Вредны ли светодиодные лампы? Светодиодные лампы, отзывы и вред преувеличены.

В последние годы массовое распространение получили светодиодные лампы, которые визуально схожи с лампами накаливания. Светодиодные устройства активно рекламируются, рекламодатели сообщают о прекрасных энергетических характеристиках продукции, большом эксплуатационном ресурсе лампочек и мощном освещении.

Однако практически никогда продавцы не говорят о том, что вред светодиодных ламп в значительной степени сводит на нет все преимущества этого вида осветительных устройств. В этой статье разберемся подробнее в том, влияют ли светодиодные факторы на ухудшение здоровья, и если да, то почему.

Негативные факторы

Существует комплекс негативных воздействий на человеческий организм, причиной которых являются светодиодные осветительные приборы .

Корпуса светодиодных ламп выполняются из экологически безопасных материалов - качественного пластика и стали. В устройствах высокой мощности радиатор производится из сплава алюминия. В отличие от люминесцентных ламп, в светодиодных изделиях не используются колбы с газом.

Влияние света на зрение

В данном случае значение имеет так называемая цветовая температура - показатель интенсивности излучения источника света. Чем выше температурный показатель, тем сильнее излучение в синем и голубом спектре. Для глазной сетчатки наиболее опасен слишком сильный синий свет, под воздействием которого она начинает деградировать. Холодный белый свет несет опасность для детей, поскольку структура их глаз еще недостаточно развита и возможно получение травмы.

Чтобы уменьшить раздражающее воздействие света, рекомендуется «разбавлять» свет от LED-источников лампами накаливания небольшой мощности (до 60 Вт). Также можно задействовать светодиодные устройства, дающие теплый белый свет. Такие световые источники (без повышенного коэффициента пульсации) не причиняют вреда здоровью.

Уровень цветовой температуры указывается на упаковке товара. Температурная норма находится в пределах 2500-3200 К.

Мерцание

Вред светодиодных ламп может выражаться в их мерцании с определенной частотой. Поражающее влияние на психику человека оказывают частоты в диапазоне 8-300 Гц. Причем такие мерцания незаметны и, тем не менее, могут отрицательно влиять на нервную систему.

Необходимо, однако, заметить, что в качественной продукции выходное напряжение драйвера тщательно фильтруется, в результате чего переменная составляющая сводится на нет. Так удается снизить уровень пульсаций до менее чем 1 %. Если в лампу вмонтирован импульсный блок питания, то коэффициент пульсаций может доходить до 10 %, не причиняя вреда человеку.

Обратите внимание! Устройства с хорошими драйверами не бывают дешевыми. Экономия в данном случае может осуществляться только в ущерб здоровью.

Влияние на выделение мелатонина

За качество сна, его ритм и периодичность, отвечает гормон под названием мелатонин. Также мелатонин стабилизирует окислительные процессы на безопасном уровне, что замедляет процессы старения. У здорового человека этот гормон достигает максимальной концентрации с наступлением темного времени суток. В результате появляется желание поспать. При работе по ночам организм подвергается воздействию многих раздражающих факторов, в число которых входит и искусственное освещение. Продолжительное и регулярное пребывание под действием светодиодного света особенно негативно сказывается на качестве зрения.

Обратите внимание! Долгое пребывание возле монитора со светодиодной подсветкой является одним из факторов, способствующих бессоннице.

Электромагнитное излучение

Вред светодиодных ламп, связанный с электромагнитным излучением, считается преувеличенным. Высокочастотные импульсы действительно ухудшают сигналы радиоаппаратуры и Wi-Fi приемников, находящихся поблизости. Однако для человеческого организма LED-лампы значительно менее ощутимы по сравнению с мобильными телефонами или микроволновыми печами.

Ультрафиолетовое и инфракрасное излучение

Чтобы получить ответ на вопрос о вреде ультрафиолета и инфракрасных лучей, необходимо провести анализ двух вариантов получения белого светодиодного света. В первом случае в корпус помещаются три кристалла - белый, красный и зеленый. Эксперимент показывает, что длина волн не покидает пределов видимого спектра, а значит, светодиоды не создают поток света в ультрафиолетовом и инфракрасном диапазонах.

Второй вариант предусматривает получение белого света нанесением люминофора на синий светодиод. В результате смешения белого потока, создаваемого люминофором, и желтого - от светодиода – получаются разнообразные оттенки белого. Результаты опыта показывают очень незначительное ультрафиолетовое излучение, безопасное для человеческого организма. Интенсивность инфракрасного излучения в начале диапазона длинных волн находится в пределах 15 %, что намного меньше, чем в случае со стандартной лампой накаливания.

Стандартизация светодиодных ламп

Существует устойчивое мнение, что светодиодные осветительные приборы не стандартизированы. Отчасти такое утверждение можно считать неправильным. Да, отдельный стандарт отсутствует, но светодиодные лампы описаны в общей нормативной документации, которая нормирует влияние искусственного света на человека.

К примеру, в одном из пунктов ГОСТа, касающегося светобиологической безопасности, указываются условия и методы расчетов характеристик ламп, в том числе и светодиодных. В соответствии с буквой регламента все осветительные устройства непрерывной волны по уровню опасности для зрения подразделяются на четыре группы. Риски определяются по итогам эксперимента в результате измерения уровней ультрафиолетового и инфракрасного излучений. Также анализируется характер синего света и воздействие тепла на глазную сетчатку.

Один из пунктов Свода правил регламентирует требования к разным типам освещения. Так, например, светодиодные устройства упоминаются в разделе «Искусственное освещение». Нормируются технические параметры осветительного оборудования, указывается, что его характеристики не должны выходить за рамки значений, указанных в правилах.

К примеру, для ламп искусственного освещения цветовая температура может находиться в пределах от 2400 до 6800 К, а наивысший уровень ультрафиолетового излучения фиксируется на уровне 0,03 Вт на квадратный метр. Также описываются допустимые коэффициенты пульсации, световой отдачи и освещенности.

