Защита от импульсного перенапряжения. Узип, устройства защиты импульсных перенапряжений

УЗИП (Уcтройства защиты от импульсных перенапряжений и помех) электрооборудования низковольтных силовых распределительных сетей до 1000 В предназначены для защиты от импульсных перенапряжений источниками которых являются:

  • прямые удары молнии (ПУМ) в систему молниезащиты объекта или воздушную линию электропередач в непосредственной близости перед вводом в объект;
  • межоблачные разряды или удары молнии в радиусе до нескольких километров вблизи от объектов и коммуникаций входящих и выходящих из объекта;
  • коммутации индуктивных и емкостных нагрузок, короткие замыкания в распределительных электрических сетях высокого и низкого напряжения;
  • электромагнитные помехи, создаваемые промышленными электроустановками и электронными приборами.

УЗИП – это защитное устройство от импульсных перенапряжений, предназначенное для установки как в городских квартирах, так и в частных домах. Оно обладает рядом неоспоримых достоинств: эффективностью, технической совершенностью и доступной стоимостью.

Эти три фактора делают УЗИП незаменимым оснащением для каждого дома и квартиры.

Кому нужны устройства защиты? Современные квартиры и офисы оборудуются большим количеством энергопотребляющей техники. Её совокупная стоимость обычно исчисляется десятками тысяч вложенных рублей. Поскупившись на покупку недорогих защитных устройств и надеясь на извечное русское «авось», вы рискуете потерять всё сразу: и компьютер, и плазменную панель, и стиральную машину, и электроплиту и всё то, что питается электроэнергией. Ведь достаточно всего одного скачка напряжения – и пиши пропало. Особенно остро вопрос безопасности стоит в загородных домах, оборудованных автономными системами электро- и водоснабжения, отопления, пожаротушения, видеонаблюдения и т.д. Только представьте, какие затраты вас подстерегают из-за беспечного отношения к электричеству! Что уж говорить о модных ныне системах «Умный дом», где всё завязано именно на стабильной работе электрической сети. Отнеситесь к собственной безопасности со всей аккуратностью. Ведь вы же не хотите понести колоссальные потери из-за какого-то каприза электричества?

Ограничитель перенапряжения предназначены для защиты от импульсных перенапряжение в результате грозовых разрядов или работой устройств с большой индуктивной нагрузкой (высоковольтные трансформаторы, большие электродвигатели с короткозамкнутым ротором)

Принцип действия ограничителя (УЗИП) основан на способности материала варистора при многократном увеличении напряжения пропускать электрический ток. Материал варистора утрачивает свои свойства, после нескольких разрядов. В большинстве серий УЗИП имеется возможность визуально проверить работоспособность варистора в индикаторном окне. В конструкцию ограничителя зачастую включен предохранитель для защиты от сверхтоков

Основные типы/классы УЗИП

Тип 1, класс В - используются при возможности непосредственного удара молний в линию электропередач или в землю в непосредственной близости от места установки.Остаточное импулсное перенапряжение на выходе 4-2,5 кВ.Очень рекомендуется при воздушном вводе, а при наличии молниеотвода установка обязательна. Устанавливается в специальном железном ящике вблизи ввода в здание или в вводно распределительном устройстве (ВРУ), или главном распределительном щите (ГРЩ).

Тип 2, класс С - используются в местах, в которых отсутствует угроза прямого удара молнии в непосредственной близости от места установки. По сравнению с Тип 1 имеют меньшую способность к защите от импульсных перенапряжений, рекомендуется устанавливать на вводе электроустановок и вводе в жилые помещения в качестве второго уровня защиты.Остаточное импулсное перенапряжение на выходе 2,5-1,5 кВ.Устанавливаются в распределительные щиты.

Тип 3, класс D - защита оборудования от остаточных токов перенапряжения, защита от несеметричных дифференциальных токов, защиты от высокочастотных помех, располагается в конечных распределительных щитах или, что лучше, не посредственно возле электроприборов. .Остаточное импулсное перенапряжение на выходе 1,5-0,8 кВ.Желательно чтоб от приборов находилось на растоянии не более 5 метров, а при наличии молниеотвода как можно ближе к электроприборам, так как ток в спусках молниеприемников расположеных снаружи здания индуцирует импульс перенапряжения в электропроводке.

При выборе защитных устройств на разрядниках или оксидно-цинковых варисторах необходимо обращать внимание на следующие параметры:

Номинальное рабочее напряжение Un - это номинальное действующее напряжение сети, для работы в которой предназначено защитное устройство.

Наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc - это наибольшее действующее значение напряжения переменного тока, которое может быть длительно (в течение всего срока службы) приложено к выводам защитного устройства.

Согласно ГОСТ и моей логике максимальное долговременное напряжение которое должен выдерживать УЗИП должно равнятся номинальному напряжению умноженному на кооифициент 1,6 для 220 вольт и 1,1 для 380 вольт и соответственно должно составлять 352 и 418 вольт. Это нужно для того чтоб в случае перенапряжений или обрыва нейтрали УЗИП не вышел из строя из-за срабатывания встроенной тепловой защиты или внешнего плавкого предохранителя.

У УЗИП с более высоким Uc соответственно выше остаточное напряжение на выходе Up, например у УЗИП с Uc 275 вольт остаточное напряжение составляет 1,5 кВ, а с Uc 385 вольт 1,9 кВ. Но если правильно сделать монтаж с Uc 385 вольт, то степень ограничения может получится даже лучше чем с неправильным монтажом при использовании УЗИП с Uc 275 вольт, но самое главное будет безопасно при временном перенапряжении.

Классификационное напряжение (параметр для варисторных УЗИП) - это действующее значение напряжения промышленной частоты, которое прикладывается к варисторному УЗИП для получения классификационного тока (обычно значение классификационного тока принимается равным 1,0 мА).

Импульсный ток Iimp - этот ток определяется пиковым значением Ipeak испытательного импульса и зарядом Q. Применяется для испытаний УЗИП класса I. Как правило, используется волна с формой 10/350 мкс.

Номинальный импульсный разрядный ток In - это пиковое значение испытательного импульса тока формы 8/20 мкс, проходящего через защитное устройство. Ток данной величины защитное устройство может выдерживать многократно. Используется для испытания УЗИП класса II. При воздействии данного импульса определяется уровень защиты УЗИП. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Максимальный импульсный разрядный ток Imax - это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

Сопровождающий ток If (параметр для УЗИП на базе разрядников) - это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т.е. электроэнергетической системой. Фактически значение этого тока стремится к расчётному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). Поэтому для установки в цепи «L-N; L-PE» нельзя применять газонаполненные (и другие) разрядники со значением If равным 100...400А. В результате длительного воздействия сопровождающего тока они будут повреждены и могут вызвать пожар. Для установки в данную цепь необходимо применять разрядники со значением If, превышающим расчётный ток короткого замыкания, т.е. желательно величиной от 2...3 кА и выше.

В системе ТТ при воздушном вводе нейтральный провод на вводе повторно не заземляется, во время грозы возможен обрыв нейтального провода и перехлестывание его фазным, в следствии чего возможно не контролируемое КЗ в цепи разрядника N-PE, If которого обычно равен 100...400А, если сопротивление заземления будет меньше 2,5 Ом. В подавляющем числе случаев реально токого быть не должно так как наврядли на практике получится что сумарное сопротивление заземления подстанции и местного заземления будет меньше 2,5 Ом. Это так для информации, чтоб имели ввиду.

Уровень защиты Up - это максимальное значение падения напряжения на УЗИП при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока In.

Время срабатывания. Для оксидно-цинковых варисторов его значение обычно не превышает 25 нс. Для разрядников разной конструкции время срабатывания может находиться в пределах от 100 наносекунд до нескольких микросекунд.

Существует ряд других параметров, которые тоже учитываются при выборе УЗИП: ток утечки (для варисторов), максимальная энергия, выделяемая на варисторе, ток срабатывания предохранителей (для защитных устройств со встроенными предохранителями).

Для правильной и согласованной работы УЗИП разных ступеней длина проводников между ними должна быть не меньше определенной длины для обеспечения необходимой временной задержки в нарастании импульса перенапряжения на следующей ступени защиты. Благодаря этой задержке более мощная ступень УЗИП успевает сработать, чем защищает от перегрузки следующую, более низковолтную ступень УЗИП.

Расстояние проводников между УЗИП на разрядниках и следующего за ним УЗИП на варисторах должно быть не менее 10 метров. Расстояние проводников между УЗИП на варисторах и следующего за ним УЗИП на варисторах следующей ступени должно быть не менее 5 метров. Расстояние проводников между одинаковыми по характеристикам УЗИП на варисторах одной ступени должно быть не менее 1 метра.

