моторов является неизменным атрибутом комфортного автомобиля и по сегодняшний день.

Первые ПК не имели проблем с охлаждением своих процессоров вообще. Потом они обзавелись радиаторами. Далее – небольшими вентиляторами. Что мы имеем теперь? Сегодня стоимость средств охлаждения для процессоров из верхнего модельного ряда уже приближается к цене самих CPU из нижних моделей. Чрезвычайно возросла мощность современных кулеров, их габариты, вес, обороты двигателей и диаметр вентиляторов. Стали критичны обработка и качество материала. Если раньше возможностей кулеров хватало с запасом, то сегодня они уже с трудом справляются со своими задачами. Увеличивать мощность вентиляции становится все сложнее, так как размеры и вес процессорных кулеров уже достигают критичных значений.
Вместе с ростом вычислительной мощности современные процессоры потребляют все больше и больше энергии. Основная ее часть выделяется в виде тепла. Этот непрерывный тепловой поток можно отбирать только через ограниченную площадь процессорного ядра. Производители стараются бороться с потреблением энергии и тепловыделением переходом на более низкие напряжения питания и технологические нормы. С уменьшением микронных норм производства потребление мощности действительно уменьшается, однако уменьшается и площадь кристалла самого ядра, что, в свою очередь, ведет к увеличению плотности теплового потока. И хоть тепла становиться меньше, но снизится ли температура внутри ядра меньшей площади – это уже под вопросом. С увеличением интеграции и уменьшением площади чипа отвод тепла с его поверхности становится все более трудной задачей. Здесь уже требуются специальные материалы и теплоносители. Неизменный рост тактовых частот предполагает неизбежное увеличение тепловыделения CPU в дальнейшем. Для процессоров с тактовыми частотами превышающими 2 ГГц рекомендуются кулеры с радиаторами из меди либо хотя бы с медной подошвой на алюминиевом радиаторе. Что будет за медью? Серебро? Напыление из золота? Или что-то еще?

Проблема охлаждения в целом

Как бы не справлялся воздушный кулер с охлаждением процессора, но куда он девает тепло? Ответ ясен – выкачивает (вытягивает) его вовнутрь системного блока. Туда же сбрасывают свое тепло и кулер видиокарты, порядком греющиеся приводы жестких и оптических приводов, радиаторы чипсета и т.д. Но все эти устройства охлаждаются тем же воздухом из системного блока, который они сами и нагревают. Круг тепловой конвекции замыкается. Температура внутри корпуса компьютера стала так же актуальна, как и нагрев внутренних устройств. Результат – интенсивная принудительная вентиляция всего системного блока. Если раньше корпуса комплектовались одним посадочным местом под фронтальный вентилятор, причем производители не особо заботились о вентиляционных отверстиях напротив него, то теперь внутри стандартных корпусов предусмотрено 2-3 места под вентиляторы. Кроме того, в продаже появилась масса всевозможных «бловеров», блоков вентиляторов под слотовые и 5,25” отсеки.
Рекомендация, ставшая уже аксиомой: берите корпус большого объема, потому что в нем лучше циркуляция воздуха. Вот куда тратится пространство корпуса – на циркуляцию воздуха. Притом, что какой-либо специальной организации путей для воздуховодов в обычных корпусах нет вообще, и эффект от вентиляции зависит от комплектации конкретного компьютера, от загромождения его внутреннего пространства шлейфами и платами расширения. Процессор и другие устройства охлаждаются воздухом изнутри корпуса. Эффективность воздушного охлаждения напрямую зависит от температуры воздуха внутри системного блока. Требуется продуманная вентиляция внутреннего пространства корпуса. Но вот заставить течь потоки воздуха в нужном направлении весьма сложно, путь ему преграждают всевозможные устройства, шлейфы, внутренние закоулки. Воздух по большому счету не циркулирует по заданному пути, а перемешивается внутри корпуса.
Если корпуса с воздушным охлаждением спроектированы специально, с компактным расположением элементом и четкой организацией воздуховодов, что характерно для серверов, то и здесь очень остро стоит проблема организации и сечения воздуховодов. Вентиляторы внутренних устройств нагнетают воздух на свои радиаторы под определенным давлением. Эффективное сечение воздуховода должно быть сравнимо с площадью вентилятора. Приходится предусматривать широкие воздушные внутренние магистрали. Эти магистрали должны обеспечивать достаточную пропускную способность для отвода тепла и доступа к холодному воздуху.
В случае охлаждения системы жидкостью ситуация коренным образом меняется. Охлаждающая жидкость циркулирует в изолированном пространстве – по гибким трубкам малого диаметра. В отличие от воздушных магистралей, трубкам для жидкости можно задать практически любую конфигурацию и направление. Занимаемый ими объем гораздо меньше, чем воздушные каналы при такой же или гораздо большей эффективности.

Достоинства жидкостного охлаждения

Принципиальная разница между воздушным и жидкостным охлаждением в том, что вместо воздуха через радиатор CPU или другого охлаждаемого устройства прокачивается жидкость. Вода или другие подходящие для охлаждения жидкости отличаются хорошей теплопроводностью и большой теплоемкостью. Циркулирующая жидкость обеспечивает гораздо лучший теплоотвод, чем поток воздуха. Это дает не только более низкую температуру охлаждаемых элементов, но и сглаживает резкие перепады температуры работающих в переменных режимах устройств.
Типичный жидкостный радиатор для процессора гораздо меньше любого применяемого на сегодняшний день кулера. Радиатор небольшого теплообменника может быть сравним с размерами крупного процессорного кулера, но в отличие от последнего размещается теплообменник более свободно, в менее критичном месте системного блока или же может быть вынесен наружу. Трубки не занимают много места внутри корпуса, и им не мешают все те неровности и выступающие элементы, которые критичны для потока воздуха.
Спроектированная определенным образом система жидкостного охлаждения не только превосходит по эффективности воздушный кулер, но и отличается более компактными размерами. Наверное, именно поэтому первыми стали применять жидкостное охлаждение на серийных устройствах производители ноутбуков.
В случае охлаждения жидкостью централизованную систему организовать просто. Главный блок жидкостного охладителя может находиться снаружи системного блока, соединяясь с ним только двумя гибкими трубками, через которые поступает жидкий хладагент для всех снабженных жидкостными радиаторами устройств.
Комплексное жидкостное охлаждение может одновременно решить проблему охлаждения как горячих устройств – CPU, HDD, чипы видеокарты и МВ, так и улучшить температурный режим внутри системного блока в целом. Если при охлаждении внутренних устройств обычными кулерами отводимый горячий воздух попадал внутрь системного блока, грозя перегревом другим компонентам, то при жидкостном охлаждении ситуация принципиально иная. Отводимое тепло транспортируется вместе с жидкостью по трубам в радиатор теплообменника, откуда может выдуваться наружу, минуя внутреннее пространство компьютера. Тем самым обеспечивается лучший тепловой режим внутри системного блока, и уже не потребуется столь мощная общая вентиляция его пространства. С охлаждением радиатора теплообменника вполне может справляться один тихий низкооборотный вентилятор большого диаметра. К тому же этот вентилятор будет охлаждать не только жидкость радиатора, но и пространство системного блока, забирая оттуда воздух.