Продукция китайских производителей

Об опасности дешевой продукции сказано выше. Светодиодные устройства от китайских производителей в целом можно охарактеризовать как низкокачественные. Изделия дешевле 200 рублей за единицу часто оснащаются некачественным блоком преобразования напряжения. Вместо драйверов такие модели комплектуются блоком питания без трансформатора, который нейтрализует переменную составляющую с помощью полярного конденсатора. При этом небольшая емкость не позволяет конденсатору осуществить полноценную нейтрализацию. В результате коэффициент пульсаций в некоторых случаях достигает 60 %, что чрезвычайно вредно для человеческого глаза и психики.

Уменьшить негативное воздействие такой продукции можно двумя способами. В первом случае нужно заменить электролит на аналог с емкостью порядка 470 мкФ (в том случае, если это технически возможно). В любом случае такие лампы можно использовать лишь в помещениях с невысоким зрительным напряжением (туалет, коридор и т.п.). Другой способ предусматривает замену некачественного блока на драйвер с преобразователем импульсного типа.

Обратите внимание! Многие специалисты заявляют, что вред, причиняемый светодиодными лампами, преувеличен. Однако признают, что проблема синего света пока не нашла решения, а потому нужно обращать особое внимание на цветовую температуру.

Если значение параметра К превышает 4 тысячи единиц, следует отказаться от приобретения таких светодиодных ламп. Такие осветительные приборы предназначены для освещения улиц и производственных помещений.

Наиболее перспективными для применения в различных видах освещения являются светодиодные лампы. Они стремительно завоевывают рынок и ученые пророчат, что в недалеком будущем большинство произведенных ламп будут именно светодиодными. Это легко объяснимо тем, что такие лампы потребляют при равном световом потоке существенно меньше электроэнергии, имеют огромный срок службы.

Главным недостатком этих ламп является высокая цена, но с каждым годом открывается масса производств, рынок наводняется светодиодными источниками света и цена становится все ниже, что на руку потребителям. Подробнее о характеристиках светодиодных ламп читайте .

Однако, не все так безоблачно в сфере внедрения светодиодных ламп. Помимо множества их сторонников, находятся и ярые противники, которые говорят о вреде таких источников света. И, надо сказать, что не все их аргументы беспочвенны. Поэтому стоит пристальнее рассмотреть вопрос о вреде светодиодных ламп и выяснить, что является реальностью, а что мифом.

Почему светодиодный свет может быть вреден для зрения?

Ученые выяснили, что вредное воздействие на органы зрения оказывает не все излучение светодиода в целом, а только синяя и фиолетовая составляющая спектра, имеющее наименьшую длину волны и соответственно большую частоту и большую энергию. Испанские ученые, проводившие такие исследования, опубликовали свои отзывы в журнале Seguridad y Medio Ambiente. Основными результатами этой исследовательской работы являются следующие утверждения :

  • Светодиодные источники света могут нанести непоправимый вред здоровью человека и животных, воздействуя на сетчатку глаза.
  • Вред наносит коротковолновый синий и фиолетовый свет.
  • Излучение наносит сетчатке глаза травмы трех типов: фотомеханические (ударная энергия волны световой энергии), фототермические (при облучении происходит нагревание ткани клетчатки) и фотохимические (фотоны света могут вызывать химические изменения в макромолекулах).
  • Зеленый и белый свет имеет гораздо меньшую фототоксичность, а при воздействии на сетчатку красным светом каких-либо негативных изменений не обнаружено.

Результаты исследования говорят о том, что смотреть на яркую светодиодную лампу противопоказано.

Влияние светодиодной лампы на глаза

Но это правило безопасности можно отнести и к другим источникам яркого света: лампам накаливания и люминесцентным лампам. Таким образом, вред энергосберегающих ламп для глаз состоит в негативном воздействии на сетчатку глаза. Однако большинство ведущих производителей снабжают лампы рассеивателями, либо хорошие люстры имеют плафоны, которые дают мягкий рассеянный свет, польза которого намного выше.

Классификация освещения по степени риска

Для оценки безопасности светового излучения видимого спектра был принят международный стандарт EN 62471 , который называется «Фотобиологическая безопасность ламп и ламповых систем». В соответствии с этим стандартом, выделяются четыре группы риска, в которых указывается максимальное время воздействия освещения от исследуемого источника света .

  • Нулевая группа риска (отсутствие риска). Воздействие излучения от таких источников света может производиться 10000 секунд и более.
  • Первая группа риска (низкий риск). Максимальное время воздействия может быть от 100 до 10000 секунд.
  • Вторая группа риска (умеренный риск). Максимальное время воздействия светильников этой группы возможно от 0,25 до 100 секунд.
  • Третья группа риска (высокий риск). Время воздействия не должно превышать 0,25 секунды.

Исследование степени рисков освещения светодиодами

Было проведено исследование на основе этого стандарта. Профессор Института здоровья и медицинских исследований Франсин Бехар-Коэн возглавила группу ученых, которые в результате исследований пришли к некоторым важным выводам, сделав свои отзывы о вреде и пользе светодиодных ламп:

  • Светодиод синего свечения мощностью 15 Вт и более можно отнести к третьей группе риска.
  • Синий светодиод мощностью 0,07 Вт относится к первой группе риска.
  • По сравнению с традиционными лампами накаливания, относящихся к нулевой или первой группе риска, светодиодное освещение можно отнести ко второй группе.
  • При равной цветовой температуре, в излучении белых светодиодов на 20% больше опасной синей составляющей спектра.

Светодиодные лампы и подавление секреции мелатонина

Коллективом ученых из Израиля, США и Италии было проведено исследование влияния различных искусственных источников света на выработку важного гормона – мелатонина, который вырабатывается у человека и высших животных в эпифизе. Этот гормон отвечает за периодичность сна, кровяное давление, участвует в работе клеток головного мозга.