Если длина проводников между УЗИП меньше требуемой, устанавливают индуктивности для компенсации недостающей длины проводника из расчета 0,5-1 мкГ/м, в зависимости от сечения провода, если фазовые и защитные провода находятся в одном кабеле. Если провода проложены отдельно, то величина индуктивности будет большей. В продаже есть готовые индуктивности эквивалентные 6-15 метрам.

Если от УЗИП до защищаемых электроприборов более 10 метров, например если последняя ступень установлена в щите, желательно установить повторный УЗИП вблизи защищаемых электроприборов, а если расстояние более 30 метров то установка повторного УЗИП вблизи защищаемых электроприборов обязательна.

Каждую ступень УЗИП к заземляющему устройству (ЗУ) нужно стремится подключать отдельным проводником. Такое подключение позволяет свести к минимуму бросок потенциала на корпусах электроприборов в результате срабатывания устройств защиты от импульсного перенапряжения, хотя для приборов лучше чтоб УЗИП подключалось к шине заземления щита где установлен УЗИП, но защита человека главней.

Зонная концепция защиты.

Международной Электротехнической Комиссией (МЭК) разработаны стандарты, которые формируют «зонную концепцию защиты», одним из основных принципов является деление объекта на условные защитные зоны с точки зрения прямого и непрямого воздействия молнии.

Зона 0А - зона внешней среды объекта, все точки которой могут подвергаться воздействию прямого удара молнии (иметь непосредственный контакт с каналом молнии) и возникающего при этом электромагнитного поля.

Зона 0В - зона внешней среды объекта, точки которой не подвергаются воздействию прямого удара молнии, т.к. находятся в пространстве, защищенном системой внешней молниезащиты. Однако в данной зоне имеется воздействие неослабленного электромагнитного поля.

Зона 1 - внутренняя зона объекта, точки которой не подвергаются воздействию прямого удара молнии. В этой зоне во всех токопроводящих частях имеют значительно меньшее значение по сравнению с зонами 0А и 0В. Электромагнитное поле также снижено по сравнению с зонами 0А и 0В за счёт экранирующих свойств строительных конструкций.

Последующие зоны (Зона 2 и т.д.). Если требуется дальнейшее снижение разрядных токов или электромагнитного поля в местах размещения чувствительного оборудования, то необходимо проектировать так называемые последующие зоны. Критерий для этих зон определяется соответственно общими требованиями по ограничению внешних воздействий, влияющих на защищаемую систему. Имеет место общее правило, по которому с увеличением номера защитной зоны уменьшаются влияние электромагнитного поля и грозового тока. На границах раздела отдельных зон необходимо обеспечить защитное последовательное соединение всех металлических частей, с обеспечением их периодического контроля.

Особенности монтажа УЗИП в щитах -

Молниезащита и громоотвод - нажмите на ссылку для ознакомления.

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты , разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита ,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Любые бытовые электроприборы, работающие в домашней проводке, создаются изготовителями для питания от гармоничного сигнала синусоиды с напряжением 220 или 380 вольт.

Сложная электронная техника использует выпрямленный специальными блоками постоянный ток.

Когда форма и амплитуда питающего напряжения изменяется, то она сильно влияет на качество работы бытовых потребителей, снижая их ресурс.


Защите бытовой домашней техники необходимо уделять серьезное внимание:

  • выполнить качественную своими руками или привлечением электротехнических специалистов ;
  • обеспечить надежную работу ;
  • применить в помещениях повышенной опасности ;
  • использовать , исключающее воздействие нарушений питания от аварийных ситуаций из энергосистемы;
  • позаботиться о , способной противостоять грозовым разрядам, приносящим огромной вред зданию и жильцам;
  • противодействовать бытовой сети, используя устройства с импульсной защитой от перенапряжений УЗИП.

Какие импульсы тока могут возникнуть в бытовой домашней сети

Характер протекания тока по оборудованию принят за основу для проектирования электрических приборов и показан на картинке ниже.


Идеальная синусоида и выпрямленный из нее постоянный ток обеспечивают номинальный режим эксплуатации. Его нарушить может импульс, пришедший от:

  1. разряда молнии;
  2. перенапряжения электросети аварийными режимами.

Приведенные на нижних графиках характеристики носят общий характер. Они меняются в каждом конкретном случае. Однако, следует сразу заметить, что импульс молнии по величине значительно больше, а по времени продолжительнее на 17 крат (350/20=17).

Мощность молнии намного превышает импульс обычного перенапряжения сети, обладает повышенными разрушительными способностями по сравнению с ним.

Поэтому для устранения последействий молнии применяются специализированные защиты импульсного типа.