Жидкость, воплощенная в «железе»

На рынке систем жидкостного охлаждения началось заметное оживление. Причины этого понятны. Качество и продуманность жидкостных конструкций охлаждения повышается, а стоимость наоборот – падает. Сейчас уже можно приобрести полностью укомплектованный набор для монтажа в корпусе эффективной жидкостной системы менее чем за $100. Это не так уж и много, учитывая, что приличные медные кулеры сейчас стоят по 20-40 долларов. Что тут скажешь, если уже даже такой гранд «кулерной» индустрии как Thermaltake предоставил собственный комплект жидкостного охлаждения для CPU, то, по-видимому, овчинка действительно выделки да стоит…

По своим конструктивным особенностям системы жидкостного охлаждения имеет смысл разделить на два типа:

1. Системы, где охлаждающая жидкость приводится в движение помпой в виде отдельного механического узла.
2. Беспомповые системы жидкостного охлаждения, использующие специальные хладагенты, которые в процессе переноса тепла проходят через жидкую и газообразную фазы.

Жидкостная система с помпой

Функциональная схема такой охлаждающей установки изображена на рис.1 . Принцип ее действия эффективен и прост, и, в общем-то, ничем не отличается от систем охлаждения применяемых в автомобилях. Жидкость (в большинстве случае это дистиллированная вода) прокачивается через радиаторы охлаждаемых устройств с помощью специального насоса. Все компоненты конструкции соединены между собой гибкими трубками диаметром 6-12 мм. Проходя через радиатор процессора и, в ряде случаев, других устройств, жидкость забирает их тепло, после чего попадает по трубкам в радиатор теплообменника с наружным воздухом, где охлаждается сама. Система замкнута, и жидкость в ней циркулирует постоянно.

То же соединение, но, так сказать, в «железе» можно увидеть на рис.2 на примере продукции фирмы CoolingFlow. Здесь хорошо видны все элементы жидкостной конструкции. В данном случае система предназначена для охлаждения только процессора. Компактный радиатор теплообменника с одним вентилятором по идее устанавливается в фронтальной части корпуса не требующего специальной конструкции. Помпа совмещена с буферным резервуаром для жидкости. Стрелками показано движение холодной и горячей жидкости.

Рис.2
Наглядная схема на примере CoolingFlow Space2000.


Расположение жидкостной системы охлаждения внутри корпуса лучше проиллюстрировано на рис.3 . Здесь используется радиатор теплообменника увеличенного объема с двумя вентиляторами, поэтому крепится он с тыльной стороны специально адаптированного корпуса. Такая охлаждающая система имеет хороший запас по мощности и кроме процессора, в случае необходимости, может параллельно охлаждать и другие компоненты компьютера. Хотя на сегодняшний день все же большее распространение получили системы жидкостного охлаждения с фронтальным креплением теплообменника с одними вентилятором.


Рис.3
Расположение жидкостного охлаждения от SwiftTech в корпусе.


Но все же монтаж всей жидкостной системы охлаждения внутри корпуса имеет ряд недостатков. Во-первых, типичные корпуса изначально не проектировались под установку таких конструкций, и здесь могут возникнуть проблемы с расположением, особенно наиболее мощных из них. Для установки особо эффективного жидкостного охлаждения потребуется либо специальный корпус, либо специальный внешний блок жидкостного охлаждения. Именно такой изображен на рис.4 . Этот блок включает в себя помпу, радиатор теплообменника, три вентилятора, систему электронного управления и цифровой индикатор температуры. Эта конструкция полностью самодостаточна. Вовнутрь корпуса компьютера ставится только жидкостный радиатор, соединенный с блоком гибкими трубками, и датчик температуры. Сам блок удобно располагается сверху на корпусе компьютера.


Рис.4
Внешний блок для жидкостного охлаждения Koolance EXOS.


Наиболее значимым компонентом любой системы охлаждения в компьютере является радиатор процессора. В случае жидкостного охлаждения этот элемент приобретает удобный и компактный вид. Совсем непривычно смотрятся маленькие жидкостные радиаторы CPU по сравнению с габаритами типичных воздушных кулеров, тем более, что первые превосходят по эффективности последних. Оценить вид жидкостных радиаторов для CPU, а также их расположение на двухпроцессорной системе можно по рис.5; 6 .



Рис.5
Жидкостные радиаторы для процессора.





Рис.6
Два CPU, установленные на МВ.


Как и в случае любого радиатора, эффективность жидкостного радиатора определяется площадью контакта его поверхности с охлаждающим веществом, для чего внутри делаются ребра, иголки или увеличивающие площадь контакта воронки (рис.7 ). Если жидкость направленно циркулирует по концентрическим ребрам, то тем самым максимально повышается его теплоотдача. Случай с воронками на обычной медной пластине, делающихся простым сверлом, наверняка, заинтересует тех, кто не прочь изготовить такую штуку самостоятельно в домашних условиях.


Рис.7
Внутреннее устройство жидкостных радиаторов.


Для графических чипов видеокарт тоже применяется жидкостное охлаждение, включенное параллельно с процессором. Радиаторы здесь поменьше. Смотрятся они на видеоплатах гораздо элегантнее (рис.8 ), чем мощные монстроподобные воздушные кулеры.


Рис.8
Жидкостный радиатор видеокарты.


Устройством, от которого в наибольшей мере зависит надежность жидкостной системы охлаждения, является помпа (рис.9 ). Если жидкость перестанет циркулировать, то эффективность охлаждения катастрофически упадет. Применяются помпы двух типов: погружаемые в резервуар с охлаждающей жидкостью и наружные, с собственным герметичным корпусом. Конструкция погружаемых насосов очень проста, – по сути, это вращающаяся в жидкости крыльчатка, заключенная в кожух. Ее центробежная сила создает необходимый напор жидкости. Резервуар для жидкости обычно делают из пластмассы. Такие помпы довольно дешевы и поэтому преобладают. Отдельная внешняя помпа гораздо дороже, ведь для нее уже требуется качественный герметичный несущий корпус, проходящий специальную машинную обработку. Зато надежность и производительность решения в последнем случае может быть гораздо выше.