Мелатонин является мощным антиоксидантом, он замедляет процесс старения, активизирует иммунную систему.

Учеными за образец был принят свет натриевых ламп высокого давления, имеющих теплый желтый цвет. Было выяснено, что галогенные лампы, имеющие более высокую цветовую температуру, подавляет секрецию мелатонина в три раза. При исследовании замечено, что угнетение секреции происходит в пять раз сильнее, при одинаковой мощности натриевых и светодиодных ламп.

Конструкция светодиодной лампы

Оказалось, что такое пагубное воздействие больше всего оказывает именно яркий свет синего спектра. Итальянский физик Фабио Фалчи утверждает, что воздействие любого мощного источника света в вечернее время, когда организм должен готовиться ко сну, противопоказано и особенно люминесцентных и светодиодных ламп, в спектре которых есть синяя и фиолетовая составляющая спектра.

  • Для освещения спален лучше применять лампы накаливания.
  • Не смотреть на любые яркие источники света за 2-3 часа перед сном.
  • При работе за компьютером в темное время суток применять специальные очки, которые блокируют синий спектр ламп.
  • В качестве ночной подсветки лучше применять освещение красного цвета.
  • Использовать только качественные светодиодные лампы известных производителей, имеющие цветовую температуру «теплого» белого цвета и высокий индекс цветопередачи.
  • Использовать люстры и светильники, специально предназначенные для светодиодных ламп. Об этом подробнее .

Мерцание ламп и его влияние на зрение

Известно, что , работающие в наших сетях переменного тока 220 В, 50 Гц мерцают с частотой 100 Гц. Энергосберегающие лампы, оснащенные обычными балластами, также мерцают с такой же частотой, а у ламп, имеющих электронные балласты – , мерцание может происходить с меньшей частотой. Инертность человеческого глаза не позволяет увидеть пульсацию в свечении ламп, но как показали исследования, мозг человека воспринимает пульсации вплоть до частоты в 300 Гц. Эти колебания энергосберегающих ламп наносят вред психике человека, изменяют гормональный фон, снижают работоспособность, повышают утомляемость, меняют естественные суточные ритмы.

Излучение светодиода происходит при протекании через него постоянного тока, а переменное сетевое напряжение преобразует в постоянное специальная схема – драйвер, которым оснащены все лампы. Правда большинство драйверов преобразует переменное сетевое напряжение не в постоянный ток, а в серию импульсов постоянного тока. Так, во-первых, проще реализовать схему, а, во-вторых, делает возможным диммирование ламп, то есть изменение яркости путем изменения скважности импульсов. Как выбрать диммер, читайте . В качественных лампах известных производителей частота следования импульсов более 300 Гц, что практически сводит к нулю пульсацию освещения такими лампами.

Спектр излучения светодиодных ламп

Светодиод создает излучение при рекомбинации в полупроводниках дырок и электронов, благодаря чему излучается фотон света. Частоту излучения определяет химический состав полупроводников. Излучение может быть как в невидимом диапазоне (инфракрасном или ультрафиолетовом), так и в видимом (красном, оранжевом, желтом, зеленом, синем, фиолетовом, белом).

Излучение светодиода происходит в очень узком диапазоне, поэтому спектр такого излучения линейчатый, что негативно влияет на параметры цветопередачи.

Еще одним недостатком светодиодного освещения является то, что генерируемое излучение когерентно, то есть одинаковой частоты и фиксированного сдвига фаз. Нерассеянный свет светодиода обладает определенной «жесткостью», но производители находят выход, применяя рассеиватели на лампах или плафоны в люстрах. Эти меры существенно снижают «жесткость» его излучения.

Спектр излучения светодиодов

Следует отметить, что на настоящее время не существует такого кристалла полупроводника, который бы излучал белый свет, хотя белые светодиоды существуют. Белый цвет можно получить двумя способами:

  • Первый способ - это сочетание свечения трех светодиодов: красного, зеленого и синего. Такие светодиоды существуют, но спектр их излучения очень линейчатый, что сказывается на индексе цветопередачи. Они нашли применение больше в светодиодных дисплеях, где интенсивностью свечения определенного цвета можно регулировать цвет пикселя дисплея. В освещении такие комбинированные светодиоды используются мало.
  • Второй способ – это использовать эффект фотолюминесценции. При облучении специальных веществ – люминофоров, они переизлучают свет, только уже в другом диапазоне. Этот эффект давно используют в , когда ультрафиолетовое свечение газового разряда преобразуют люминофоры, нанесенные на внутреннюю поверхность колбы лампы. И от качества люминофора зависит спектр. В белых светодиодах используются излучатели синего, фиолетового или ультрафиолетового диапазона и люминофор, отвечающий за свет в нужном диапазоне, нужной цветовой температуры и нужным индексом цветопередачи.

Именно от качества и количества люминофора в белых светодиодах зависит спектральный состав, цветовая температура и индекс цветопередачи. Используется комбинирование люминофоров, чем они качественнее и чем больше их, тем богаче спектр, но и тем дороже лампа. И развитие светодиодного освещения происходит параллельно с развитием применения разных люминофоров. Естественно, в излучении белых светодиодов присутствует или синяя, или фиолетовая, или ультрафиолетовая составляющая спектра, несущая в себе определенный вред, поэтому надо соблюдать определенные методы предосторожности, описанные ранее.

Тепловое излучение светодиодных ламп

Любые источники искусственного света имеют тепловое излучение, в том числе и светодиодные лампы. Но если в лампах накаливания свечение спирали происходит за счет высокой температуры спирали, то у светодиодов происходит практически прямое преобразование электрического тока в световую энергию. Естественно, что ток вызывает нагрев кристалла полупроводника, но необходимость его охлаждения больше вызвана в потребности сохранить его свойства и продлить срок службы, так как уже при температурах 60-80°C происходит ускоренная деградация полупроводника.