Сведем их к четырем пунктам:

  1. Импульсные защиты рассчитываются на режим пребывания в готовности к срабатыванию при нахождении под номинальным напряжением сети. При возникновении перенапряжений от аварий они могут повреждаться, сами требуют защиты.
    создается для эксплуатации синусоидальных или постоянных токов. К работе под импульсном разрядом молнии он не приспособлен.
    Защита УЗИП автоматами запрещена. Для нее выбирают только предохранители.
  2. По условиям безопасной эксплуатации корпус УЗИП первого класса лучше использовать цельной конструкцией без добавочных модулей съемного типа.
  3. При выборе устройств защит от импульсного перенапряжения, предназначенных для обработки токов молний более 20 кА с соотношениями импульса 10/350 миллисекунд, необходимо ориентироваться на разрядники.
  4. Монтаж УЗИП следует выполнять в электрическом щите с металлическим корпусом, который наиболее отвечает требованиям пожарной безопасности.

Разберём его на примере, представленном картинкой ниже.


Электрическая энергия в дом может поступать по воздушной линии, оборудованной:

  1. самонесущими изолированными проводами СИП - ВЛИ;
  2. обыкновенными проводами без внешнего слоя изоляции - ВЛ.

Наличие диэлектрического слоя на токопроводящих элементах воздушной линии уменьшает воздействие разряда молнии, влияет на конструкцию работающего УЗИП и его схему подключения.

При питании дома от ВЛИ создается система заземления по схеме TN-C-S. УЗИП монтируется между фазными проводниками и PEN. Место расщепления PEN на РЕ и N провода при удалении на 30 метров от здания требует дополнительной защиты.

Наличие на доме смонтированной внешней молниезащиты, подвод металлических коммуникаций инженерных систем влияют на электрическую безопасность здания, выбор и схему подключения УЗИП.


Рассмотрим четыре варианта возможных схем.

Вариант 1

Условия

  • без внешней молниезащиты;
  • с отсутствующими металлическими коммуникациями, встроенными в дом;

Решение

При такой ситуации вероятность образования прямого удара молнии в здание резко снижается:

  • изоляцией проводов ВЛИ;
  • отсутствием молниеприемника защиты и внешних металлических открытых токопроводящих частей.

Поэтому вполне достаточно защититься от импульсов перенапряжения, обладающих формой 8/20 мкс для тока.

Вполне подойдет УЗИП с комбинированным классом защит 1+2+3 в едином корпусе марки DS131VGS-230. Причем, ее защитная функция по устранению импульсов тока молнии формы 10/350 мкс с амплитудой до 12,5 кА вряд ли будет использована.

Размах тока от импульсов перенапряжения можно выбрать из диапазона 5÷20 кА с учетом периода грозовых дней. Проще остановиться на максимальном значении.

Вариант 2

Условия

Электричество поступает по ВЛИ. Здание:

  • без внешней молниезащиты;
  • с металлическими коммуникациями водо- или газопровода, встроенными в дом;
  • схема системы заземления TN-C-S.

Решение

По сравнению с предыдущим случаем здесь возможен грозовой разряд молнии по трубопроводу силой до 100 кА. Этот ток внутри трубы разветвится на оба конца по 50 кА. С нашей стороны дома эта часть разделится по 25 кА на контур заземления и здание.

PEN проводник заберет свою долю в 12,5 кА, а оставшаяся половинка импульса такой же силы сквозь УЗИП станет проникать в фазный провод. Поэтому ее надо будет подавлять.

Вполне можно выбрать ту же модель УЗИП, что и ранее, но ее возможность защиты от импульса молнии с формой 10/350 мкс и размахом до 12,5 кА будет абсолютно необходима.

Вариант 3

Условия

Электричество поступает по ВЛИ. В здании:

  • отсутствуют металлические коммуникации, встроенными в дом;
  • схема системы заземления TN-C-S.

Решение

Грозовой разряд в 100 кА попадает по молниеприемнику, разделяется на два потока по 50 кА в заземляющее устройство и электросхему здания.


На РЕ шине от повторно разветвляется на PEN проводник и фазный провод по 25 кА. Сквозь УЗИП, таким образом, будет протекать импульс с формой 10/350 мкс и силой 25 кА. С такими параметрами и требуется подбирать защиты.

Вариант 4

Условия

Электричество поступает по ВЛИ. У здания:

  • внешняя молниезащита смонтирована;
  • имеются металлические коммуникации водопровода, встроенные в дом;
  • схема системы заземления TN-C-S.