Рис.9
Внутренняя и внешняя помпы.


Для охлаждения жидкости используются специальные радиаторы-теплообменники (рис.10 ). Это почти что копия в миниатюре автомобильного радиатора – принцип тот же. К радиатору крепится от одного до трех вентиляторов диаметром 80-120 мм. Вода, протекающая по изогнутой медной трубке, охлаждается нагнетаемым воздухом. Шум от такой конструкции обычно меньше, чем от мощного воздушного кулера, так как здесь используются низкооборотные вентиляторы увеличенного диаметра.


Рис.10
Радиатор теплообменника.


Не менее эффективно жидкостное охлаждение и в случае винчестера. Некоторые производители разработали для HDD специальные очень тонкие водяные радиаторы (рис.11 ). Радиатор крепится к верхней плоскости накопителя. Обеспечивается хороший теплоотвод, посредством большой площади контакта плоскости радиатора к металлическому корпусу HDD, что, в общем-то, недостижимо при воздушном обдуве.


Рис.11
Плоский радиатор для HDD (Koolance).


Итак, к достоинствам жидкостного охлаждения данного типа следует отнести: повышенную эффективность, возможность параллельного охлаждения нескольких устройств, рациональное транспортирование тепла из корпуса системного блока, небольшие размеры радиаторов чипов. Сюда же стоит добавить невысокий уровень шума, создаваемый многими системами водяного охлаждения, по крайней мере, он ниже, чем шум от мощного воздушного кулера с меньшей охлаждающей эффективностью.
К недостаткам, прежде всего, нужно причислить неадаптированность стандартных корпусов к новым системам охлаждения. Нет, ничего сложного в принципе здесь нет, но скорее всего понадобится просверлить несколько дополнительных отверстий для крепления теплообменника, да позаботиться о достаточной площади вентиляционных отверстий в корпусе. Возможно, понадобится подбор специального корпуса. На сегодняшний день производителями корпусов хоть и предусматривается крепление фронтальных вентиляторов, но во многих случаях вентиляционные щели напротив них явно недостаточны для эффективного теплообмена, носят скорее декоративный характер.
Другой недостаток – использование в качестве охладителя воды. Вода – токопроводящая жидкость с довольно низкой температурой кипения, поэтому заметно испаряется даже при комнатной температуре. Вода внутри системного блока явление нежелательное, даже если она находится в закрытом сосуде. В принципе ничто не мешает заменить воду более подходящей жидкостью, например, трансформаторным маслом, которое используется для охлаждения мощного электрооборудования. Масло не проводит ток, являясь, наоборот, хорошим изолятором. Его теплопроводность лучше, чем у воды, а точка кипения выше, поэтому оно почти не испаряется. Под масло придется использовать лишь помпы несколько иного типа, учитывая его более высокую вязкость. Думаю, за маслом дело не станет в перспективе. Сейчас же, похоже, производители заботятся о максимальной простоте в эксплуатации нового продукта даже для неподготовленного пользователя. Вода, как известно, распространенный и привычный всем продукт.

Беспомповое жидкостное охлаждение

Существуют системы жидкостного охлаждения, в конструкции которых такой элемент как помпа отсутствует. Но, тем не менее, жидкий хладагент циркулирует внутри такой системы. Используется принцип испарителя, создающего направленное давление для движения охлаждающего вещества. Здесь применяются специальные хладагенты – это жидкость с низкой точкой кипения. С физикой происходящего лучше всего разобраться глядя на схему (рис.12 ). Сначала, в холодном состоянии радиатор и магистрали заполнены жидкостью. Но когда радиатор процессора нагревается выше какой-то температуры, жидкость в нем превращается в пар. Здесь нужно добавить, что сам процесс превращения в пар поглощает дополнительную энергию в виде тепла, а значит, повышает эффективность охлаждения. Горячий пар создает давление и старается покинуть пространство радиатора процессора. Через специальный односторонний клапан пар может выйти только в одну сторону – двигаться в радиатор теплообменника-конденсатора. Попадая в радиатор теплообменника, пар вытесняет оттуда холодную жидкость в радиатор процессора, а сам остывает и превращается вновь в жидкость. Таким образом, охлаждающее вещество в чередующихся фазах жидкость-пар постоянно циркулирует по замкнутой системе трубопровода, пока радиатор горячий. Энергией для движения здесь является само тепло, выделяемое охлаждаемым элементом.


Рис.12
Схема жидкостного охлаждения по принципу испарителя.


Реализация в железе выглядит довольно компактно. На (рис.13 ) показана система для охлаждения центрального или графического процессора, в конструкции которой отсутствует помпа. Основными элементами здесь являются радиаторы процессора и теплообменника-конденсатора.


Рис.13
Жидкостный «испаритель» CoolingFlow для CPU.


Другой вариант испарительной жидкостной системы охлаждения для видеокарты еще более интересен (рис.14 ). Здесь применяется очень компактная конструкция, использующая тот же принцип. В радиаторе графического чипа встроен жидкостный испаритель. Теплообменник находится тут же, рядом – возле боковой стенки видеокарты. Вся эта конструкция выполнена из медного сплава. Для охлаждения теплообменника применяется высокооборотистый (7200 об./мин.) вентилятор центробежного типа. Воздух, прошедший через теплообменник, конденсирует пар и выбрасывается наружу корпуса через специальное сопло. Охлаждающее вещество в фазах жидкость-газ постоянно циркулирует по замкнутому кругу.


Рис.14
Система охлаждения на видеокарте Abit Siluro OTES GeForce4 Ti4200.


Известны и еще более простые системы беспомпового жидкостного охлаждения. В них применяется принцип, так называемых, тепловых трубок. То есть, замкнутой системы для циркуляции жидкости нет вообще. Радиатор процессора соединен с радиатором теплообменника посредством нескольких медных трубок. Конструкция получается компактной. Жидкость, испаряясь, попадает по трубке в радиатор теплообменника, где конденсируется и стекает обратно в радиатор процессора самотеком. Радиатор теплообменника интенсивно обдувается воздухом. Такую систему нельзя считать полноценным жидкостным охлаждением, это скорее вариант воздушно-жидкостного охладителя.
Беспомповые системы жидкостного охлаждения отличаются завидной компактностью. Такая конструкция может быть гораздо меньше обычного воздушного кулера, при более высокой ее эффективности. Неудивительно, что производители ноутбуков одними из первых приняли на вооружение жидкостное охлаждение, как компактное и эффективное решение (рис.15 ).