Белые яркие светодиоды обязательно снабжают радиаторами для охлаждения, но само тепловое излучение от таких ламп очень мало по сравнению с лампами накаливания.

Любое нагретое тело, как известно из курса физики, излучает инфракрасные лучи, но в случае со светодиодными лампами оно пренебрежимо мало по сравнению с лампами накаливания. Именно поэтому светодиодное освещения сейчас заменяет освещение телевизионных студий и сценических площадок, где ранее использовались галогенные и металлгалогенные лампы.

Электромагнитное излучение светодиодных ламп

Драйвера светодиодных ламп представляют собой электронную схему, генерирующей импульсы высокой частоты, поэтому при работе этих устройств создаются электромагнитные помехи, способные нарушить работу некоторых электронных приборов: FM-приемников, телевизоров и других устройств. Поэтому минимальная дистанция от лампы до другого прибора должна составлять не менее 40 сантиметров.

Сравнение разных типов светодиодных ламп

Какие светодиодные лампы можно покупать для дома

Исходя из всего вышеизложенного, можно сделать определенные выводы про уместность применения светодиодных ламп.

  • Светодиодные лампы по показателям энергосбережения, световой отдачи являются самыми эффективными источниками света, имеющими перспективы повсеместного внедрения.
  • Все искусственные источники света большой мощности могут оказать негативное влияние на здоровье человека, прежде всего своим воздействием на сетчатку глаза. При соблюдении простых мер безопасности светодиодные лампы не оказывают пагубного влияния.
  • При покупке светодиодных ламп следует доверять только известным мировым брендам, а покупка должна быть сделана только у добросовестных продавцов.
  • Для дома лучше применять лампы со световой температурой 2700-3200 K (теплый белый). Индекс цветопередачи должен быть не менее 80 CRI.
  • Применение более прогрессивных люминофоров при производстве белых светодиодов будет только повышать характеристики светодиодных ламп, в том числе и их безопасность.

Вконтакте

Еще совсем недавно лампы на основе диодов в наших домах были редкостью. Буквально лет пять назад повсеместно рекламировались энергосберегающие люминесцентные светильники, которые казались очень хорошим вариантом освещения для экономии электроэнергии и замены ламп накаливания в быту и на производстве. Были разработаны даже программы перехода на энергосберегающее освещение, причем в масштабе страны. Вплоть до того, что лампы накаливания грозились вот-вот запретить. Помню, примерно в 2011 году, в одной из телепередач демонстрировались различные виды энергосберегающих ламп для дома и были показаны, в том числе, диодные светильники. Но их изготовители объясняли, что такие лампы, хотя и экологичные, но маломощные и очень дорогие, и вряд ли смогут в ближайшее десятилетие конкурировать с люминесцентными энергосберегающими лампами в быту.

Жизнь опровергла этот прогноз. Стремительный прогресс в светодиодном освещении действительно удивляет. Мощность ламп растет, стоимость снижается. Сейчас лампочку на 11 Вт (эквивалент лампы накаливания 75 Вт) можно купить за 100 - 150 руб. При этом срок службы, заявленный для лампы - 50000 часов. Лампы стали по форме неотличимы от привычных ламп накаливания, белый свет может быть холодного и теплого оттенка. Этот новый осветительный прибор теперь есть почти в каждом доме.

Но, как и все новые приборы, светодиодная лампа вызывает вопросы и настороженность. Не принесет ли она вред здоровью, зрению? Какие недостатки, возможно, скрывает производитель, стараясь получить прибыль? Мы опубликовали уже на нашем сайте ряд статей о новых приборах (Вредно ли разогревать пищу в микроволновке? Вред и польза инфракрасного нагревателя . Вред и польза индукционной плиты .) Сейчас очередь бытовой светодиодной лампы.

Прежде всего, небольшое разъяснение о принципе работы светодиодной лампы. Международное название такой лампы LED (light-emitting diode).Стандартный светоизлучающий диод содержит три слоя полупроводниковых материалов. Электрическое напряжение заставляет электроны от анода (n-слоя) и дырки от электрода (p-слоя) двигаться в промежуточный слой, где они рекомбинируют с излучением фотонов. Промежуточный слой представляет собой специальный кристалл с определенной шириной запрещенной зоны. Ширина этой зоны, а также примеси в кристалле определяют цвет излучения. В начале 1960-х созданы первые промышленные образцы светодиодов на основе фосфорида и арсенида галлия, излучающие красный свет, а потом и зеленый. Уже тогда эти устройства были эффективнее обычных ламп накаливания. Применялись они в качестве разнообразных цветовых индикаторов. Однако получить дешевый и яркий синий светодиод долго не удавалось. А без добавления синего цвета, как известно, невозможно получить белый свет, необходимый для освещения домов.

Не удивительно, что нобелевская премия по физике в 2014 году была вручена японским ученым Исаму Акасаки (Isamu Akasaki), Хироси Амано (Hiroshi Amano) и Сюдзи Накамура (Shuji Nakamura) за разработку «принципиально новых экологически чистых источников света», а именно за изобретение синих светодиодов, которые в комбинации с красными и зелеными могут дать прекрасный белый источник света. Главная трудность в изобретении синего светодиода заключалась в поиске хорошего кристалла для промежуточного слоя. Чтобы он излучал синий свет, необходим материал с большой шириной запрещенной зоны. Решение было найдено, когда предложили использовать светодиод с кристаллом из нитрида галлия (GaN) на сапфировой подложке. Промежуточный слой подвергался специальной термообработке и получал примеси не только магния, но и цинка, а потом — и индия. Хотя изобретение японских ученых было сделано еще в середине 90-х годов 20 века, его практическую значимость оценили и стали повсеместно использовать в 21 веке. В 2001 г. была впервые доказана возможность применения в светодиоде кварцевой подложки, вместо сапфировой, что открыло дорогу для производства более дешевых ламп.