Решение

Разряд молнии в 100 кА после молниеприемника двумя потоками по 50 кА расходится на контур заземления и электрическую схему вводного устройства. Второй поток тоже разделится поровну: 25 кА растекается через трубы водоснабжения, а очередные 25 тоже делятся по 12,5 кА на PEN проводник и фазный провод через УЗИП. Его можно выбрать той же конструкции, как и во втором варианте.

Особенности выбора УЗИП при питании от ВЛИ

В четырех разобранных примерах за основу электроснабжения здания взяты ВЛИ с СИП. У них обрыв нуля, а, следовательно, появление линейного напряжения 380 вместо фазного маловероятно. Посему выбор УЗИП можно ограничивать максимальным напряжением сети.

Учитывая рабочие нагрузки в рассмотренных четырех вариантах для УЗИП, последние вполне допустимо монтировать в металлических шкафах внутри дома. С учетом небольших габаритов здания допустимо устанавливать одно устройство УЗИП между потенциалами фазы и PEN проводника.

Вариант 5

Условие

Электричество в здание поступает по воздушной ЛЭП с оголенными проводами.

Решение

При такой ситуации высока вероятность грозового разряда в провода ВЛ, а у дома используется схема системы заземления ТТ.


Требуется создавать защиту от проникающих импульсов не только от фазных проводов относительно земли, но и от нулевого. Последняя рекомендуется в большинстве случаев, но может не применяться по местным условиям.

При подключении к открытым проводам ВЛ на электрическую безопасность дома влияет конструкция ответвления. Ее выполнение возможно:

  1. кабелем;
  2. самонесущими изолированными проводами СИП, как на ВЛИ;
  3. открытыми проводами без изоляции.

При воздушном ответвлении меньшие риски обеспечивают изолированные по отдельности провода СИП с сечением от 16 мм кв и созданием промежутка относительно фазных и нулевого проводников. В них прямой удар молнии практически нереален, но он может попасть в место разделки около изоляторов на вводе. Тогда на фазе появится 50% от силы грозового разряда.

Этот случай необходимо исключать:

  • заводом СИП внутрь вводного устройства;
  • подключением РЕ шины щитка к заземляющему устройству с блокированием возможности удара молнии в это место с внешней стороны здания.

Без комплексного выполнения этих условий потребуется монтировать УЗИП на 50 кА 10/350 мкс, а при выполнении - ток молнии в открытый фазный провод силой 100 кА разделится на два потока, из которых 50 кА пойдет в сторону здания на столб ввода. Когда он стоит последним на линии, то весь разряд войдет в дом, а если ВЛ проложена дальше, то разделится на наше строение и уйдет к другим.

Эти условия являются определяющими при выборе УЗИП по силе разряда молнии.

На воздушной ЛЭП с открытыми проводами вероятен обрыв нуля, что требует выбора УЗИП на напряжение до 0,4 кВ, а не 220 вольт.

При монтаже УЗИП следует учитывать заводские рекомендации изготовителя, изложенные техническими характеристиками по схемам подключения в разных системах заземления, их особенности. Иначе от применения защиты возможен больший вред, чем польза.

Роль предохранителя в защите УЗИП

Протекание грозы обычно происходит при шквальном ветре, который может оборвать PEN проводник ВЛ во время или перед ударом молнии. Через рабочий ноль потечет фазный ток.

При разряде молнии по открытому проводу фазы у нас отрабатывает УЗИП, через который потечет импульс от грозы и ток, сопровождающий обрыв PEN, по цепочке: предохранитель, разрядник, шину РЕ и контур заземления.

Все эти элементы обладает определённым электрическим сопротивлением, снижающим величину протекающего тока. Его можно просчитать, определить по закону Ома значение сопровождающего тока, сравнить с характеристиками УЗИП. Если они разрешают эксплуатацию при большей величине, то предохранитель можно не использовать.

Компания «Электромир» своим видеороликом объясняет, почему в любом доме необходимо устанавливать УЗИП.

(10 голосов, в среднем: 5 из 5)

Во время грозы в сети часто возникают импульсные помехи. Также их можно наблюдать при поломке трансформатора. Для защиты электрооборудования в доме используются специальные устройства УЗИП. Устанавливаются они в щитки разных комплектаций.

Различие модификаций заключается в величине параметров выходного напряжения, пороговой частоты и проводимости. Стандартная модель состоит из блока и контактов. Резисторы устанавливаются различных типов. Модулятор в устройствах соединяется с трансивером. В данном элементе имеются проводники, а также триод. Для того чтобы больше узнать об УЗИП, следует рассмотреть принцип работы модели.