Рис.15
Жидкостное охлаждение на ноутбуке ESC DeskNote i-Buddie 4.


Системы жидкостного охлаждения, в которых используется принцип испарителя, без применения механического нагнетателя имеют как преимущества, так и недостатки перед традиционными схемами жидкостного охлаждения с применением помпы. Отсутствие механического насоса делает конструкцию более компактной, простой и дешевой. Здесь сведено до минимума количество движущихся механических частей, остается лишь вентилятор конденсатора. Это даст невысокий уровень шума в случае применения тихого вентилятора. Вероятность механических поломок сведена до минимума. С другой стороны, мощность и эффективность таких систем гораздо ниже, чем систем использующих жидкость нагнетаемую насосом. Другая проблема – потребность хорошей герметичности конструкции. Так как здесь используется газовая фаза вещества, то даже при малейшей утечке, со временем система потеряет давление и станет неработоспособной. Причем диагностировать и исправить последнее будет очень сложно.

Перспектива жидкости в компьютере

Если еще пару лет назад в понимании среднестатистического пользователя сочетание воды и компьютера воспринималось как что-то совершенно экзотическое и несовместимое по своей природе в принципе, то сегодня ситуация коренным образом меняется. На жидкостное охлаждение обратили внимание, прежде всего, производители комплектующих и компьютеров. И пользователи получают в руки конструктивно завершенные и вполне привычно выглядящие продукты, будь то ноутбуки или видеокарты, во внутренностях которых плещется жидкость. Все растущее тепловыделение современных процессоров подталкивает разработчиков к мысли, что вскоре одного воздуха будет недостаточно для обуздания температуры нагрева их кристаллов, особенно для любителей поэкспериментировать с разгоном. А какая приличная материнская плата на сегодняшний день не содержит этих самых средств для разгона, обогащающихся от модели к модели? Это всего лишь рынок – завлечь покупателя любой ценой. И если в конструкцию массового продукта заложены возможности оверклокинга, и кому-то эта игра нравится, и, скажем так – многим, то как же поддержать азарт потенциальных покупателей без эффективного и, как видится, уже нестандартного охлаждения? Теперь бренды уже демонстрируют на своих заряженных моделях системы водяного охлаждения, выставляя это действо с особым шиком.
На рынке наступает оживление. Всевозможных наборов для монтажа жидкостного охлаждения в обычном компьютере становится больше. Определились конструктивные подходы, цены уже не выглядят столь пугающими. И все же этот продукт направлен пока что на энтузиастов. Для его установки потребуются некоторые слесарные навыки, что-то сравни ремонту велосипеда в домашних условиях. А главное – желание. Сказывается и инертность производителей корпусов для ПК, основная часть которых имеет довольно таки посредственные возможности для установки дополнительного оборудования, в первую очередь фронтальных и тыловых вентиляторов большого диаметра, требующихся для жидкостных радиаторов. Но все это довольно просто решается, и все желающие могут собрать и испытать систему жидкостного охлаждения на практике. Такой опыт может оказаться как раз кстати. Кто знает, что нас ждет впереди – в гонке частот процессоров? Не окажутся ли кристаллы будущих CPU столь горячими, что жидкость станет вполне разумной альтернативой для охлаждения, как-то в свое время случилось с двигателями внутреннего сгорания автомобилей? Поживем – увидим…

Каждый год производители «железа» для компьютеров представляют новые модели своих изделий, которые становятся все мощнее, что значит – горячее. Обычное воздушное охлаждение не справляется с тепловыделением. Перегрев устройства может привести к поломке. Лучше в таких случаях подходит водяная система охлаждения для ПК.

Что такое система водяного охлаждения для компьютера

Современные процессоры, видеокарты обладают такой производительностью под нагрузкой, с которой обычные вентиляторы с радиатором не справляются. Стандартная комплектация имеет только воздушную систему, но поможет она лишь в состоянии простоя. Для по-настоящему мощных чипов нужна водная система охлаждения компьютера. Представляет она собой совокупность элементов, которые переносят тепло от устройства через воду к охлаждающему элементу. Водяное охлаждение для ПК состоит из:

  • водоблока (ватерблок);
  • шлангов и фитингов;
  • радиатора с кулером;
  • резервуара с помпой (присутствует не во всех сборках).

Преимущества и принципы работы

Вода нагревается на месте подсоединения блока к элементу, и по шлангам переносится к радиатору, где кулеры охлаждают ее и вновь направляют к чипу. По статистике такие жидкостные системы понижают температуру процессора на 20-30% (а иногда и на 50%) эффективнее, чем воздушные. Существует два типа СВО:

  • внутренняя – все элементы находятся внутри корпуса ПК;
  • внешняя – охлаждающая часть расположена вне системного блока.

Такой моддинг доступен только обладателям стационарных компьютеров, потому что на ноутбук такие системы установить нет физической возможности, но последние поколения игровых моделей уже включают СВО. Главное преимущество жидкого охлаждения в том, что вода обладает гораздо большей теплопроводностью, чем воздух. Хорошие башенные кулера создают шум, занимают много места и могут быть установлены не на все форматы материнских плат (особенно касается mini-ATX).

Стоимость водяного варианта выше, чем аналогичного воздушного типа, но внутри корпуса оно занимает гораздо меньше места. Популярность таких систем неуклонно растет вместе с развитием технологий. Установить его можно не только на процессор, но и на видеократу, чипсет материнской платы. К примеру, видеокарта GTX 980 Ti выпускается уже вместе с СВО в комплекте.

Как правильно выбрать водоблок для процессора

При подборе СВО для ПК обратите внимание на размер вентиляторов для радиатора, их количество, возможность их установки внутри корпуса и материал водоблока. Waterblock – специальный темплообменник, который принимает на себя тепло от элемента и передает его воде. Чем лучше он это осуществляет, тем эффективнее происходит охлаждение, поэтому плохо для таких целей подходит алюминиевый ватерблок. Лучшим выбором станет медный вариант – он будет лучше забирать и отдавать тепло.

Серьезно стоит задуматься над выбором водоблока, если вы покупаете не готовый комплект СВО, а отдельные элементы, из которых будете собирать свою собственную систему. Актуален такой вариант, если вы хотите замкнуть в одну цепь сразу охлаждение для процессора и видеокарты. Если же покупать готовый комплект, то все они сейчас продаются с медным ватерблоком.

