COM-порт. Сопряжение устройств с ПК

Описание интерфейса RS-232, формат используемых разъемов и назначение выводов, обозначения сигналов, протокол обмена данными.

Общее описание

Интерфейс RS-232, совсем официально называемый "EIA/TIA-232-E", но более известный как интерфейс "COM-порта", ранее был одним из самых распространенных интерфейсов в компьютерной технике. Он до сих пор встречается в настольных компьютерах, несмотря на появление более скоростных и "интеллектуальных" интерфейсов, таких как USB и FireWare. К его достоинствам с точки зрения радиолюбителей можно отнести невысокую минимальную скорость и простоту реализации протокола в самодельном устройстве.

Физический интерфейс реализуется одним из двух типов разъемов: DB-9M или DB-25M, последний в выпускаемых в настоящее время компьютерах практически не встречается.

Назначение выводов 9-контактного разъема


9-контактная вилка типа DB-9M
Нумерация контактов со стороны штырьков
Направление сигналов указано относительно хоста (компьютера)
Контакт Сигнал Направление Описание
1 CD Вход Обнаружена несущая
2 RXD Вход Принимаемые данные
3 TXD Выход Передаваемые данные
4 DTR Выход Хост готов
5 GND - Общий провод
6 DSR Вход Устройство готово
7 RTS Выход Хост готов к передаче
8 CTS Вход Устройство готово к приему
9 RI Вход Обнаружен вызов

Назначение выводов 25-контактного разъема

Контакт Сигнал Направление Описание
1 SHIELD - Экран
2 TXD Выход Передаваемые данные
3 RXD Вход Принимаемые данные
4 RTS Выход Хост готов к передаче
5 CTS Вход Устройство готово к приему
6 DSR Вход Устройство готово
7 GND - Общий провод
8 CD Вход Обнаружена несущая
9 - - Резерв
10 - - Резерв
11 - - Не используется
12 SCD Вход Обнаружена несущая #2
13 SCTS Вход Устройство готово к приему #2
Контакт Сигнал Направление Описание
14 STXD Выход Передаваемые данные #2
15 TRC Вход Тактирование передатчика
16 SRXD Вход Принимаемые данные #2
17 RCC Вход Тактирование приемника
18 LLOOP Выход Локальная петля
19 SRTS Выход Хост готов к передаче #2
20 DTR Выход Хост готов
21 RLOOP Выход Внешняя петля
22 RI Вход Обнаружен вызов
23 DRD Вход Определена скорость данных
24 TRCO Выход Тактирование внешнего передатчика
25 TEST Вход Тестовый режим

Из таблиц видно, что 25-контактный интерфейс отличается наличием полноценного второго канала приема-передачи (сигналы, обозначенные "#2"), а также многочисленных дополнительных управляющих и контрольных сигналов. Однако, часто, несмотря на наличие в компьютере "широкого" разъема, дополнительные сигналы на нем просто не подключены.

Электрические характеристики

Логические уровни передатчика: "0" - от +5 до +15 Вольт, "1" - от -5 до -15 Вольт.

Логические уровни приемника: "0" - выше +3 Вольт, "1" - ниже -3 Вольт.

входное сопротивление приемника не менее 3 кОм.

Данные характеристики определены стандартом как минимальные, гарантирующие совместимость устройств, однако реальные характеристики обычно существенно лучше, что позволяет, с одной стороны, питать маломощные устройства от порта (например, так спроектированы многочисленные самодельные data-кабели для сотовых телефонов), а с другой - подавать на вход порта инвертированный TTL-уровень вместо двуполярного сигнала.

Описание основных сигналов интерфейса

CD - Устройство устанавливает этот сигнал, когда обнаруживает несущую в принимаемом сигнале. Обычно этот сигнал используется модемами, которые таким образом сообщают хосту о обнаружении работающего модема на другом конце линии.

RXD - Линия приема хостом данных от устройства. Подробно описана в разделе "Протокол обмена данными".

TXD - Линия передачи хостом данных к устройству. Подробно описана в разделе "Протокол обмена данными".

DTR - Хост устанавливает этот сигнал, когда готов к обмену данными. Фактически сигнал устанавливается при открытии порта коммуникационной программой и остается в этом состоянии все время, пока порт открыт.

DSR - Устройство устанавливает этот сигнал, когда включено и готово к обмену данными с хостом. Этот и предыдущий (DTR) сигналы должны быть установлены для обмена данными.

RTS - Хост устанавливает этот сигнал перед тем, как начать передачу данных устройству, а также сигнализирует о готовности к приему данных от устройства. Используется при аппаратном управлении обменом данными.

CTS - Устройство устанавливает этот сигнал в ответ на установку хостом предыдущего (RTS), когда готово принять данные (например, когда предыдущие присланные хостом данные переданы модемом в линию или есть свободное место в промежуточном буфере).

RI - Устройство (обычно модем) устанавливает этот сигнал при получении вызова от удаленной системы, например при приеме телефонного звонка, если модем настроен на прием звонков.