Принцип работы

На рынке представлены различные устройства защиты от импульсных перенапряжений. Принцип работы их основан на изменении проводимости. Для этого в устройстве имеются контакты. Стабилизация пороговой частоты осуществляется за счет модулятора. Триод играет роль проводника. При подаче напряжения на выходные контакты параметр проводимости тока меняется. Если рассматривать устройства с расширителем, то у них контакты устанавливаются на пластине. Изменение положения элементов осуществляется за счет работы резистора.

Схема подключения устройств первой степени

Устройства защиты от импульсных перенапряжений первой степени подходят для щитков серии РВ. В данном случае для подключения моделей используется трансивер. Выходное напряжение в среднем обязано составлять 14 В. Параметр проводимости УЗИП зависит от Как правило, они используются с усилителем. Для подключения контактов применяются фиксаторы. Параметр пороговой проводимости в среднем равен 4,5 мк.

Перед подключением УЗИП проверяется общее сопротивление в цепи. Указанный параметр для устройств первой серии равен 50 Ом. Также модификации указанного типа подходят для щитков типа СР. Они установлены во многих жилых домах. Подключение к щитку происходит через трансивер. Параметр общего сопротивления в цепи не должен превышать 55 Ом. Для щитков серии РР устройство не подходит из-за высокой проводимости тока.

Применение модификаций второй степени

Устройства защиты от импульсных перенапряжений второй степени - это устройства, которые подключаются к щиткам серии РР. В данном случае соединение осуществляется за счет проводников. Если рассматривать модификации на расширителях, то модуляторы используются с обкладкой. Перед подключением оборудования проверяется выходное напряжение на стабилизаторе. Указанный параметр колеблется в районе 13 В. Расширитель используется двухконтактного типа.

Если рассматривать щитки серии РР20, то у них установлен изолятор. Для подключения УЗИП используется сеточный триод. Наиболее часто он применяется на Также важно отметить, что в щитках серии РР21 имеются интегральные выпрямители. Указанные элементы необходимы для преобразования тока.

Устройства защиты третьей степени

Устройства защиты от импульсных перенапряжений третьей степени подходят для щитков, у которых используется динистор проходного типа. Получение оборудования осуществляется через демпфер. Контакты для соединения подбираются с медной обкладкой. Параметр общего сопротивления должен составлять около 40 Ом. Если рассматривать щитки серии РР19, то тиристор используется с усилителем. В некоторых случаях модификации выпускаются с конденсаторными резисторами.

Подключение элементов указанного типа происходит с адаптером и без него. Если рассматривать первый вариант, то варикапы берутся переменного типа. Показатель общего сопротивления в среднем равен 30 Ом. Если рассматривать второй вариант, то варикапы разрешается использовать переменного типа. Параметр пороговой перегрузки устройств составляет около 3 А. Также важно отметить, что у моделей используются фильтры магнитного типа.

Однополюсные модификации РН-101М

Однополюсные устройства защиты от импульсных перенапряжений - что это такое? Указанные приборы представляют собой контактные блоки, которые подходят для сетей с переменным током. Они часто подключаются к трансформаторам, у которых используется высоковольтное реле. В жилых домах устройства используются редко. Отличие моделей также заключается в выпрямителе. Он используется на демпферной основе. Параметр общего сопротивления в среднем равен 22 Ом.

Также важно отметить, что выходное напряжение составляет около 200 В. Внутри устройства используются контакты, а также модулятор. Пластины чаще всего устанавливаются в горизонтальном положении. Трансивер для подключения подбирается линейного типа. Многие модификации оснащены тетродами. Для их нормальной работы применяются преобразователи. Наиболее часто они производятся с выпрямителем.

Схема подключения двухполюсной модификации РН-105М

Двухполюсные устройства защиты от импульсных перенапряжений разрешается подключать через пентоды. Параметр общего сопротивления должен составлять 40 Ом. Также важно отметить, что контакты устройства соединяются с динистором напрямую. У многих элементов используется компаратор. Указанный элемент дает возможность устанавливать поворотный регулятор.

Для щитков серии СР модель подходит. В данном случае проводимость зависит от модулятора УЗИП. Если он используется интегрального типа, то вышеуказанный показатель в среднем составляет 2,2 мк. Также у моделей часто устанавливается дуплексный модулятор. Параметр проводимости в цепи в среднем равен 3 мк.