Лучшие системы водяного охлаждения – обзор

Вам вряд ли удастся найти готовый корпус для ПК с водяным охлаждением, поэтому устанавливать его придется самостоятельно. Ниже представлены самые популярные системы охлаждения с их основными параметрами. К самым главным можно отнести: уровень шума, материал водоблока, поддерживаемые форматы сокетов процессоров, скорость вращения роторов. Как правило, варианты СВО из магазинов поддерживают все современные разъемы от компании AMD (AM3+, AM3, AM2, FM2, Fm2+) и Intel (LGA1356/1366, LGA2011/2011-3, LGA775, LGA1150/1151/1155/1156)

Название

Материал ватерблока

Количество вентиляторов

Материал радиатора

Макс. скорость вращения, об./мин.

Уровень шума, дБ

DeepCool Captain 240

алюминий

Arctic Cooling Liquid Freezer 240

4 (по 2 с обеих сторон радиатора)

Cooler Master Nepton 140XL

DeepCool Maelstrom 240T

Corsair H100i GTX

Cooler Master Seidon 120V VER.2

— Практически бесшумный и довольно производительный процессорный кулер с двумя вентиляторами; 2 — Трехвентиляторная модель с выделяющимся дизайном; 3 — Бюджетная модель с двумя вентиляторами, обеспечивающими качественное охлаждение компьютера. 1 — Практически бесшумная система охлаждения; 2 — Простая и стабильная система; 3 — Не имеющая аналогов в своем ценовом сегменте модель по уровню охлаждения.

Комплектующие компьютера в процессе работы нагреваются. Температура некоторых деталей повышается незначительно, другие же греются сильно. Больше всего это относится к видеокарте и процессору. И если первая изначально обустроена системой охлаждения, то с ЦП ситуация другая. От перегрева процессор защищает работающий кулер. Благодаря вращению лопастей вентилятора, создается воздушный поток, ими же может отводиться тепло. Именно так и обеспечивается охлаждение процессора.

Без кулера температура на ЦП может достигать критических значений, так он рискует выйти из строя. Еще для охлаждения процессора может использоваться жидкость. Водяные системы являются более дорогими, но и эффективность у них выше.

При выборе охлаждения для компьютера следует учитывать множество параметров. Причем не только ее эффективности, но и совместимости с компонентами компьютера. Подробнее данные параметры будут рассмотрены в списке лучших систем охлаждения для процессора.

Топ кулеров для процессора с одним вентилятором

Оценка (2018): 4.5

Преимущества: Популярный кулер от всемирно известной компании

Страна-производитель: Китай

На третьем месте топа кулеров расположился Zalman CNPS10X Optima. Это весьма популярная модель с одним вентилятором. Обрела она ее за счет низкой стоимости при довольно высоком качестве. Поддерживает большое количество процессоров.

Радиатор из-за материала исполнения обеспечивает высокую теплопроводность. У вентилятора широкие лопасти, может производиться более 1500 оборотов в минуту. Уровень шума при максимальном вращении достигает 28 децибел. Вес изделия в сборе равен 630 г.

Оценка (2018): 4.7

Преимущества: Очень надежная модель

Страна-производитель: Китай

Второе место рейтинга занимает кулер Noctua NH-U14S. По заверениям создателей, модель способна безотказно проработать более ста тысяч часов. Кулер совместим с сокетами: LGA2011-3, LGA1150, AM2+, FM2+ и множеством других. Проще говоря, данная модель подойдет для охлаждения процессоров последнего и предшествующего поколения.

Кулер оснащен шестью тепловыми трубками. Это повышает его эффективность. Скорость вращения может достигать 1500 об/мин. Уровень шума, производимого вентилятором, не превышает 25 децибел на пике. Кулер довольно большой по размерам, весит он 935 г.

Блок полезной информации

При выборе качественного кулера для процессора, прежде всего, необходимо учитывать несколько значительных характеристик. От них будет зависеть не только эффективность системы охлаждения, но и ее совместимость, а также общая надежность компьютера. Благодаря грамотному выбору кулера получится полностью раскрыть потенциал центрального процессора, выведя его производительность на максимальный уровень.

  1. Сокет. Необходимо учитывать, что у процессоров от компаний Intel и AMD различаются разъемы для подключения к материнской плате. Причем у одной и той же фирмы, в зависимости от модельного ряда, сокеты будут разными. Это очень важный момент при грамотном выборе системы охлаждения. Ведь разъемы различаются по структуре креплений. А к ним уже подсоединяется кулер. Поэтому необходимо выбирать совместимую с сокетом на материнской плате систему охлаждения. В противном случае ее установка значительно осложняется или же становится полностью невозможной. А попытки могут привести к поломке материнской платы.
  2. Размеры кулера. Когда сокет выбран, остается определиться с моделью кулера, совместимого с ним. Систем охлаждения на рынке огромное множество. Различаться они могут по множеству характеристик, в том числе и по габаритам. И тут следует учитывать, что размеры изделия разнятся в зависимости от назначения системы. Если оборудуется игровой компьютер, то для него предпочтителен кулер больших габаритов. Когда система предназначена для офисной работы, тогда устанавливается меньшая по размерам система охлаждения.
  3. Скорость вращения. Качество работы кулера определяется итоговым охлаждением процессора. И чем выше скорость вращения лопастей, тем теплоотвод лучше. Данный параметр высчитывается в количестве оборотов лопастей за единицу времени (обычно за минуту). В современных системах скорость вращения кулера регулируется автоматически. Она будет зависеть от нагрузки компьютера. Поэтому температура процессора будет поддерживаться на одном уровне.

Оценка (2018): 4.8

Преимущества: Тихое и качественное охлаждение компьютера

Страна-производитель: Китай

А первое место рейтинга занимает модель Thermalright Macho Rev.A. Отзывы большого количества пользователей говорят о том, что это лучший кулер с одним вентилятором в своем ценовом сегменте. Это также подтверждают многочисленные обзоры.

Модель подходит для последних линеек процессоров. Она обеспечивает отличное охлаждение даже в игровых компьютерах. Скорость вращения адаптивно подбирается системой от 900 до 1300 об/мин. А на пике нагрузки производимый шум ниже 21 дБ. Вес модели составляет 870г.

Топ кулеров для процессора с несколькими вентиляторами

Оценка (2018): 4.7

Преимущества: Бюджетная модель с двумя вентиляторами

Страна-производитель: Китай

Открывает топ лучших кулеров для процессора с несколькими вентиляторами Deepcool Maelstrom 240T. Это весьма серьезная система водяного охлаждения с алюминиевым радиатором. Данная модель совместима с мощнейшими процессорами нового поколения.