Протокол обмена данными

В протоколе RS-232 существуют два метода управления обменом данных: аппаратный и программный, а также два режима передачи: синхронный и асинхронный. Протокол позволяет использовать любой из методов управления совместно с любым режимом передачи. Также допускается работа без управления потоком, что подразумевает постоянную готовность хоста и устройства к приему данных, когда связь установлена (сигналы DTR и DSR установлены).

Аппаратный метод управления реализуется с помощью сигналов RTS и CTS. Для передачи данных хост (компьютер) устанавливает сигнал RTS и ждет установки устройством сигнала CTS, после чего начинает передачу данных до тех пор, пока сигнал CTS установлен. Сигнал CTS проверяется хостом непосредственно перед началом передачи очередного байта, поэтому байт, который уже начал передаваться, будет передан полностью независимо от значения CTS. В полудуплексном режиме обмена данными (устройство и хост передают данные по очереди, в полнодуплексном режиме они могут делать это одновременно) снятие сигнала RTS хостом означает его переход в режим приема.

Программный метод управления заключается в передаче принимающей стороной специальных символов остановки (символ с кодом 0x13, называемый XOFF) и возобновления (символ с кодом 0x11, называемый XON) передачи. При получении данных символов передающая сторона должна соответственно остановить передачу или возобновить ее (при наличии данных, ожидающих передачи). Этот метод проще с точки зрения реализации аппаратуры, однако обеспечивает более медленную реакцию и соответственно требует заблаговременного извещения передатчика при уменьшении свободного места в приемном буфере до определенного предела.

Синхронный режим передачи подразумевает непрерывный обмен данными, когда биты следуют один за другим без дополнительных пауз с заданной скоростью. Этот режим COM-портом не поддерживается .

Асинхронный режим передачи состоит в том, что каждый байт данных (и бит контроля четности, в случае его наличия) "оборачивается" синхронизирующей последовательностью из одного нулевого старт-бита и одного или нескольких единичных стоп-битов. Схема потока данных в асинхронном режиме представлена на рисунке.

Один из возможных алгоритмов работы приемника следующий:

  1. Ожидать уровня "0" сигнала приема (RXD в случае хоста, TXD в случае устройства).
  2. Отсчитать половину длительности бита и проверить, что уровень сигнала все еще "0"
  3. Отсчитать полную длительность бита и текущий уровень сигнала записать в младший бит данных (бит 0)
  4. Повторить предыдущий пункт для всех остальных битов данных
  5. Отсчитать полную длительность бита и текущий уровень сигнала использовать для проверки правильности приема с помощью контроля четности (см. далее)
  6. Отсчитать полную длительность бита и убедиться, что текущий уровень сигнала "1".

Иногда приходится решать задачу связи электронного устройства с компьютером, будь то просто обмен данными или удалённое управление. Эта статья описывает, как это можно реализовать, используя последовательный порт. Главным его преимуществом является то, что стандартный программный интерфейс Windows (API) позволяет производить непосредственное управление выходными линиями, давая прямой контроль над ними, и имеет функцию ожидания некоторого события, связанного с COM-портом. Также стандарт RS-232, по которому выполнены COM-порты, допускает подключение и отключение кабелей во время работы устройств (hot plug).

Описание

COM-порт (последовательный порт) – двунаправленный интерфейс, передающий данные в последовательном виде (бит за битом) по протоколу RS-232. Это довольно-таки распространённый протокол, применяемый для связи одного устройства (например, компьютера) с другими посредством проводов длиной до 30м. Уровни логических сигналов здесь отличаются от стандартных: уровень логической единицы – от +5 до +15В, уровень логического нуля – от -5 до -15В, что требует дополнительных преобразований схемы, но обеспечивает хорошую помехоустойчивость.

Рассмотрим 9-пинововый разъём (DB-9M). Ниже представлена его распиновка:

№ вывода Наименование Характер сигнала Сигнал
1 DCD Входной Data carrier detect
2 RxD Выходной Transmit data
3 TxD Входной Receive data
4 DTR Выходной Data terminal ready
5 GND - Ground
6 DSR Входной Data set ready
7 RTS Выходной Request to send
8 CTS Входной Clear to send
9 RI Входной Ring indicator

Больше всего нас будут интересовать пины 2 (передача данных),3 (приём данных) и 5 (земля). Это минимальный набор для возможности двухстороннего общения приборов.

Подробно останавливаться на описании протокола не буду. Для этого есть ГОСТ’ы и т.п. Поэтому мы пойдём дальше и поговорим о том, как же управлять этим зверем.

Применение

Как уже говорилось, уровни ЛС RS-232 отличаются от стандартных уровней ТТЛ. Следовательно, нам необходимо как-то преобразовывать величины напряжений. Т.е. сделать 5В из +15В и 0В из -15В (и наоборот). Один из способов (и, наверное, самый простой) – использование специальной микросхемы MAX232. Она проста в понимании и одновременно может преобразовывать два логических сигнала.