Применение моделей серии АВВ

Устройства защиты от импульсных перенапряжений АВВ часто устанавливаются в жилых домах. Если рассматривать щитки типа РР, то подключение конденсаторов происходит через расширитель. Непосредственно модулятор соединяется с демпфером. Во многих случаях выпрямитель не требуется. Если рассматривать щиток с обкладкой, то для нормальной работы устройства используется триод. Указанный элемент способен работать только с магнитным фильтром. Параметр проводимости тока в цепи составляет около 4 мк. Показатель общего сопротивления равен 40 Ом.

Устройства серии ZUBR D40

D40 устройства защиты от импульсных перенапряжений - что это? Указанные приборы являются блоками, в которых расположены контакты. Подходят они для щитков, у которых имеется трансивер операционного типа. Модулятор к прибору подсоединяется через компаратор. Параметр проводимости в среднем равен 5 мк. Также важно отметить, что модулятор разрешается подключать без обкладки. В некоторых случаях используется демпфер. Указанный элемент играет роль стабилизатора.

Трансивер в щитке соединяется с контактами. Если рассматривать щитки серии РР20, то важно отметить, что у них имеется адаптер. Указанный элемент часто установлен с регулятором. Для подключения УЗИП необходим импульсный конденсатор. Указанный элемент должен иметь проводимость на уровне 6 мк. Показатель общего сопротивления в среднем равен 12 Ом.

Схема прибора серии ZUBR D42

Применение устройств защиты от импульсных перенапряжений указанной серии очень ограниченное. Для высоковольтных трансформаторов они подходят. Контакты у модели используются с пластинами. Для подключения устройства к высоковольтному оборудованию используются демпферы. Если рассматривать электродные модификации, то подсоединение осуществляется благодаря триоду. Также есть модификации с операционными демпферами. У них есть регулятор фазового типа. Для щитков серии РР указанная модель не подходит.

Применение моделей серии ZUBR D45

От импульсных перенапряжений указанной серии отличается высокой проводимостью. Контакты у него установлены на пластинах. Варикап в данном случае используется с подкладкой. Фильтры у модели применяются проводного типа. Для щитков серии РС устройства подходят. Подключение модулятора осуществляется через транзистор. Параметр общего сопротивления должен составлять около 20 Ом. Также важно обращать внимание на выходное напряжение.

Если использовать демпфер, то указанный параметр в среднем равен 12 В. Также в щитках серии РС часто используются динисторы. В такой ситуации выходное напряжение не превышает 15 В. Также УЗИП указанной серии можно подключать к щиткам типа РР19. В данном случае демпфер применяется многоканального типа. Динистор используется без фильтров. Модулятор подключается к сети через транзистор. Параметр выходной проводимости должен составлять около 4 мк. Показатель общего сопротивления лежит в районе 40 Ом.

Устройства серии TESSLA D32

Устройства данной серии производятся с проходными модуляторами. Контакты у них применяются подвижного типа. Для щитков серии РР20 указанное устройство используется часто. Модулятор подсоединяется через расширитель. Чаще всего он используется с преобразователем. Для решения проблем с повышением частоты устанавливается тетрод.

Если рассматривать щитки серии РР10, то в них имеется кенотрон. Указанный элемент устанавливается на два или три выхода. В первом варианте модулятор устройства подключается через демпфер. Параметр выходной проводимости у него равен 3,3 мк. Общее сопротивление в цепи составляет 30 Ом. Если рассматривать второй вариант, то для УЗИП потребуется динистор.

Схема прибора серии TESSLA D35

Это компактное и высоковольтное устройство защиты от импульсных перенапряжений. Схема подключения модификации предполагает использование демпфера. Если рассматривать щитки типа РР19, то он применяется электродного типа. Динистор используется с обкладкой. Фильтры могут устанавливаться проходного либо сетевого типа. Модулятор УЗИП подсоединяется через расширитель.

Также устройство подходит для щитков серии РР20. Компараторы в них применяются переменного типа. Модулятор в таком случае подсоединяется со стабилитроном. Параметр выходной проводимости в среднем равен 3,5 мк. Показатель общего сопротивления составляет около 45 Ом.

Применение моделей серии TESSLA D40

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подходит для трансформаторов, у которых установлен резистор. Модулятор к оборудованию подключается через демпфер. Чаще всего фильтры используются проходного типа. Показатель выходной проводимости в среднем равен 3 мк. Параметр общего сопротивления не превышает 55 Ом. Транзисторы в устройствах указанной серии используются без пластин. Всего у модели имеется три пары контактов. Выходной разъем находится в нижней части конструкции. Для щитков серии РР модель не подходит.