Сейчас множество компаний выпускают бытовые светодиодные лампы и светильники. Крупнейшими производителями светодиодов в России и Восточной Европе являются компании «Оптоган» и «Светлана-Оптоэлектроника» (г. Санкт-Петербург).

Рассмотрим сначала преимущества таких ламп. Их не так мало и они довольно убедительны.

  1. Высокая световая отдача, достигающая 146 люмен на ватт.
  2. Высокая механическая прочность, вибростойкость (отсутствие нити накаливания, хрупкого стекла)
  3. Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Срок службы лампы сильно зависит от температуры. При эксплуатации при температурах выше комнатных срок службы сокращается.
  4. Малая инерционность — включаются сразу на полную яркость, в то время как у ртутно-фосфорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30 % до 100 % за 3-10 минут, в зависимости от температуры окружающей среды.
  5. Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп). Безопасность — не требуются высокие напряжения, низкая температура светодиода или арматуры, обычно не выше 60 °C.
  6. Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
  7. Экологичность — отсутствие ртути и фосфора внутри лампы.

Технология постоянно совершенствуется, для того, чтобы сделать лампы более экологичными, приносящими только пользу нашим глазам. Однако, как и в случае с другими приборами, есть дешевые и дорогие варианты. Производители порой не указывают на коробке всех характеристик. Рассмотрим кратко, какие проблемы могут волновать людей при использовании ламп со светодиодами.

1. Это, прежде всего, спектр излучения. В 2013 Интернет облетела информация о вреде LED-освещения, со ссылкой на исследование испанских ученых из Университета Комплутенсе, которое показало, что свет, который излучают светодиодные лампы, может существенно повредить сетчатку человеческого глаза. Более того, эти повреждения могут быть настолько сильными, что никакие медикаментозные и операционные процедуры уже не смогут помочь. Иногда встречаются заметки о том, что якобы в спектре светодиодных ламп присутствует жесткая синяя и даже ультрафиолетовая составляющая, вредная для наших глаз. Действительно, существуют санитарные нормы УФ облучения сетчатки, которые рекомендуется не превышать. Заметим, что самый сильный источник УФ излучения - это Солнце. Все эксперименты для подтверждения вредности УФ излучения проводились на животных и вредное влияние на сетчатку было отмечено только при длительной облучении очень ярким светом.

На следующем рисунке показан спектр четырех ламп - одной лампы накаливания и трех светодиодных ламп. Рисунок взят из публикации 2011 г. на сайте http://geektimes.ru/post/253792/ .

Самый низкий пик кривой спектра в диапазоне 400-500 нм. - у лампы Оптоган. Поэтому у этой лампы самая низкая цветовая температура, она равна 3050 °С. (Интересно, что стоимость такой лампы была в 2011 г. равна 995 руб.!) Как мы уже говорили, прогресс достигнут огромный. Сейчас уже большинство бытовых осветительных ламп имеют цветовую температуру 2700-3000 К, которая далека от УФ области. И все же, выбирая лампу в магазине, обратите внимание на ее цветовую температуру. Этот параметр всегда есть на коробке.

Что касается выводов, сделанных испанскими учеными, то они относятся к излучению всевозможных экранов на светодиодах, таких как дисплеи всяческих гаджетов, компьютеров, телевизоров и т.д. Ученые доказали, что если долго, без всякой защиты глаз смотреть на такие экраны, то это действительно может привести к постепенным изменениям сетчатки глаза. Поэтому рекомендуется защищать глаза при долгой работе с компьютером специальными очками. Делать частые перерывы. На осветительные приборы мы долго и пристально не смотрим, поэтому вреда от них нет.

2. Мерцание света. Частота мерцания лампы зависит от принципа работы и конструкции. Мерцание света может отрицательно сказываться на здоровье, поэтому здесь тоже есть санитарные нормы. Пульсации светового потока (амплитуда колебания яркости) в жилой комнате или в рабочем офисном помещении не должны быть более 20%. Пульсации света очень характерны для старых люминесцентных ламп. Для хороших светодиодов они минимальны - менее 1%. Хотя есть более дешевые экземпляры ламп с пульсациями более 60%. Этот параметр обычно не указывают в описании на коробке с лампой. Можно посоветовать просто покупать не самые дешевые современные лампы. В них питание идет через специальные драйверы, а не через конденсаторы. В Интернете есть советы, как самостоятельно оценить пульсации света. Предлагается смотреть на лампу через камеру мобильного телефона.

3. Еще одна проблема, связанная со спектром диодной лампы, которая иногда упоминается в Интернете - вред яркого белого цвета на здоровье человека. Имеется в виду уже не влияние на зрение, а влияние на нервную систему, подавление выработки гормона сна - мелатонина. Рекомендуется вечером за пару часов до сна снижать яркость ламп, использовать более теплый свет. В отличие от люминесцентных ламп, некоторые светодиодные лампы, подобно лампам накаливания, поддерживают функцию регулирования яркости с помощью регуляторов мощности «диммеров», это должно указываться производителем на упаковке.

4. Проблема с насекомыми. Они любят яркий свет, причем лампы накаливания их притягивают меньше, чем диодные, в том числе из-за их сильного нагрева. Диодные лампы, которые ярче ламп накаливания и при этом не греются, порой собирают вокруг себя тучи летающих насекомых. Эта проблема особенно актуальна при освещении больших южных городов, где происходит порой «нашествие» разнообразных комаров, мух, цикад.

Светодиодная лампа - одно из самых нужных и важных изобретений нашего времени. Оно не только улучшает качество света в наших домах, а также помогает решить проблему экономии энергии - одну из самых актуальных проблем на Земле.

) мне сразу хочется его разобрать и заглянуть внутрь, увидеть, как это всё устроено и работает. Видимо, это и отличает учёных от обывателей. Согласитесь, какой нормальный человек будет разбирать лампочку за 1000 рублей, но что поделать - партия сказала: надо!