Ниже приведена схема её включения:


Думаю, трудностей быть не должно. Это один из вариантов использования этой микросхемы: передача данных с микроконтроллера на ЭВМ и наоборот. Передаваемый сигнал поступает на ножки Tx IN с одной стороны и на Rx IN с другой. Входные сигналы снимаются с Tx OUT и Rx OUT соответственно.

Программирование

Для начала поговорим о программировании портов на низком уровне. Так будет более правильно. Я очень много нервов потратил, разбираясь с этим интерфейсом, пока не начал вникать в принцип его работы на более низком уровне, нежели простая передача символов. Если будет понятно это, значит и с языками высокого уровня проблем не будет.

Ниже представлены адреса COM-портов, с которыми нам придётся работать:

Название порта Адрес IRQ
COM 1 3F8h 4
COM 2 2F8h 3
COM 3 3E8h 4
COM 4 2E8h 3

Они могут различаться. Установить значения можно в настройках BIOS’а. Это базовые адреса. От них же и будут зависеть адреса регистров, отвечающие за работу портов:

Адрес DLAB Чтение/Запись Аббревиатура Название регистра
+ 0 =0 Write Transmitter Holding Buffer
=0 Read Receiver Buffer
=1 Read/Write Divisor Latch Low Byte
+ 1 =0 Read/Write IER Interrupt Enable Register
=1 Read/Write Divisor Latch High Byte
+ 2 - Read IIR Interrupt Identification Register
- Write FCR FIFO Control Register
+ 3 - Read/Write LCR Line Control Register
+ 4 - Read/Write MCR Modem Control Register
+ 5 - Read LSR Line Status Register
+ 6 - Read MSR Modem Status Register
+ 7 - Read/Write Scratch Register

Первая колонка – адрес регистра относительно базового. Например, для COM1: адрес регистра LCR будет 3F8h+3=3FB. Вторая колонка – DLAB (Divisor Latch Access Bit) бит, определяющий разное назначение для одного и того же регистра.. Т.е. он позволяет оперировать 12-ю регистрами, используя всего 8 адресов. Например, если DLAB=1, то, обращаясь по адресу 3F8h, мы будем устанавливать значение младшего байта делителя частоты тактового генератора. Если же DLAB=0, то, обращаясь по тому же адресу, в этот регистр будет записан передаваемый или принятый байт.

“Нулевой” регистр

Ему соответствуют регистры приёма/передачи данных и установки коэффициента делителя частоты генератора. Как уже было сказано выше, если DLAB=0, то регистр используется для записи принимаемых/передаваемых данных, если же он равен 1, то устанавливается значение младшего байта делителя частоты тактового генератора. От значения этой частоты зависит скорость передачи данных. Старший байт делителя записывается в следующую ячейку памяти (т.е. для порта COM1 это будет 3F9h). Ниже приведена зависимость скорости передачи данных от коэффициента делителя:

Interrupt Enable Register (IER)

Если DLAB=0, то он используется как регистр управления прерываниями от асинхронного адаптера, если DLAB=1, то в нём задаётся старший байт делителя частоты тактового генератора.

Interrupt Identification Register (IIR)

Прерывание – это событие, при котором останавливается выполнение основной программы и начинается выполнение процедуры прерываний. Этот регистр определяет тип произошедшего прерывания.

Line Control Register (LCR)

Это управляющий регистр.

Бит 7 1 Divisor Latch Access Bit – задание скорости обмена данными
0 Обычнй режим (управление прерываниями, приём/передача данных)
Бит 6 Имитировать обрыв линии (посылает последовательность из нескольких нулей)
Биты 3 – 5 Бит 5 Бит 4 Бит 3 Выбор чётности
X X 0 No Parity
0 0 1 Odd Parity
0 1 1 Even Parity
1 0 1 High Parity (Sticky)
1 1 1 Low Parity (Sticky)
Бит 2 Кол-во стоп-битов
0 1 стоп-бит
1 2 стоп-бита при 6,7 или 8 бит данных или 1.5 стоп-бита при 5 битах данных.
Биты 0 And 1 Бит 1 Бит 0 Число битов данных
0 0 5 бит
0 1 6 бит
1 0 7 бит
1 1 8 бит

Проверка чётности подразумевает под собой передачу ещё одного бита – бита чётности. Его значение устанавливается таким образом, чтобы в пакете битов общее количество единиц (или нулей) было четно или нечетно, в зависимости от установки регистров порта. Этот бит служит для обнаружения ошибок, которые могут возникнуть при передаче данных из-за помех на линии. Приемное устройство заново вычисляет четность данных и сравнивает результат с принятым битом четности. Если четность не совпала, то считается, что данные переданы с ошибкой.

Стоп-бит означает окончание передачи данных.

Modem Control Register (MCR)

Регистр управления модемом.

Бит Значение
0 Линия DTR
1 Линия RTS.
2 Линия OUT1 (запасная)
3 Линия OUT2 (запасная)
4 Запуск диагностики при входе асинхронного адаптера, замкнутом на его выход.
5-7 Равны 0

Line Status Register (LSR)

Регистр, определяющий состояние линии.