Система охлаждения оснащена двумя вентиляторами, скорость вращения которых может достигать 1600 об/мин. На пике нагрузки уровень шума достигает 34 дБ, он будет отчетливо слышен. По словам представителя компании Deepcool, кулер сможет безотказно проработать 50 тысяч часов.

Оценка (2018): 4.7

Преимущества: Трехвентиляторная модель с выделяющимся дизайном

Страна-производитель: Китай

Второе место кулер получил из-за специальной системы изменения скорости вращения, в зависимости от нагрузки на процессор. Таким образом получается поддерживать постоянную температуру. Весит данный кулер один килограмм.

Оценка (2018): 4.8

Преимущества: Практически бесшумный и довольно производительный процессорный кулер

Страна-производитель: Китай

Система водяного охлаждения для компьютера позволяет наиболее эффективно устранить проблему сильного нагрева центрального процессора.

Такое приспособление не имеет строго определенной структуры. Оно может варьироваться и состоять из различных структур сразу.

Суть системы жидкостного охлаждения

Во всех случаях жидкостная система охлаждения компьютера состоит из комбинации следующих типов схем:

  • Схема с параллельным подключением узлов, которые подвергаются охлаждению (параллельная схема работы). Достоинства такой структуры: простая реализация схемы, легко просчитываемые характеристики узлов, которые необходимо охладить;
  • Последовательная структурная схема – все охлаждаемые компоненты подключены между собой параллельно. Преимущества такой схемы заключаются в том, что охлаждение каждого из узлов происходит эффективнее.
    Недостаток: достаточно сложно направить к определённому узлу достаточное количество хладагента;

  • Комбинированные схемы. Они более сложные, так как содержат в себе сразу несколько элементов как с параллельным, так и с последовательным подключением.

Составляющие элементы

Чтобы охлаждение центрального процессора происходило быстро и эффективно, каждый куллер должен иметь следующие элементы:

  1. Теплообменник – данный элемент нагревается, вбирая в себя тепло центрального процессора . Перед новым использованием следует дождаться полного охлаждения теплообменника;
  2. Помпа для воды – резервуар для хранения жидкости;
  3. Несколько трубопроводов ;
  4. Переходники между узлами и трубопроводами ;
  5. Бачок для расширения - предназначен для того, чтобы обеспечить необходимое место для расширяющегося в процессе нагревания теплообменника;
  6. Наполняющий систему теплоноситель – элемент, который наполняет всю структуру жидкостью: дистиллированной водой или специализированной жидкостью для СВО;
  7. Ватерблоки – теплосъемники для тех элементов, которые выделяют тепло.

Примечание! Жидкостная система охлаждения малошумная по сравнению с вентиляторами. Некоторый шум все же присутствует, так как его коэффициент не может быть нулевым.

Лучшие системы водяного охлаждения для компьютера

Основное назначение систем охлаждения ПК – обеспечение бесперебойной и стабильной работы самого компьютера и создание нормальных условий для его пользователя.

Это подразумевает минимум шума во время эксплуатации.

Эти устройства отводят тепло от таких элементов, как процессор и блок питания , предотвращая их перегрев и последующий выход из строя.

Существует 2 варианта системы охлаждения – пассивное и активное.

Второй тип, в свою очередь, делится на воздушное, подходящее для обычных ПК и водяное, которое требуется для систем с очень мощными или разогнанными процессорами.

Жидкостное охлаждение отличается небольшими габаритами, невысоким уровнем создаваемого шума и высокой эффективностью отвода тепла, благодаря чему пользуется большой популярностью.

Для выбора такой системы следует учесть некоторые нюансы, включая:

  • Стоимость;
  • Совместимость с процессорами или видеокартами;
  • Параметры охлаждения.

Ниже приведен список самых популярных систем водяного охлаждения с популярного интернет-каталога Яндекс-маркет .

Список популярных систем водяного охлаждения с market.yandex.ru/catalog/55321 .

Оригинальная на вид СВО DeepCool Captain 240 оборудована двумя фирменными чёрно-красными вентиляторами с насечками на лопастях.

Крыльчатка каждого способна вращаться со скоростью до 2200 об/мин, создавая шум не более 39 дБ.

При этом на системе есть разветвитель, позволяющий установить дополнительно ещё 2 вентилятора.

Срок службы, который гарантируется производителем, составляет около 120 тысяч часов.

При этом эксплуатационный срок устройства, совместимого с процессорами типа Intel (S775, S1150, S1356, S2011) и AMD (AM2, AM3, FM2), достигает 160 тысяч часов.

Максимальная скорость вращения лопастей – 2000 об/мин, масса составляет 1,323 кг, а шум при работе не превышает 39 дБ.

Приобрести такую систему в сети можно по цене от 6200 руб.

Систему Maelstrom 240T, предназначенную для процессоров Intel 1150–1156, S1356/1366 и S2011, а также AMD FM2, AM2 и AM3, отличает синяя подсветка вентиляторов, позволяющая не только охлаждать компьютер, но и сделать его моддинг.

Срок службы устройства – в переделах 120 тысяч часов, вес – 1100 г, создаваемый уровень шума – до 34 дБ.

Купить устройство в Интернете можно за 4400–4800 руб.

Универсальную и достаточно простую в компоновке систему Corsair H100i GTX используют для охлаждения большинства выпускающихся в течение последних нескольких лет процессоров AMD и Intel.

Вес оборудования в сборе составляет 900 г, уровень шума – около 38 дБ, а сила вращения вентиляторов – до 2435 об/мин.

Средняя стоимость карты составляет в сети около 10 тыс. руб.

Особенностью использования системы Cooler Master Seidon 120V является возможность устанавливать её как внутри, так и снаружи корпуса.

При этом вентиляторы, вращающиеся со скоростью до 2400 об/мин, работают очень тихо – с уровнем шума до 27 дБ.

Совместимость устройства – современные процессоры Intel и AMD (до LGA1150 и Socket AM3, соответственно).

Система весит всего 958 г и способна проработать 160 тыс. часов.

Приобретение возможно по цене от 3600 руб.

Система охлаждения своими руками

Систему охлаждения процессора можно приобрести уже в готовом виде.

Однако из-за довольно высокой стоимости устройства и не всегда достаточной эффективности предлагаемых моделей, допускается сделать её самостоятельно и в домашних условиях.

Получившаяся система будет не такой привлекательной на вид, но вполне эффективной в действии.

Для самостоятельного изготовления системы следует сделать:

  • Ватерблок;
  • Радиатор;
  • Помпу.

Повторить конструкцию большинства СВО, выпускаемых серийно, вряд ли удастся.