Устройства серии VC-115

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подключается без обкладки. Для щитков типа РР20 модель подходит. Модулятор разрешается подключать через демпфер либо динистор. В первом варианте необходим выпрямитель. Фильтр применяется проходного типа. Для увеличения пороговой частоты необходим выпрямитель. Если рассматривать схему с расширителем, то нормализовать выходную частоту можно только за счет конденсаторов. Параметр выходной проводимости в среднем составляет 4 мк. Общее сопротивление в цепи равно 40 Ом.

Схема прибора серии VC-122

Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС. В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа. Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут.

УЗИП (Устройства защиты от импульсных перенапряжений), или как их еще называют, ограничители импульсных перенапряжений применяются для защиты сетей от грозовых, коммутационных и электростатических импульсных перенапряжений.

Попадание грозового разряда в сеть способно вызвать пробой изоляции даже на значительных расстояниях от места разряда, что соответственно повлечет за собой выход из строя электробытовых приборов (компьютеров, телевизоров, стиральных машин и т.д.). Чтобы уберечь технику от таких фатальных последствий и применяют УЗИП, который благодаря своему устройству гасит импульсы перенапряжений до безопасной величины. Конечно, помимо УЗИП, для полной защиты в доме должно быть выполнено защитное заземление по системе TN-C-S, TN-S или ТТ с разделёнными нулевым и защитным проводниками, система молниезащиты, .

  • Ограничители класса В – предназначены для защиты объектов от непосредственного удара молнии, атмосферных и коммутационных перенапряжений. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Номинальный разрядный ток 30-60 кА.
  • Ограничители класса С – предназначены для защиты электрооборудования объектов от остатков атмосферных и коммутационных перенапряжений, прошедших через ограничители класса В. Устанавливают в распределительных щитах. Защищают внутреннюю проводку, автоматику и т.д. Номинальный разрядный ток 20-40 кА.
  • Ограничители класса D – предназначены для защиты потребителей от остатков атмосферных перенапряжений, фильтрации высокочастотных помех, защиты от дифференциальных (несимметричных) перенапряжений.Устанавливаются непосредственно возле потребителя. Номинальный разрядный ток 5-10 кА.

Конструктивно большинство УЗИП класса C и D выполнены на базе варисторов, УЗИП класса B на основе разрядников.

Варисторы обычно выполнены в виде сменного модуля. Помимо этого, УЗИП оснащен механическим предохранителем, который является по сути тепловой защитой и цветовым индикатором состояния. Зеленый цвет индикатора сигнализирует об исправности элемента, оранжевый — о необходимости замены элемента.

Рис.1 1 - Корпус 2 - Варисторный модуль 3 - Индикатор работы устройства 4 - Предохранитель в виде металлической пластины

Принцип действия УЗИП

При отсутствии импульсных напряжений ток через варистор пренебрежимо мал и поэтому варистор в этих условиях представляет собой изолятор. При возникновении импульса перенапряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. Тепловой излишек сбрасывается в землю, через защитный проводник РЕ (заземление). Через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после прохождения импульса тока он вновь приобретает очень большое сопротивление.

При выборе защитных устройств обращайте внимание на следующие параметры:

  1. Номинальное рабочее напряжение. (Un) Это номинальное действующее напряжение сети, для работы в которой предназначено защитное устройство.
  2. Максимальное рабочее напряжение. (Uc) Это наибольшее действующее значение напряжения переменного тока, которое может быть длительно приложено к выводам защитного устройства.
  3. Классификационное напряжение. Это действующее значение напряжения промышленной частоты, которое прикладывается к варисторному ограничителю для получения классификационного тока (обычно значение классификационного тока принимается равным 1,0 мА).
  4. Номинальный разрядный ток. (In) Это пиковое значение испытательного импульса тока формы 8/20 мкс, проходящего через защитное устройство. Ток данной величины защитное устройство может выдерживать многократно. Используется для испытания УЗИП класса II. При воздействии данного импульса определяется уровень защиты устройства.
  5. Максимальный разрядный ток. (Imax) Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.
  6. Уровень напряжения защиты. (Up) Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального разрядного тока (In).
  7. Время срабатывания. Для оксидно-цинковых варисторов его значение обычно не превышает 25 нс. Для разрядников разной конструкции время срабатывания может находиться в пределах от 100 наносекунд до нескольких микросекунд.