Бит Значение
0 Данные получены и готовы для чтения, автоматически сбрасывается при чтении данных.
1 Ошибка переполнения. Был принят новый байт данных, а предыдущий ещё не был считан программой. Предыдущий байт потерен.
2 Ошибка чётности, сбрасывается после чтения состояния линии.
3 Ошибка синхронизации.
4 Обнаружен запрос на прерывание передачи "BREAK" – длинная строка нулей.
5 Регистр хранения передатчика пуст, в него можно записать новый байт для передачи.
6 Регистр сдвига передатчика пуст. Этот регистр получает данные из регистра хранения и преобразует их в последовательный вид для передачи.
7 Тайм-аут (устройство не связано с компьютером).

Modem Status Register (MSR)

Регистр состояния модема.

Ну вот и всё. Оперируя этими регистрами, можно напрямую общаться с COM-портом, управлять передачей и приёмом данных. Если вам не хочется возиться с памятью, можно воспользоваться уже готовыми компонентами для различных сред программирования: C++, VB, Delphi, Pascal и т.д. Они интуитивно понятны, поэтому, думаю, здесь не стоит заострять на них внимание.

COM-порт, или последовательный порт, представляет собой двунаправленный последовательный интерфейс, который предназначен для обмена байтовыми данными. В первое время этот порт использовали для подключения терминала, а потом для модема и мыши. Сейчас его принято применять для подключения источника а также для связи с обработки вычислительных систем встраиваемого типа.

Использование

Итак, перед тем как подробнее поговорить о том, что такое COM-порт, необходимо заглянуть в прошлое для понимания его значения. Буквально 15 лет назад использовался способ подключения устройств к компьютеру посредством специального стандартного разъема, расположенного на задней панели системного блока с применением специального сериального кабеля RS-232. У этого способа имеется множество недостатков. Такой кабель, по современным меркам, предоставляет крайне низкую скорость передачи данных - примерно сотню килобит в секунду. Помимо того, когда производилось физическое соединение разъемов, необходимо было осуществлять выключение оборудования, а сами они крепились друг к другу при помощи винтов, обеспечивающих надежность, при этом их размеры отличались немалой величиной.

Немного истории

COM-порт на тогдашних компьютерах традиционно носил номер 1 или 2, так как обычно их было не больше двух. Можно было установить дополнительные порты, если в этом возникала необходимость. Когда пользователем производилась настройка программного обеспечения, требовалось не перепутать и правильно установить именно тот, к которому обеспечивалось подключение нужного оборудования. Каждый COM-порт требовал правильной настройки скорости а также ряда иных загадочных параметров, о которых было известно только узкому кругу специалистов. Чтобы подключение аппаратуры было успешным, все необходимые параметры требовалось откуда-то узнать либо экспериментально подобрать, так как в этом случае отсутствовало какое-либо автоматическое конфигурирование. Помимо этого, подключение через COM-порт допускало соединение любого программного обеспечения с произвольным внешним оборудованием, даже совершенно несовместимым, из-за чего в процессе настроек и возникало огромное количество ошибок.

Современность

Сейчас соединение через COM-порт полностью вытеснено более современным методом, который не требует особых знаний для реализации, а именно посредством USB-порта. Этот метод лишен всех недостатков, упомянутых ранее. Однако современные стандарты совместимости соединения всевозможного GPS-оборудования и весьма разнородного программного обеспечения сформировались довольно давно вокруг концепции COM-портов, ставших на текущий момент архаичными.

Это сопряжено с тем, что изначально практически любое оборудование, в том числе и GPS, было внешним, а его соединение с компьютером производилось посредством серийного кабеля, подключенного к одному из аппаратных портов. От пользователя в процессе настройки требовалось правильно подобрать номер порта и скорость трансляции данных по нему. В то время возник основной стандарт передачи данных от GPS-приемника к программе, который теперь называется NMEA-0183. Фактически данный стандарт предписывает всем разработчикам даже современнейшей аппаратуры и программного обеспечения обмениваться данными посредством COM-портов. И все это в условиях того, что на современных компьютерах, а также на КПК, уже давно главным является стандарт USB. А еще одна особенность состоит в том, что в последнее время GPS-приемники все чаще стали устанавливать непосредственно внутрь корпуса устройства, то есть между ним и основным девайсом вообще отсутствует какой-либо соединительный кабель.

Виртуальные КОМ-порты

Выход из положения был придуман, а именно разработаны «виртуальные» COM-порты. Получается, что внутреннее устройство КПК, к примеру, GPS-приемник, программно имитируется в виде COM-порта, при этом в аппаратном плане таковым не являясь. При этом программе, которая рассчитана на сопряжение посредством подобного стандарта, нет разницы, как он реализован. Тут допускается наличие виртуальной имитации, а не обязательное присутствие аппаратной реализации. Так и удается обеспечить совместимость GPS-программ старого образца с современным оборудованием.