Однако, немного разбираясь в компьютерах и термодинамике, можно попробовать сделать что-то похожее если не на вид, то хотя бы по принципу действия.

Изготовление ватерблока

Главную деталь системы, на которую приходится максимум выделяемого процессором тепла, изготовить сложнее всего.

Для начала выбирается материал устройства – обычно это листовая медь.

Затем следует определиться с габаритами – как правило, для охлаждения достаточно блока 7х7 см с толщиной около 5 мм.

Геометрическая форма устройства принимается такой, чтобы находящаяся внутри жидкость максимально эффективно омывала все элементы охлаждаемой конструкции.

В качестве основания ватерблока можно выбрать, например, медную пластину, а рабочую структуру изготовить из тонкостенных медных трубок.

Количество трубок на примере принято равным 32 шт.

Сборка осуществляется с использованием припоя и электропечи, нагретой до температуры 200 градусов.

После этого приступают к изготовлению следующей детали – радиатора.

Радиатор

Чаще всего это приспособление выбирают уже готовым, а не изготавливают дома.

Найти и приобрести такой радиатор можно либо в компьютерном магазине, либо в автомобильном салоне.

Однако существует возможность и самостоятельно создать необходимый элемент СВО из следующих предметов:

  • 4 медных трубок диаметром 0,3 см и длиной 17 см;
  • 18 метров медного обмоточного провода (d = 1,2 мм);
  • Любого листового металла толщиной около 4 мм.

Трубки обрабатываются припоем, из металла изготавливается оправка шириной в 4–5 см и длиной до 20 см.

В ней сверлятся отверстия, куда заводится проволока. Теперь провод наматывается вокруг обмотки.

Процесс повторяют три раза, получив столько же одинаковых спиралей.

Сборку спиралей и трубок начинают, сначала изготовив рамку. Затем натягивают на неё проволоку.

Заключительным этапом является соединение рамки с входным и выходным коллекторами системы. В результате получается деталь следующего вида:

Помпа и другие детали

В качестве помпы допускается брать аналогичное устройство, предназначенное для аквариумов. Достаточно будет прибора производительностью 300–400 л/мин.

Его комплектуют расширительным бачком (плотно закрывающейся пластиковой ёмкостью) и шлангом из ПВХ с проходными патрубками из обрезков металлических (медных) трубок.

Сборка

Перед тем, как собирать и устанавливать систему, следует удалить заводское устройство, установленное на процессоре. Теперь необходимо:

  • Закрепить ватерблок сверху охлаждаемой детали, для чего используют прижимную планку;
  • Заправить систему дистиллированной водой;
  • Закрепить на внутренней поверхности крышки компьютера радиатор (напротив отверстий). Если вентиляционных отверстий нет, их следует проделать самостоятельно.

Завершающим этапом должно стать закрепление сначала вентилятора на процессоре (поверх ватерблока).

И, наконец, необходимо обеспечить питание для помпы путём установки её рабочего реле внутри блока питания.

В результате получается собственноручно изготовленная система водяного охлаждения, достаточно эффективно снижающая температуру процессора на 25–35 градусов.

При этом экономятся средства, которые могли бы пойти на покупку недешёвого оборудования.

Тематичсекие видеоролики:

Как установить систему водяного охлаждения на ЦП Corsair H100i

Система водяного охлаждения для компьютера - Подробное описание


Современные компьютере всё больше и больше нуждаются в качественной системе охлаждения. Особенно это правило касается тех моделей, которые подвергаются высоким нагрузкам в связи со своей спецификой. Классическое воздушное охлаждение не всегда справляется со своей задачей, а также издаёт много шума, поэтому как альтернатива ему появилось водяное охлаждение. Все его особенности, преимущества и недостатки будут рассмотрены далее.

Преимущества системы водяного охлаждения

В большинстве случаев системы водяного охлаждения не имеют в своей конструкции вырабатывающих холод элементов. Охлаждение происходит за счёт воздуха рядом со стенками системного блока. Для того, чтобы охлаждение происходило ещё более эффективно система водяного охлаждения может быть совмещена с системой воздушного охлаждения. Однако чаще всего в этом нет какой-либо необходимости.

Чтобы добиться такого же эффекта охлаждения от обычных кулеров и радиаторов, придётся возводить громоздкие конструкции внутри системного блока, которые при этом будут издавать слишком много шума. В случае с водяным охлаждением шума практически не наблюдается, да и места такая система занимает немного меньше.

Также нужно понимать, что эффективность системы охлаждения зависит от жидкости, которая циркулирует по трубкам. Вместо обычной воды там могут быть специальные охлаждающие растворы. Они обеспечивают более лучшее охлаждение компьютера, однако некоторых из них рекомендуется менять с определённой периодичностью, что влечёт за собой дополнительные расходы на обслуживание.

Однако кроме явных преимуществ такой системы охлаждения у неё есть и определённые недостатки:

  • Сложность установки конструкции;
  • Любая протечка может означать быструю поломку компьютера;
  • Цена такой системы охлаждения гораздо выше, чем на её воздушные аналоги.

Конструкция системы водяного охлаждения

В любой системе водяного охлаждения обязательно будут присутствовать элементы, речь о которых пойдёт ниже. Основываясь на этом описании, вы сможете самостоятельно собрать или выбрать уже готовую систему.

Водоблок

Это самый важный элемент, который и отвечает за охлаждение процессора и видеокарты. Он крепится непосредственно на их поверхность и подсоединяется к трубкам, по которым в него подаётся вода или другая охлаждающая жидкость.

При выборе этого элемента нужно в первую очередь обращать на материал, из которого сделано его дно и сам рельеф дна. Медные или алюминиевые модели позволяют лучше отводить тепло от процессора/видеокарты, следовательно, более эффективны. Модели, на дне которых есть различные неровности тоже значительно лучше справляются со своей задачей, чем их аналоги с плоским дном. Однако такая конструкция дна уменьшает скорость движения воды в системе, что тоже не очень хорошо, так как для нормальной циркуляции потребуется приобретать более мощную помпу.


Помпа

Многие считают, что лучше всего приобрести мощную помпу, так как она обеспечивает более лучшую циркуляцию воды. Это мнение отчасти ошибочное, так как основная функция помпы обеспечивать оптимальную скорость движения воды по системе, чтобы она не застаивалась в трубках и не перегревалась. В том случае, если вся ваше система состоит из пары трубок и водоблока с плоской поверхностью дна, то смысла в приобретении мощной помпы нет.