Часть теоретическая

Как Вы думаете, почему все так озабочены заменой ламп накаливания , которые стали символом целой эпохи, на газоразрядные и светодиодные ?

Конечно, во-первых, это энергоэффективность и энергосбережение. К сожалению, вольфрамовая спираль больше излучает «тепловых» фотонов (т.е. свет с длинной волны более 700-800 нм), чем даёт света в видимом диапазоне (300-700 нм). С этим трудно спорить - график ниже всё расскажет сам за себя. С учётом того, что потребляемая мощность газоразрядных и светодиодных ламп в несколько раз ниже, чем у ламп накаливания при той же освещённости, которая измеряется в люксах . Таким образом, получаем, что для конечного потребителя это действительно выгодно. Другое дело - промышленные объекты (не путать с офисами): освещение пусть и важная часть, но всё-таки основные энергозатраты связаны как раз с работой станков и промышленных установок. Поэтому все вырабатываемые гигаватты уходят на прокатку труб, электропечи и т.д. То есть реальная экономия в рамках всего государства не так уж и велика.

Во-вторых, срок службы ламп, пришедших на замену «лампочкам Ильича», выше в несколько раз. Для светодиодной лампы срок службы практически неограничен, если правильно организован теплоотвод.

В-третьих, это инновации/модернизации/нанотехнологии (нужное подчеркнуть). Лично я ничего инновационного ни в ртутных, ни в светодиодных лампах не вижу. Да, это высокотехнологичное производство, но сама идея - это всего лишь логичное применение на практике знания о полупроводниках, которому лет 50-60, и материалов, известных около двух десятилетий.

Так как статья посвящена светодиодным лампам, то я более подробно остановлюсь на их устройстве. Давно известно, что проводимость освещённого полупроводника выше, чем проводимость неосвещённого (Wiki). Каким-то неведомым образом свет заставляет электроны бегать по материалу с меньшим сопротивлением. Фотон, если его энергия больше ширины запрещённой зоны полупроводника (E g), способен выбить электрон из так называемой валентной зоны и закинуть в зону проводимости.


Схема расположения зон в полупроводнике. E g - запрещённая зона, E F - энергия Ферми, цифрами указано распределение электронов по состояниям при T>0 ()

Усложним задачу. Возьмём два полупроводника с разным типом проводимости и и соединим вместе. Если в случае с одним полупроводником мы просто наблюдали увеличение тока, протекающего через полупроводник, то теперь мы видим, что этот диод (а именно так по-другому называется p-n-переход, возникающий на границе полупроводников с различным типом проводимости) стал мини-источником постоянного тока, причём величина тока будет зависеть от освещённости. Если выключить свет, то эффект пропадёт. Кстати, на этом основан принцип работы солнечных батарей .

Теперь вернёмся к светодиодам. Получается, что можно провернуть и обратное: подключить полупроводник p-типа к плюсу на батарейке, а n-типа - к минусу, и… И ничего не произойдёт, никакого излучения в видимой части спектра не будет, так как наиболее распространенные полупроводниковые материалы (например, кремний и германий) - непрозрачны в видимой области спектра. Всему виной то, что Si или Ge являются не прямозонными полупроводниками . Но есть большой класс материалов, которые обладают полупроводниковыми свойствами и одновременно являются прозрачными. Яркие представители - GaAs (арсенид галия), GaN (нитрид галлия).

Итого, чтобы получить светодиод нам надо всего-то сделать p-n-переход из прозрачного полупроводника. На этом я, пожалуй, остановлюсь, ибо, чем дальше, тем сложнее и не понятнее становится поведение светодиодов.

Позволю себе лишь несколько слов о современных технологиях производства светодиодов. Так называемый активный слой представляет собой очень тонкие 10-15 нм толщиной перемежающиеся слои полупроводников p- и n-типа, которые состоят из таких элементов как In, Ga и Al. Такие слои эпитаксиально выращивают с помощью метода MOCVD (metal-oxide chemical vapor deposition или химическое осаждение из газовой фазы).

Для заинтересованных читателей могу предложить познакомиться с физикой , лежащей в основе работы светодиодов. Помимо этой интересной работы, выполненной в стенах родного МГУ, у Светланы и Оптогана есть прекрасная плеяда научных коллективов в самом Санкт-Петербурге. Например, ФизТех . А ещё можно почитать .

Часть методическая

Все измерения спектров ламп были сделаны в течение 30 минут (т.е. фоновый сигнал менялся слабо) в затемнённой комнате с помощью спектрометра Ocean Optics QE65000. можно почитать об устройстве спектрометра. Помимо 10 зависимостей на каждый вид ламп был измерен темновой спектр, который затем вычитали из спектров лампочек. Все 10 зависимостей для каждого образца суммировались и усреднялись. Дополнительно каждый итоговый спектр был нормирован на 100%.


SEM-изображение отдельных светодиодов на подложке после удаления полимерного слоя

Сам же полимерный слой имеет довольно интересную структуру. Он состоит из маленьких (диаметр ~10 мкм) шариков:


Оптические микрофотографии «изнанки» полимерного слоя

Случайно получилось так, что один разрезанный микротомом диод остался в полимерном слое. Стоит отметить, что сам диод действительно прозрачен и сквозь него видны контакты на другой стороне чипа:


Оптические микрофотографии светодиода с тыльной стороны: отличная прозрачность для такого рода изделий

Полимерный слой настолько прочно приклеен как к самой медной подложке, так и к отдельным чипам, что после его удаления на поверхности диодов всё равно остаётся тонкий слой полимера. Ниже на изображениях, полученных с помощью электронного микроскопа можно во всей красе увидеть «скол» того самого активного слоя диода, в котором электроны «перерождаются» в фотоны:

SEM-изображения светоизлучающего слоя отдельного светодиода (стрелками указано расположение активного слоя)


А вот и текстурированный буферный слой, внимательно присмотритесь к правому нижнему изображению - оно нам ещё пригодится (стрелками указан буферный слой)


После неаккуратного обращения с чипом некоторые контакты повредились, а некоторые остались целыми

И последняя лампа - «СветаLED». Первое, что удивляет, - подложка со светодиодными модулями - внимание! - прикручена на здоровенный болтик к остальной лампе (прям как в Китае делали). Когда разбирал, думал, что может мешать «оторвать» её от остальной лампы, а потом увидел болтик… Кстати, на обороте этой алюминиевой подложки маркером! написан какой-то номер. Такое создаётся ощущение, что на заводе Светланы под Питером работают гастарбайтеры, которые собирают эти лампы вручную. Хотя нет, погодите, ведь лампочки производят военные… …


Оптические микрофотографии светоизлучающего диода от компании Светлана: на изображении-вставке отчётливо видна микроструктура подложки

На заметку: удалось разглядеть, как соединены отдельные чипы в модуле от «Светланы». Последовательно, к моему великому разочарованию. Таким образом, если «перегорит» хотя бы 1 светодиод, то весь модуль перестанет работать.


SEM-изображения светоизлучающего диода от компании Светлана (стрелочками показана активная область). На левом верхнем рисунке добавлено изображение предполагаемых контактов так, как они должны были быть проложены в модуле (4 x3 диода).

1 лампочке. Модуль у «Светланы» имеет размеры 5 на 5 мм, 2 уголка на «крышке» срезаны под 45 градусов и т.д. - многое совпадает со спецификацией «Оптогана». Продолжающийся эффект déjà vu не мучает?! А может просто всё закупается на Тайване?!

И, конечно же, выводы

Готов ли быть патриотом и назвать лампу «отечественного» (например, у «Оптогана» чипы производятся в Германии) производства лучшей по совокупности всех факторов?! Пожалуй, что нет. Честно, светодиодная лампа китайского производства меня приятно порадовала: относительная простота схемы питания диодов, простые материалы, удачное размещение светодиодов на подложке. Проблема с цветовой температурой решаема, а вот единственный минус, который меня как покупателя смущает, это долговечность лампочки из Поднебесной.

Лампы «отечественного» производства, а в особенности, «Оптоган» как всегда «радуют» своей ценой. Я больше, чем уверен, что можно было бы начать с «кустарного» дизайна, дешёвых материалов (стекло вместо поликарбоната) и заполнить нишу бюджетных источников света (вроде как богачей в России не так уж много, или я чего-то не знаю?!). Но даже не это главное, готовых вложить 1000 рублей в лампочку и не думать об их покупке в течение нескольких лет найдётся не мало. Оставим внешнее поразительное сходство между модулями, меня больше заботит другое - сходство между отдельными светодиодными чипами (геометрические размеры, расположение, контакты и т.д.). Такое ощущение, что изготавливали их на оборудовании одной и той же фирмы, только версии этого оборудования отличаются как v.1.0 и v.1.1. Конечно, я понимаю, что самое главное в светодиоде - внутренняя структура активной зоны, но, согласитесь, трудно достать 1 чип размером 160 на 500 мкм (толщина человеческого волоса 50-80 мкм) и сравнить эмиссионные спектры у чипов «Оптогана» и «Светланы».

Тем не менее, если компании «Оптоган» доработает цоколь, уберёт дорогие материалы (поликарбонат), уменьшит размеры, заменит 1 мощный чип на несколько более простых и оптимизирует драйвер (короче, вы поняли - полностью переделает лампу), то у такой лампочки будут все шансы завоевать российский рынок, так как помимо указанных недостатков, есть и масса плюсов таких, как грамотное соединение диодов в модуле, умный «драйвер» и т.д. Спасибо технической документации.

Что же касается «Светланы», то кроме простейшего драйвера, который должен влиять на цену в сторону понижения, расположения светоизлучающих модулей на подложке, плюсов-то практически и нет. Техническая документация мутная, светодиоды соединены последовательно, что при «перегорании» 1 диода выводит целый модуль из строя (т.е. в нашем случае снижает световой поток на 12,5%), размазанная повсюду термопаста - всё это уверенности не добавляет. Но, это был всего лишь прототип, может быть, промышленные образцы будут лучше.

Данная статья не имеет целью очернение или наоборот превознесение продукции одних производителей над другими. Привожу только факты, а уж вывод делать вам! Как говорится, думайте сами, решайте сами…

Видео раздел

Спасибо большое OSRAM, что подготовил столь подробное видео о том, как производит светодиоды (правда, эта компании делает светодиоды по несколько иной технологии, нежели все нами изученные лампочки):

Если есть энтузиасты готовые помочь с написанием русских субтитров - с радостью приму помощь

Процесс переноски светодиодных чипов внутрь пластикового корпуса:

А так на Тайване «фасуют» светодиодные чипы по пластиковым модулями с нанесением красителя и упаковкой в бобины:

P.S. В среду (26.10) начнётся , на нём будет широко представлена компания «Оптоган». Надеюсь, что мой микрофон на пресс-конференции не выключат и мне удастся задать неудобные вопросы… Главное, потом живым выбраться...
P.P.S. В свете последних личных проблем я не уверен, что найду в себе силы доделать начатую работу. А именно расквитаться с flash-памятью и дисплеями (E-Ink и ЖК). Ещё были планы и публикацию по биологическим объектам написать, но видимо и их придётся задвинуть в долгий ящик...

СПАСИБО! Всем за то, что читали и комментировали...



За последние годы среди населения большое распространение получили светодиодные лампочки . Поставщики этой продукции уверяют покупателей в том, что лампы экономичны, долговечны и светят намного ярче, чем лампы накаливания. Вроде, кажется, что такая продукция довольно полезная, раз продвижение происходит даже на уровне государства. Ведь не секрет, что во многих общественных заведениях массово меняют старые осветительные приборы на инновационные приспособления. Несмотря на такую активную рекламу, некоторые люди задумываются, а вредны ли светодиодные лампы для здоровья человека и если да, то в чем это выражается.