Внесенные изменения

При этом управление COM-портом существенно не изменилось. Пользователь по старинке должен производить сложную настройку чуть ли не вручную. Однако современный COM-порт представляет собой уже не то громоздкое приспособление, размещавшееся на задней панели системного блока, а совсем иное устройство. И тут все дело в том, что с программной точки зрения все их реализации выглядят безлико, то есть нет разницы между виртуальными и реальными портами. Для программного обеспечения порты различаются только номерами, которые им присвоены производителями КПК на совершенно случайной основе. К примеру, приемник от ASUS обычно находится на COM5, а PocketLOOX 560 показывает приемник на COM8. Получается, что программа, которая желает получать от GPS-приемника данные, не имеет изначально никакой достоверной информации об условном номере, под которым фигурирует порт, прописанный соответствующим для приемника на данном КПК.

Как все это работает?

При том, что среди всех имеющихся COM-портов можно провести автоматический поиск подходящего, процедура такого опроса является довольно ненадежной и достаточно громоздкой. Связано это с тем, что устройства, отображаемые в системе в качестве COM-портов, могут быть довольно разнообразными и не иметь отношения к GPS, они могут совершенно непредсказуемо ответить на такой опрос. К примеру, на КПК бывают порты, сопряженные с внутренним сотовым модемом, с USB, с инфракрасным портом, а также с иными элементами. Обращение к ним программы, предназначенной для работы с конкретным приспособлением, может привести к совершенно непредсказуемой реакции, а также к различным сбоям в работе, что часто становится причиной зависания КПК. Именно поэтому попытка открыть COM-порт может привести к неожиданным ситуациям вплоть до включения Bluetooth или А могут быть и более непонятные случаи.

Работа COM-порта

Для COM-портов в качестве основы используется микросхема асинхронного универсального приемопередатчика. Эта микросхема существует в нескольких разновидностях: Intel 16550A, 16550, 16450, 8250. Для каждого COM-порта она содержит регистры приемника и передатчика данных, а также ряд управляющих регистров, к которым есть доступ через программы BIOS, Windows и MS DOS. У последних версий микросхемы имеется набор буферов для временного хранения передаваемых и получаемых данных. Благодаря такой возможности можно реже прерывать работу центрального процессора, а также согласовать скорость трансляции данных.

Основные параметры

Устройство COM-порта предполагает наличие таких характерных особенностей:

Базового адреса порта для ввода и вывода информации;

Номера аппаратного прерывания;

Размера одного блока информации;

Скорости, с которой передаются данные;

Режима детектирования честности;

Способа управления потоками информации;

Количества стоповых бит.

Как проверить COM-порт компьютера? На что обратить внимание?

Как уже было сказано ранее, этот тип порта представляет собой двунаправленный интерфейс для на битовом уровне последовательным способом. Отличительной характеристикой в сравнении с параллельным портом тут является передача данных бит за битом. Анатомия COM-порта такова, что на компьютере не он один использует последовательный способ передачи данных. Например, такие интерфейсы, как Ethernet или USB, тоже используют аналогичный принцип, но так сложилось исторически, что последовательным принято называть именно порт стандарта RS232.

Очень часто требуется открыть COM-порт для проведения ремонта и диагностики компьютера, при этом его также необходимо проверить на работоспособность. Сжечь элемент ведь очень просто. Чаще всего это происходит по вине пользователя, который производит отключение устройства неправильно, выдергивая разъем при подключенном интерфейсе. Простейшим способом проверки работоспособности интерфейса является подключение к нему мышки. Однако так сложно получить полную картину, так как манипулятор задействует только половину сигнальных линий из восьми имеющихся. Только использование специальной заглушки и программы позволит провести проверку работоспособности. Для этих целей уже существует специально разработанное программное обеспечение.

В последнее время последовательный способ передачи данных вытесняет параллельный.
За примерами далеко ходить не надо: появление шин USB и SATA говорит само за себя.
И действительно, параллельную шину трудно масштабировать (удлинить шлейф, увеличить частоту тактирования шины), неудивительно, что технологии поворачиваются к параллельным шинам задней частью.

Последовательные интерфейсы

На сегодня существует великое множество различных интерфейсов последовательной передачи данных.
Кроме уже упомянутых USB и SATA еще можно вспомнить как минимум два широко известных стандарта RS-232 и MIDI (он же и GamePort).
Объединяет их все то же - последовательная передача каждого бита информации, или Serial Interface.
Преимуществ у подобных интерфейсов великое множество, и самое главное из них - малое количество соединительных проводов, а следовательно, меньшая цена.

Передача данных

Последовательную передачу данных можно реализовать двумя способами: асинхронным и синхронным.

Синхронная передача данных предполагает синхронизацию работы приемника и передатчика посредством включения тактовой информации в передаваемый сигнал или путем использования специальной синхро-линии.
Приемник и передатчик должны быть соединены специальным синхронизационным кабелем, который обеспечивает работу устройств на одной частоте.