Другое дело, если у вас установлена витиеватая система трубок, которые к тому же имеют резкие перепады высот, плюс несколько водоблоков с неровным дном. В таком случае определённо лучше покупать помпу с определённым запасом мощности.


Радиатор

В большинстве случаев это тоже является обязательным компонентом системы охлаждения. Радиатор должен быть изготовлен из материалов с высокой теплопроводностью. В идеале это должны быть металлы, например, медь или алюминий. Конструкция радиатора представляет из себя специальный блок из металлических пластин. Обычно в комплекте с ним идёт вентилятор для того, чтобы обеспечить ещё и воздушное охлаждение.
Продвинутые радиаторы могут оснащаться несколькими вентиляторами разной мощности. Также присутствуют сложные конструкции из металлических плит и трубок, обеспечивающих функцию теплоотвода. Иногда радиатор в системе жидкого охлаждения ПК может представлять из себя полноценную систему воздушного охлаждения.

Однако не стоит забывать про первоначальное предназначение радиатора – рассеивать тепло. Для этого в большинстве случаев хватит одного маломощного вентилятора и нескольких металлических пластин, установленных в нужных местах.


Соединительные трубки

Нужны для того, чтобы разносить охлаждающую жидкости по всей системе. Должны быть достаточно толстыми и прочными, чтобы избежать возможных протечек, которые могут привести к фатальным последствиям. Рекомендуемые размеры сечения трубок составляют от 6 до 13 мм. С таким сечением они не занимают много места и способствуют беспрепятственному протоку охлаждающих жидкостей.

Трубки ещё можно поделить на прозрачные и непрозрачные. Первые, как правило, более прочные, хотя попадаются и исключения. Последние чаще выбирают в тех случаях, когда помимо решения практической задачи, система водяного охлаждения должна ещё украшать компьютер. Например, в тех случаях, когда по трубкам течёт окрашенная жидкость.


Охлаждающая жидкость

Практически всегда в этой роли выступает обычная дистиллированная вода. Довольно часто в неё добавляют специальные примеси, например, для снижения коррозирующих свойств, а также для уничтожения вводе бактерий, которые со временем приводят к тому, что в неё образуются микроводоросли, а вода меняет цвет. Также есть специальные добавки для придания жидкости в трубках эстетического эффекта. Например, делающие так, что вода светится в темноте.

Классификация систем жидкого охлаждения

На рынке существуют два основных типа систем жидкого охлаждения, которые более подробно будут рассмотрены ниже. В зависимости от класса изменяется процесс и сложность установки, а также процесс эксплуатации системы.

Необслуживаемая

Самая простая в установки и эксплуатации. Она поставляется с завода уже полностью собранной и с залитым теплоносителем. Она может быть уже установлена в компьютер. Также есть разновидности, которые нужно самостоятельно устанавливать. Производитель специально делает их таким образом, чтобы их можно было поставить в большинство компьютеров.


Из основных недостатков такой системы принято отмечать:

  • Сложность ремонта. Все элементы системы запаяны с друг другом практически «намертво». С одной стороны, это делает практически невозможной разгерметизацию, но с другой заменить испортившейся элемент системы будет очень дорого и сложно, если не невозможно;
  • Сложность замены теплоносителя. Так как такие системы крайне герметичны, то вода из труб никуда не исчезает. Но её всё равно рекомендуется менять раз в несколько лет. К сожалению, далеко не все такие системы имеют заливочные отверстия;
  • Цена на такую систему может оказаться выше, чем на её ближайший аналог;
  • Систему нельзя как-то модернизировать или использовать для компьютеров с нестандартной конструкцией. Всё ограничено только теми решениями, которые предлагает сам производитель.

Из преимуществ можно выделить:

  • Удобство установки. Она монтируется в систему не сложнее, чем радиатор с кулером;
  • Крайне низкая вероятность протечки;
  • Отлично работает с теми конструкциями, под которые изначально разрабатывалась производителем.

Обслуживаемая система жидкого охлаждения

Такая система поставляется в виде отдельных деталей. Её сборка и установка требует больше времени, сноровки и опыта. Зато её можно модифицировать по своему желанию. Также нет практически никаких ограничений, накладываемых производителем. Нет сложностей с ремонтом и замены определённых элементов.

Любая система водяного охлаждения, вне зависимости от её типа должна поддерживаться сокетом материнской платы. В противном случае придётся приспосабливать всю систему под другой сокет, купив соответствующий водоблок. Однако так можно сделать только в случае с обслуживаемыми СЖО.

На что ещё нужно обратить внимание при выборе СЖО

Помимо тех основных параметров, на которые рекомендуется обращать внимание в первую очередь при выборе системы охлаждения, обязательно учитывайте ещё и эти:

  • Количество вентиляторов в системе. Как правило, они не оказывают сильного влияния на эффективность всей системы, но чем их больше, тем ниже будет производимый шум. Это больше актуально для систем, где так или иначе требуется установить хотя бы один вентилятор. Если вы решили устанавливать систему вообще без них, то этот пункт можно оставить без внимания;
  • Максимальный воздушный поток. Этот параметр характерен для радиатора и считается в футах в минуты (обозначается CFM). Определяет объём прогоняемого воздуха. Чем выше значения, тем выше вклад вентилятора в работу радиатора. Для крупных радиаторов, имеющих высокий коэффициент CFM придётся покупать более мощные вентиляторы;
  • Материал радиатора. Практически такой же важный параметр, как и его конструкция. Рекомендуется выбирать варианты, где используется чистая медь или медь со сплавами. Варианты из алюминия выбирайте в тех случаях, когда радиатор имеет сложную конструкцию и большую площадь;
  • Материал водоблока. Это важный параметр, на который нужно обращать внимание. Рекомендуется брать водоблоки только из меди. Всё дело в том, что у них небольшая площадь и как правила конструкция не слишком замысловатая;
  • Максимальный уровень шума, производимый системой охлаждения. Для СЖО это не такой важный параметр, как для систем воздушного охлаждения. Но всё равно, если в конструкции присутствует хотя бы один вентилятор, то нужно обращать внимание на уровень шума. В идеале он должен составлять в районе 30-40 Дб для комфортной работы за компьютером;
  • Наличие подсветки, прозрачных труб и прочие декоративные элементы. Это необязательные компоненты конструкции, но если вам хочется как-то «разнообразить» внешний вид своей рабочей машины, то устанавливать подобную «красоту» имеет смысл только в корпусах с прозрачной стенкой.

Как видите, на при выборе жидкой системы охлаждения для ПК нужно учитывать определённые параметры. Также стоит учитывать ту вероятность, что во время сборки и монтажа системы вам придётся докупать недостающие комплекты.