Из чего состоит система водяного охлаждения компьютера. Водяное или воздушное охлаждение: что и для чего лучше

Введение

Вам не кажется, что термин "жидкостное охлаждение" наводит на мысль об автомобилях? На самом деле, жидкостное охлаждение является неотъемлемой частью обычного двигателя внутреннего сгорания почти 100 лет. Сразу же напрашивается вопрос: почему именно оно является предпочтительным методом охлаждения дорогих автомобильных двигателей? Чем же так замечательно жидкостное охлаждение?

Чтобы это выяснить, мы должны сравнить его с воздушным охлаждением. При сравнении эффективности этих методов охлаждения нужно учесть два наиболее важных свойства: теплопроводность и удельную теплоёмкость.

Теплопроводность - это физическая величина, показывающая, насколько хорошо вещество переносит тепло. Теплопроводность воды почти в 25 раз больше, чем воздуха. Очевидно, что это даёт водяному охлаждению огромное преимущество над воздушным, так как оно позволяет гораздо быстрее переносить тепло от горячего двигателя к радиатору.

Удельная теплоёмкость - ещё одна физическая величина, которая определяется как количество теплоты, необходимое для повышения температуры одного килограмма вещества на один кельвин (градус Цельсия). Удельная теплоёмкость воды почти в четыре раза больше, чем воздуха. Это означает, что для нагревания воды требуется в четыре раза больше энергии, чем для нагревания воздуха. И снова способность воды поглощать гораздо больше тепловой энергии без повышения собственной температуры является огромным преимуществом.

Итак, имеем неоспоримые факты того, что жидкостное охлаждение является более эффективным, чем воздушное. Однако совсем не обязательно, что это - лучший метод для охлаждения компонентов ПК. Давайте разберёмся.

Жидкостное охлаждение ПК

Несмотря на очень хорошие качества воды, касающиеся отвода тепла, есть несколько убедительных причин, чтобы не помещать воду в компьютер. Самая главная из этих причин - электропроводность охлаждающей жидкости.

Если бы вы случайно пролили стакан воды на бензиновый двигатель во время заправки радиатора, то ничего страшного бы не произошло; вода не повредила бы двигатель. А вот если бы вы вылили стакан воды на материнскую плату своего компьютера, то было бы очень плохо. Поэтому существует определённый риск, связанный с применением воды для охлаждения компонентов компьютера.

Следующий фактор - это сложность технического обслуживания. Системы воздушного охлаждения проще и дешевле производить и ремонтировать по сравнению с водяными аналогами, и радиаторы не требуют никакого технического обслуживания, разве что необходимо удалять из них пыль. С системами водяного охлаждения работать гораздо сложнее. Их труднее устанавливать, они часто требуют обслуживания, хотя и незначительного.

В-третьих, элементы системы водяного охлаждения для ПК стоят гораздо больше, чем детали системы охлаждения воздухом. Если комплект качественных радиаторов и вентиляторов воздушного охлаждения для процессора, видеокарты и материнской платы будет стоить, скорее всего, в пределах $150, то стоимость системы жидкостного охлаждения для тех же самых комплектующих легко может доходить до $500.

Имея столько недостатков, системы водяного охлаждения, казалось бы, не должны пользоваться спросом. Но на самом деле они настолько хорошо отводят тепло, что это их свойство оправдывает все недостатки.

На рынке можно найти полностью готовые к установке системы жидкостного охлаждения, которые уже не являются набором запасных частей, с которым энтузиастам приходилось иметь дело в прошлом. Готовые системы собраны, проверены и вполне надёжны. К тому же, водяное охлаждение не так опасно, как кажется: разумеется, всегда существует большой риск при использовании жидкостей в ПК, но если соблюдать осторожность, то этот риск существенно снижается. Что касается технического обслуживания, то современные хладагенты требуют замены довольно редко, может, раз в год. Что касается цены, то любое оборудование, которое работает с высокой производительностью, всегда стоит дороже обычного, будь то "Феррари" в вашем гараже или система водяного охлаждения для вашего компьютера. За высокую производительность приходится платить.

Предположим, что вас привлекает этот метод охлаждения или, по крайней мере, вам хотелось бы узнать, как он работает, что с ним связано, и каковы его преимущества.

Общие принципы водяного охлаждения

Цель любой системы охлаждения в ПК - отвести тепло от компонентов компьютера.

Традиционный воздушный кулер для ЦП отводит тепло от процессора на радиатор. Вентилятор активно прогоняет воздух через рёбра радиатора, и когда воздух проходит мимо, он забирает тепло. Воздух из корпуса компьютера выводится другим вентилятором или даже несколькими. Как видите, воздух совершает много перемещений.

В системах водяного охлаждения вместо воздуха для отвода тепла используется охлаждающая жидкость (теплоноситель) - вода. Вода выходит из резервуара по трубке, поступая туда, куда нужно. Блок водяного охлаждения может либо представлять собой отдельный блок вне корпуса ПК, либо может быть встроен в корпус. На диаграмме водоохладительный блок является внешним.