Асинхронная передача подразумевает использование специальных битов, маркирующих начало и конец данных – стартового (логический ноль) и стопового (логическая единица) бита.
Также возможно использование специального бита четности, который определяет четное или нечетное количество передаваемых единичных битов (в зависимости от принятого соглашения).
На принимающей стороне проводится анализ этого бита, и если бит четности не соответствует количеству единичных битов, то пакет данных пересылается снова.

Стоит отметить, что такая проверка позволяет обнаружить ошибку только в том случае, если был передан неправильно только один бит, в случае, если неправильно передались несколько битов, эта проверка уже становится некорректной.
Посылка следующего пакета данных может происходить в любой момент после посылки стопового бита, и, естественно, должна начинаться со стартового бита.
Ничего не понятно?

Ну, если бы все компьютерные технологии были просты, то любая домохозяйка давно бы уже лепила параллельно с пельменями новые протоколы …
Попробуем взглянуть на процесс по-другому.
Данные передаются пакетами, примерно как IP пакеты, вместе с данными идут и информационные биты, количество этих битов может варьироваться от 2 до 3 с половиной.
С половиной?!
Да, ты не ослышался, именно с половиной!

Стоповый бит, а вернее передаваемый сигнал соответствующий стоповому биту, может иметь длительность большую, чем сигнал соответствующий биту-единице, но меньшую чем для двух битов.
Так вот, пакет всегда начинается со стартового бита, который всегда имеет значение ноль, после чего идут биты данных, потом бит четности, а потом и стоповый бит, всегда равный единице.
Потом через некоторый произвольный промежуток времени поход битов на Москву продолжается.

Такой способ передачи подразумевает, что приемник и передатчик должны работать с одной скоростью (ну, или почти с одной), иначе пришедшие биты данных приемник будет либо не успевать обрабатывать, либо принимать старый бит за новый.
Для того чтобы этого избежать, каждый бит стробируется, то есть посылается синхронно со специальным сигналом - «стробом», формируемым внутри прибора.
Существует ряд определенных скоростей работы асинхронных устройств - 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19 200, 38 400, 57 600 и 115 200 бит в секунду.

Ты наверняка слышал, что в качестве единицы измерения скорости передачи данных используется «бод» - частота изменения состояния линии, и эта величина будет совпадать со скоростью передачи данных только в случае если сигнал может иметь одно из двух значений.
Если же в одном изменении сигнала закодировано несколько бит (а это встречается у многих модемов), скорость передачи и частота изменения линии будут совершенно различными величинами.

Теперь пару слов о загадочном термине «пакет данных».
Под пакетом в данном случае понимается набор битов, передаваемых между стартовым и стоповым битами.
Их число может изменяться от пяти до восьми.
Можно задаться вопросом, почему именно пять-восемь бит?
Почему бы не передать сразу, скажем, килобайт данных внутри пакета?

Ответ очевиден: передавая маленькие пакеты данных, мы пусть и проигрываем, отправляя с ними три служебных бита (от 50 до 30 процентов данных), зато если при передаче пакет будет испорчен, мы легко узнаем это (помнишь про бит четности?) и быстро передадим его снова.
А вот в килобайте данных ошибку обнаружить будет уже трудно, и передавать его будет гораздо сложнее.

В качестве примера асинхронного последовательного устройства передачи данных можно привести COM-порт компьютера, любимый модем с дизайном от Труссарди и мышь, подключаемую к этому же порту, которую недалекие секретарши почему-то все время стараются засунуть в PS/2.
Работают все эти устройства по интерфейсу RS-232, вернее по асинхронной его части, поскольку в стандарте описана и синхронная передача данных.

Приветствую Вас, друзья. Продолжаем изучать системный блок. Сегодня расскажу о компьютерных портах. Что это такое? С бурным развитием интернет-технологий понятие «порт», «сокет» у многих на слуху. Это другая ветвь, и мы сегодня не будем говорить о ней. Тема этой статьи содержит информацию о сугубо «железных», » реальных» разъемах (или портах), которые предназначены для подключения различных устройств к системному блоку.

«Железо» тоже совершенствуется и с каждой генерацией мы обнаруживаем новые виды разъемов (или порты) на купленных системных блоках. К ним подключаются различные, так называемые периферийные устройства. Системный блок + монитор = компьютер. Все что подключается к ним (принтеры, сканеры, программаторы, видеокарты, мониторы и так далее) — это периферия.

На компьютере портов много. Они находятся на материнской плате системного блока и представляют собой разъемы (большая часть из них на задней части) . Часть разъемов выводится и на переднюю панель и они так же подключены к материнской плате.

На нее так же можно дополнительно установить и дополнительные устройства через специальные слоты расширения. К таким устройствам относятся дискретные видеокарты, сетевые карты, адаптеры Wi-Fi, USB-хабы, карт-ридеры, электронные замки, видеокарты и много чего еще.

Наличие слотов расширения позволяет самостоятельно собирать компьютер наподобие конструктора, на основе ваших предпочтений, не тратя лишних денек. Потому что разработчики давно стандартизировали выпускаемое оборудование. При необходимости можно провести его обновление. Это главная причина того, что IBM-PC совместимые компьютеры (так называется такая платформа) когда-то вытеснили с рынка Apple Macintosh.