Преимущества светодиодных ламп

На сегодняшний день светодиодные лампочки – это самый экономный источник освещения , у которого есть ряд особенных преимуществ перед лампами накаливания и люминесцентными светильниками. Основные достоинства можно выделить такими пунктами:

  • В лампе совершенно нет хрупких элементов – колбы из стекла.
  • Прибор зажигается мгновенно.
  • Отсутствуют нитки накаливания, которые считаются слабым звеном в люминесцентных приборах освещения.
  • Постоянное развитие отрасли и возможность использовать эти устройства для многих целей, так как размер светодиодов минимальный.
  • Низкое потребление электрической энергии позволяет работать таким лампочкам даже от аккумуляторов.

И самым главным преимуществом является то, что эти осветительные приборы не содержат в конструкции вредных веществ, как люминесцентные лампы . Светодиоды не нужно сдавать для утилизации, так как в них нет ртути, но не вредят ли они здоровью – это второй вопрос.

Люминесцентные лампы представляют опасность для окружающей среды, так как внутри трубок содержится ртуть. После перегорания такие лампы обязательно сдают для утилизации. Светодиодные лампочки в этом плане совершенно безопасные.

Общая характеристика светодиодов

Светодиодные лампочки производятся из экологически чистых материалов – пластика высокого качества и металла . Для приборов высокой мощности применяют сплав алюминия. Главное отличие светодиодных приборов освещения от люминесцентных ламп это то, что в колбах нет газа.

Однако светодиод еще нельзя считать полноценным осветительным прибором, в стандартной сети напряжение составляет 220 Вт, в то время как для работы светодиоду необходимы лишь несколько вольт. Кроме того, даже при небольшом его повышении по отношению к номинальной величине, ток, проходимый сквозь прибор, вырастает во много раз. Из-за этой особенности для включения такого осветительного прибора в стандартную сеть понадобилась установка специального драйвера.

Каждая лампочка собирается из группы светодиодов, которые соединены между собой последовательно. Особый драйвер обеспечивает такое напряжение в цепочке, что ток, проходящий через нее, становится номинальным. Помимо этого, переменное напряжение сети выравнивается и становится постоянным .

Многих людям все эти преобразования могут показаться странными и бессмысленными, ведь светодиод и так способен пропускать электричество в одном направлении. Этому есть логичное объяснение, если светодиод будет работать напрямую от сети, то подаваемый свет будет пульсирующим, с частотой 50 Гц.

Истории наших читателей

Владимир
61 год

Промышленность выпускает светодиодные лампочки с разной теплотой свечения. Благодаря этому человек может подобрать такой свет, который ему наиболее приятен.

Откуда возникают пульсации света

Любые приборы, которые работают от стандартной сети, пульсируют, но каждый по-особенному. Неприятная пульсация сглаживается лампой накаливания, так как нить в колбе имеет тепловую инерцию. В то же время люминесцентные лампы очень пульсируют, и это влияет на глаза . Избавиться от этого можно, если запитать лампы от разных фаз или же сдвинуть между ними фазу с помощью специального конденсатора.

Специалисты выделяют ряд осветительных приборов, у которых минимальная пульсация, к ним относятся:

  • люминесцентные лампочки с полупроводниками;
  • небольшие люминесцентные лампы;
  • светодиодные лампочки.

Но сильно радоваться тому, что в жилище вкручены такие лампы, не стоит. Жильцы не застрахованы от вредных пульсаций. Светодиодные лампочки – это самая дорогая продукция среди всех экономных приборов освещения. И вот здесь уже действуют законы рынка. Всем известно, что потребители чаще приобретают тот товар, на который ниже цена. А вот в убыток компании-производители точно работать не будут.

Чтобы снизить стоимость светодиодных лампочек, производители уменьшают электронные элементы в схеме драйвера. Сглаживает пульсацию электролитический конденсатор, который фильтрует выпрямленное напряжение. Если драйвер удешевляется, то емкость этого конденсатора уменьшается. Некоторые производители устанавливают драйвера низкого качества, которые быстро выходят из строя. А особо недобросовестные компании могут вообще не ставить драйвера.

Определить, что в светодиодной лампочке нет драйвера, на глаз невозможно . Это можно сделать только специальными приборами, которые, к слову, есть даже не во всех СЭС.

Покупая лампочки, не стоит гнаться за слишком дешевыми приборами. В этом случае пословица – скупой человек платит дважды – верна как никогда.

Вредное влияние пульсаций на здоровье

Не все люди знают о вреде светодиодных ламп для зрения, а некачественные приборы действительно действуют на глаза и приводят к таким состояниям:

  1. Наблюдается сильная утомляемость глаз.
  2. Развиваются нарушения в сетчатке глаз .
  3. Постепенно снижается острота зрения.

Хотя люди не замечают пульсаций, но органы зрения четко реагируют на них и пытаются преобразовать полученное изображение таким образом, чтобы оно было равномерно освещенным и без пульсаций. Однако глаза не могут долго выдерживать такие нагрузки, и уже спустя непродолжительное время человек замечает, что зрение стойко снижается, глаза начинают болеть.

Особую опасность постоянные пульсации представляют для детей и подростков. Это объясняется тем, что органы зрения у них находятся в стадии формирования.

Что говорит медицина


Негативное воздействие светодиодных ламп на глазную сетчатку уже полностью доказано
. При этом самое вредное действие оказывают синие светодиоды, хотя другие цветовые температуры далеко от них не ушли. Санитарные нормы и правила не включают светодиодные лампы в перечень осветительного оборудования, которое разрешено для применения в дошкольных и школьных учреждениях.