Тепло передаётся от процессора к головке охлаждения (водоблоку), которая представляет собой полый радиатор-теплосъёмник с входным и выходным отверстиями для охлаждающей жидкости. Когда вода проходит сквозь головку, она забирает с собой тепло. Теплоотдача за счёт воды происходит гораздо эффективнее, чем за счёт воздуха.

Затем нагретая жидкость закачивается в резервуар. Из резервуара она протекает в теплообменник, где отдаёт тепло радиатору, а тот - окружающему воздуху, обычно с помощью вентилятора. После этого вода попадает снова в головку, и цикл начинается сначала.

Сейчас, когда мы имеем хорошее представление об основах жидкостного охлаждения ПК, поговорим о том, какие системы доступны на рынке.

Выбор системы водяного охлаждения

Есть три основных типа систем водяного охлаждения: внутренние, внешние и встроенные. Главное различие между ними заключается в том, где по отношению к корпусу компьютера расположены их основные компоненты: радиатор/теплообменник, насос и резервуар.

Как следует из названия, встроенная охлаждающая система является составной частью корпуса ПК, то есть вмонтирована в корпус и продаётся в комплекте с ним. Так как вся система водяного охлаждения смонтирована в корпусе, этот вариант, возможно, является самым простым в обращении, потому что и внутри корпуса остаётся больше места, и снаружи нет громоздких конструкций. Недостатком, разумеется, является то, что если вы решите перейти на такую систему, то старый корпус ПК окажется бесполезным.


Если вам нравится корпус вашего ПК, и вы не хотите с ним расставаться, то внутренние и внешние системы водяного охлаждения, вероятно, покажутся более привлекательными. Компоненты внутренней системы помещаются внутрь корпуса ПК. Так как большинство корпусов не рассчитаны на размещение такой системы охлаждения, внутри становится довольно тесно. Однако установка подобных систем позволит сохранить ваш любимый корпус, а также переносить его без особых препятствий.


Третий вариант - внешняя система водяного охлаждения. Она тоже для тех, кто желает оставить старый корпус своего ПК. В таком случае радиатор, резервуар и водяной насос помещаются в отдельный блок вне корпуса компьютера. Вода по трубкам закачивается в корпус ПК, к головке охлаждения, а по обратной трубке нагретая жидкость выкачивается из корпуса в резервуар. Преимущество внешней системы заключается в том, что она может использоваться с любым корпусом. Она также позволяет использовать радиатор большего размера и может обладать лучшей охлаждающей способностью, чем средняя встроенная установка. Недостаток заключается в том, что компьютер с внешней системой охлаждения становится не таким мобильным, как с внутренними или встроенными системами охлаждения.


В нашем случае мобильность не имеет большого значения, однако нам хотелось бы оставить наш "родной" корпус ПК. Кроме того, нас привлекла повышенная эффективность охлаждения внешнего радиатора. Поэтому для обзора мы выбрали внешнюю систему охлаждения. Компания Koolance любезно предоставила нам отличный образец - систему EXOS-2.


Внешняя система водяного охлаждения Koolance EXOS-2.

EXOS-2 представляет собой мощную внешнюю систему водяного охлаждения с охлаждающей способностью свыше 700 Вт. Это не означает, что система потребляет 700 Вт - она потребляет лишь малую часть этого. Это значит, что система может эффективно справляться с тепловыделением в 700 Вт, поддерживая температуру на уровне 55 градусов Цельсия при 25 градусах окружающей среды.

EXOS-2 поставляется со всеми необходимыми трубками и приспособлениями, кроме головок охлаждения (водоблоков). Пользователю придётся купить подходящие головки, в зависимости от того, какие компоненты ПК он хочет охлаждать.

Охлаждение нескольких компонентов

Одним из преимуществ большинства систем жидкостного охлаждения является то, что они расширяемы и могут охлаждать не только процессор, но и другие компоненты. Даже после прохождения через головку охлаждения процессора, вода всё ещё способна охладить, например, чипсет материнской платы и видеокарту. Это основное, но по желанию можно добавить ещё больше компонентов, например жёсткий диск. Для этого каждому компоненту, который будет охлаждаться, потребуется свой собственный водоблок. Конечно, придётся заняться и планированием, чтобы убедиться, что охлаждающая жидкость протекает хорошо.

Почему выгодно объединить все три компонента - центральный процессор, чипсет и видеокарту - с хорошей системой водяного охлаждения?

Большинство пользователей понимают необходимость охлаждения процессора. ЦП сильно нагревается в корпусе ПК, а устойчивая работа компьютера зависит от поддержания низкой температуры процессора. Центральный процессор является одной из самых дорогих составляющих компьютера, и чем ниже поддерживаемая температура, тем дольше прослужит процессор. Наконец, охлаждение процессора особенно актуально при разгоне.


Водоблок центрального процессора и аксессуары для сборки.