У них системные блоки изначально были неразборные, а оборудование не заменяемое. Провести апгрейд такого устройства нельзя, да и ремонтопригодность такого устройства снижается.

Краткий список портов компьютера

Нужно уметь отличать разъемы один от другого визуально. Не всегда производитель указывает их наименования. Так как разъемы сгруппированы на задней панели системника, то с нее и начнем. Все порты имеют англоязычное наименование, тут уж ничего не поделаешь. Кратко их можно разделить:

  1. Последовательный порты;
  2. Параллельный порт;
  3. Порты для компьютера и мыши;
  4. Порты USB;
  5. Порты SCSI;
  6. Видеопорты;
  7. Разъемы сетевых кабелей;
  8. Разъемы аудио;
  9. Карт-ридеры;

Некоторые из этих разновидностей уже канули в лету и их на современных материнских платах уже не найти. Другие разновидности наоборот расширяют свой функционал и есть материнские платы для гурманов — любителей аудио или видео хорошего качества.


Такие платы могут поддерживать и аудио или видеоформаты сторонних производителей (Sony, Philips) и тогда можно встретить на таком компьютере соответствующий разъем. Особым разнообразием сегодня могут похвастаться аудио и видео порты.

Порты компьютера для подключения периферийных устройств

Последовательный порт — сегодня уже морально устаревшая вещь. Но для специалистов, которые занимаются ремонтом электронных устройств они представляют ценность. Изначально такой порт использовался для подключения модема. Скорость передачи данных типичная — от 110 до 115200 бит в секунду. Их обычно было по два с разъемами DB 9 типа «папа»:

Скорости вполне хватает для программатора, чтобы прошить микроконтроллер или мобильный телефон. Или для обмена данными с источником бесперебойного питания. Называются эти порты COM1 и COM2.

Параллельный порт — знаком многим, потому что в основном предназначался для подключения принтера. Так же почти исчезнувший вид. Использовался так же для подключения аппаратных ключей защиты.


Для подключения используется разъем DB25 типа «мама». Скорость передачи данных небольшая — но вполне хватает для программатора или старого лазерного принтера. У большинства старых компьютеров всегда было по два последовательных порта и один параллельный.

Порты для клавиатуры и мыши знакомы всем пользователям. В современных компьютерах они имеют фиолетовый и зеленый цвета. Такого же цвета штекеры у мыши и клавы. Перепутать сложно. Разъемы шестиконтактные (mini -Din) типа «мама». Их придумали в Германии и это стало стандартом. Другое название IBM/PC2

так как впервые они были использованы на уже упомянутой платформе IBM PC. Если перепутали при подлкючении разъемы — устройства работать не будут. Несомненный плюс — экономят USB порты. Минус — обязательно требуется перезагрузка компьютера если подключили неправильно. Кстати, тоже исчезающий вид. На многих современных компах этот порт оставлен всего один — и покрашен он одновременно в фиолетово-зеленый цвет. Подключать к нему можно только одно устройство или мышь — или клаву.

Порты USB. Универсальная последовательная шина, (Universal Serial Bus ). C 1998 года вытесняет другие порты; даже на автомагнитолах и видеокамерах Вы сегодня найдете этот разъем. У первых поколений скорость передачи данных была около 12 мб /сек. — умопомрачительная по тем временам. Сегодня мы используем USB 3, скорость которого 5 Гбит/с

Эти порты внешне не изменились. На компьютере стоят разъемы типа «А». Разъем на любом подключаемом устройстве принято называть «B». Имеет четыре контакта два для тока, два для передачи данных. Соответственно, на портах USB 3.0 контактов в два раза больше.

Порты SCSI (Small Computer Systems Interface). Довольно специфическая и редкая вещь у нас; мне думается что и за рубежом ее уже не встретишь у рядового пользователя. Полагаю, что устройства с такими интерфейсами делались под заказ — для корпоративного использования. Это — сетевой интерфейс для обмена данными, со скоростью до 160 мбит/с.


Мне попался один раз ноутбук, привезенный из америки 1999 г. выпуска, фирмы Dell. У него имелся один из таких многоконтактных портов. Расположен он был таким образом, что использовать его можно было, только установив ноутбук на стол. Сам разъем закрыт шторками на пружинках. Следовательно, где -то в Америке были и столы, в которые этот разъем встроен… Приносишь,ставишь на стол, и он подключен к корпоративной сети.

Разновидностями интерфейса являются уже знакомый нам DB-25, а так же 50-High-Density, 68-контактный -High-Density, 80-контактный SCA, Centronics. Можно было подключать и жесткие диски к этому интерфейсу. Отвечает за подключение специальная плата — хост-адаптер.


