Y k x у х3 графики функции графиком. График функции

Составим таблицу значений функции

Мы видим, что при (куб положительного числа положителен), а при (куб отрицательного числа отрицателен). Следовательно, график расположится на координатной плоскости в I и III четвертях. Заменим значение аргумента х противоположным значением тогда и функция примет противоположное значение; так как если , то

Значит, каждой точке графика соответствует точка того же графика, расположенная симметрично относительно начала координат.

Таким образом, начало координат является центром симметрии графика.

График функции изображён на чертеже 81. Эта линия называется кубической параболой.

В I четверти кубическая парабола (при ) «круто» поднимается

вверх (значения у «быстро» возрастают при возрастания х. см. таблицу), при малых значениях х линия «тесно» подходит к оси абсцисс (при «малых» значение у «весьма мало», см. таблицу). Левая часть кубической параболы (в III четверти) симметрична правой относительно начала координат.

Аккуратно вычерченный график может служить средством приближённого возведения чисел в куб. Так, например, положив найдём по графику

Для приближённого вычисления кубов составлены специальные таблицы.

Такая таблица имеется и в пособии В. М. Брадиса «Четырёхзначные математические таблицы».

Эта таблица содержит приближённые значения кубов чисел от 1 до 10, округлённые до 4-х значащих цифр.

Устройство таблицы кубов и правила пользования ею такие же, как и таблицы квадратов. Однако при увеличении (или уменьшении) числа в 10, 100 и т. д. раз его куб увеличивается (или уменьшается) в 1000, 1000 000 и т. д. раз. Значит, при пользовании таблицей кубов надо иметь в виду следующее правило переноса запятой:

Если в числе перенести запятую на несколько цифр, то в кубе этого числа надо перенести запятую в ту же сторону на утроенное количество цифр.

Поясним сказанное примерами:

1) Вычислить 2,2353. По таблице находим: ; прибавляем к последней цифре поправку 8 на последний знак:

2) Вычислить . Так как то находим

По таблице найдем перенеся запятую, получим

Приближённые формулы. Если в тождестве

число а мало по сравнению с единицей, то, отбросив члены с получим приближённые формулы:

По этим формулам легко найти приближённые кубы чисел, близких к единице, например: точный куб: 1,061208;

Урок на тему: "График и свойства функции $y=x^3$. Примеры построения графиков"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Электронное учебное пособие для 7 класса "Алгебра за 10 минут"
Образовательный комплекс 1С "Алгебра, 7-9 классы"

Свойства функции $y=x^3$

Давайте опишем свойства данной функции:

1. x – независимая переменная, y – зависимая переменная.

2. Область определения: очевидно, что для любого значения аргумента (x) можно вычислить значение функции (y). Соответственно, область определения данной функции – вся числовая прямая.

3. Область значений: y может быть любым. Соответственно, область значений – также вся числовая прямая.

4. Если x= 0, то и y= 0.

График функции $y=x^3$

1. Составим таблицу значений:


2. Для положительных значений x график функции $y=x^3$ очень похож на параболу, ветви которой более "прижаты" к оси OY.

3. Поскольку для отрицательных значений x функция $y=x^3$ имеет противоположные значения, то график функции симметричен относительно начала координат.

Теперь отметим точки на координатной плоскости и построим график (см. рис. 1).


Эта кривая называется кубической параболой.

Примеры

I. На небольшом корабле полностью закончилась пресная вода. Необходимо привезти достаточное количество воды из города. Вода заказывается заранее и оплачивается за полный куб, даже если залить её чуть меньше. Сколько кубов надо заказать, что бы не переплачивать за лишний куб и полностью заполнить цистерну? Известно, что цистерна имеет одинаковые длину, ширину и высоту, которые равны 1,5 м. Решим эту задачу, не выполняя вычислений.

Решение:

1. Построим график функции $y=x^3$.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

Y= k/ x у= х3 ГРАФИКИ ФУНКЦИИ Графиком функции у = х2 Называют параболой График функции у= Называют кубической функцией х3 График функции y = называют гиперболой. k/x

Кубическая функция y = аx 3 а‡ 0 Кубическая функция – это функция вида y = x 3. График функции называется кубической параболой и представляет собой винтообразную кривую, проходящую через начало координат из первой четверти в третью.

Кубическая функция - это функция вида y=ax³, где a - число (a≠ 0). График кубической функции называется кубической параболой. Для начала рассмотрим свойства и график кубической функции y=x³ (при a=1). 1) Область определения - множество действительных чисел: D: x∈(-∞; ∞) или R 2) Область значений - все действительные числа: E: y∈(-∞; ∞). 3) Функция имеет один нуль: y=0 при x=0. 4) Точка O (0; 0) делит кубическую параболу на две равные части, каждая из которых называется ветвью кубической параболы. Ветви кубической параболы симметричны относительно точки O - начала координат. Отсюда следует, что противоположным значениям x соответствуют противоположные значения y: (-x)³= -x³. 5) Функция возрастает на всей числовой прямой. 6) Промежутки знакопостоянства: функция принимает положительные значения при x∈(0; ∞) (или y>0 при x>0); функция принимает отрицательные значения при x∈(-∞; 0) (или y

Чтобы построить график кубической функции, возьмём несколько точек. Берём точки с абсциссами x=0, x=± 1, x=± 2, x=± 3 и находим соответствующие значения функции: X -2 -1 0 1 2 Y -8 -1 0 1 8 Получили точки с координатами (0; 0), (1; 1), (-1; -1), (2; 8), (-2; -8). Удобно результаты вычислений оформлять в виде таблицы:

Графиком функции является кубическая парабола. Чтобы построить его, рассмотрим график функции. По правилам построения графиков с помощью элементарных преобразований, растянем его вдоль оси ординат в два раза и сдвинем на единицу вверх. На рисунке 2 черной пунктирной линией изображен график, а зеленой сплошной линией – график функции.

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.