Видеопорты . Их так же не спутаешь с другими. Стандартный видеопорт — 15 контактный VGA разъем типа D синего цвета, «мама». Служит для подключения монитора. Это старый стандарт, принятый в 1987 году. Не на всех материнских платах он бывает. Если его нет у вас «на борту», то его можно найти в нижней части системного блока. В слот расширения установлена видеокарта:

Если вы решили установить видеокарту в дополнение к уже имеющейся («на борту»), то последняя работать уже не будет. Это нормально. Монитор будет работать только при подключении к установленной.

На современных видеокартах VGA порт уже стало трудно встретить; их заменяют другой разновидностью — DVI. На материнской плате переходного типа это выглядит как то так:

Очень часто встречаются случаи, когда выходит из строя VGA- видеокарта. После покупки новой, обнаруживается, что на ней только DVI — порты.В этом случае нужно приобрести переходник и установить его на разъем DVI:

Обращайте внимание, на тип переходника. Дело в том, что и DVI разъемы отличаются — на новых дорогих видеокартах стоят DVI-D или DVI-I порты. Переходники не взаимозаменяемые, уточняйте этот момент у продавца.

В этом случае не нужно будет покупать новый монитор. Новые мониторы пока тоже идут с двумя типами разъемов — VGA и DVI.

Порт HDMI. Куда теперь без него в 21 веке? Мультимедиа-интерфейс предназначен для передачи видео и аудио высокой четкости с защитой от копирования. Одновременно заменяет как и вышеперечисленные видео так и некоторые аудио порты(SCART, VGA, YPbPr, RCA, S-Video.). Наверное этот интерфейс со временем заменит все остальное. Его можно встретить на любой цифровой технике — от фотоаппарата до компьютера (или ноутбука).

Размер сравним с USB портом, а скорость передачи данных огромна по сравнению с выше перечисленными — до 48 Гбит в секунду. Передача данных осуществляется по кабелю с хорошей защитой от помех. Кабель можно подключить к ноутбуку и к телевизору и смотреть видео. Длинна кабеля не должна превышать 10 метров, в противном случае нужен усилитель/повторитель сигнала.

Про аудио-разъемы подробно говорить не буду. Все примерно так же выглядит, как на домашнем DVD проигрывателе, если речь идет о чем- то особенном. В качестве такого примера можно привести разъем SPDiF, который можно было устанавливать на слот расширения:

Аудиостандарт от фирмы SONY и PHILIPS, эта карта подключается к материнской плате с помощью коннектора на соосветствующий разъем. Стандартные гнезда для подключения микрофона, колонок, наушников выглядят так:

Если хотите HD аудио, то возможно вам придется подключить соответствующий адаптер вот сюда. Читайте документацию по своей материнке:

Сетевые порты. Без них в наше время никак не обойтись. Мы получаем интернет именно через сетевой интерфейс по кабелю, или по радио. На материнских платах стоит стандартный встроенный разъем RJ 45 для подключения интернет- кабеля:

На старых компьютерах стандарт скорости был 100 мбит /с, современные сетевые карты выдают 1000 мбит/сек. Если Вам не достаточно одной сетевой карты, можно купить дополнительную и вставить ее в слот расширения:

Такая карта подходит для PCI слота. Есть варианты и поменьше, для PCI-express:

Уточняйте скорость передачи данных той или иной карты при покупке. Для любителей беспроводных сетей так же представлен широки выбор Wi-Fi адаптеров:

Их так же можно подключить в слоты расширения PCI ,либо PCI — ехpress. Однако, если Вы не хотите ковыряться в системном блоке, можно купить и USB — вариант такой карты:

Вы вставляете ее в порт и вводите пароль от WIFI. И у вас подключено еще одно периферийное устройство. У многих моделей домашних принтеров так же есть адаптер WIi-Fi, и при такой настройке можно печатать без проводов. Благо, сегодня богатый выбор и сетевых карт и принтеров.

Как отключить USB порты при выключении компьютера?

Напоследок расскажу как решить одну проблему. У меня есть гарнитура с микрофоном для записи видео и общения по скайпу. Китайцы залюбили пихать куда надо и не надо светодиоды для красоты. Когда компьютер выключается, подсветка все равно продолжает гореть, так как питание ее идет по USB порту.

Клавиатура так же светится, что ночью не совсем удобно, хотя и не плохо (если печатаешь в темноте). Для того, чтобы отключить питание портов насовсем — попробуйте набрать сочетание клавиш Win+R и в строке «Выполнить» вставить команду powercfg /h off.

После чего нужно выключить компьютер. Симптомы скорее всего исчезнут. Эта команда отключает режим сна, и компьютер вырубается полностью. Можно посмотреть в панели управления настройки по питанию в «Плане электропитания» Но, есть такие модели плат, где эта настройка выключается через BIOS. А на самых передовых эта функция не отключается или спрятана очень глубоко. Предполагается, что так удобно ночью заряжать гаджеты.

В трудных случаях может помочь документация по материнской плате. Находите нужную перемычку (джампер) и вручную отключаете питание. Но это слишком сложно. А самый простой способ — это купить USB — хаб с выключателями и к нему уже подсоединить нужную периферию. И не мучиться. Пока, до новых встреч!