Идея охлаждения чипсета материнской платы (вернее, северного моста), возможно, не всем знакома. Но учтите, что компьютер устойчив настолько, насколько стабилен его чипсет. Во многих случаях дополнительное охлаждение чипсета может поспособствовать стабильности системы, особенно при разгоне.


Водоблок чипсета и аксессуары для сборки.

Третий компонент очень важен для тех, кто обладает higher-end видеокартой и использует ПК для игр. Во многих случаях графический процессор видеокарты выделяет тепла больше остальных компонентов компьютера. Опять же, чем лучше охлаждение графического процессора, тем дольше он прослужит, тем выше устойчивость и больше возможностей для разгона.

Разумеется, для тех пользователей, кто не намерен использовать свой компьютер для игр и имеет маломощную графическую карту, водяное охлаждение окажется излишеством. Но для современных мощных и сильно нагревающихся видеокарт, водяное охлаждение может стать выгодным приобретением.

Мы собираемся установить охлаждающую систему на нашу видеокарту Radeon X1900 XTX. Хотя эта видеокарта не самая новая и мощная, она всё ещё хоть куда, и к тому же очень сильно нагревается. В случае с данной моделью компания Koolance предлагает не только водоблок для графического процессора/памяти, но и отдельную головку охлаждения для стабилизатора напряжения.


Водоблок для графического процессора и аксессуары для сборки.

Если системы воздушного охлаждения могут поддерживать температуру графического процессора в допустимых пределах, то нам не известны подобные системы, способные урегулировать чрезвычайно высокую температуру регуляторов напряжения на X1900, которая при нагрузках легко может достигать 100 градусов Цельсия. Интересно, как водоблок для регулятора напряжения повлияет на видеокарту X1900.


Водоблок для регулятора напряжения видеокарты и аксессуары для сборки.

Это основные компоненты, которые охлаждаются с помощью воды. Как говорилось выше, есть и другие компоненты, которые можно охлаждать таким образом. Например, компания Koolance предлагает блок питания мощностью 1200 Вт с жидкостным охлаждением. Все электронные компоненты блока питания погружены в жидкость, не проводящую ток, которая прокачивается через собственный внешний радиатор. Это - особый пример альтернативного жидкостного охлаждения, однако такая система отлично справляется с работой.


Koolance: 1200-Вт блок питания с жидкостным охлаждением.

Сейчас можно приступить к установке.

Планирование и установка

В отличие от систем воздушного охлаждения, установка системы жидкостного охлаждения требует некоторого планирования. Жидкостное охлаждение предполагает несколько ограничений, которые пользователь должен принять во внимание.

Во-первых, во время установки следует всегда помнить об удобстве. Трубки с водой должны свободно проходить внутрь корпуса и между компонентами. Кроме того, охлаждающая система должна оставлять свободное место, чтобы в дальнейшем работа с ней и комплектующими не вызывала трудностей.

Во-вторых, течение жидкости не должно быть ничем ограничено. Следует также помнить, что охлаждающая жидкость нагревается при прохождении через каждый водоблок. Если бы мы спроектировали систему таким образом, чтобы вода поступала в каждый последующий водоблок в такой последовательности: сначала к процессору, затем к чипсету, к видеокарте и, наконец, к регулятору напряжения видеокарты, то в водоблок регулятора напряжения всегда поступала бы вода, нагретая всеми предыдущими компонентами системы. Такой сценарий нельзя назвать идеальным для последнего компонента.

Чтобы как-то смягчить эту проблему, неплохо бы пустить охлаждающую жидкость по отдельным, параллельным путям. Если это сделать правильно, то поток воды будет менее нагружен, и в водоблоки каждого компонента будет поступать вода, не нагретая другими компонентами.

Набор Koolance EXOS-2, который мы выбрали для данной статьи, предназначен в основном для работы с соединительными трубками сечением 3/8", и водоблок для центрального процессора спроектирован с прессуемыми соединителями на 3/8". Однако головки охлаждения чипсета и видеокарты Koolance спроектированы для работы с соединительными трубками меньшего диаметра - 1/4". Из-за этого пользователь вынужден использовать сплиттер, разделяющий 3/8" трубку на две 1/4" трубки. Эта схема хорошо работает, когда мы разбиваем поток на два параллельных пути. По одной из этих 1/4" трубок будет охлаждаться чипсет материнской платы, а по другой - видеокарта. После того, как вода заберёт тепло от этих компонентов, две 1/4" трубки соединятся вновь в одну 3/8", по которой нагретая вода потечёт из корпуса ПК обратно в радиатор для охлаждения.

Весь процесс представлен на следующей схеме.


Спланированная конфигурация охлаждающей системы.

При планировании расположения собственной системы водяного охлаждения рекомендуем вам начертить простую схему. Это поможет правильно установить систему. Начертив план на бумаге, можно приступать к реальной сборке и установке.

Для начала можно разложить на столе все детали системы и прикинуть необходимую длину трубок. Не обрезайте слишком коротко, оставьте запас; потом вы всегда сможете отрезать лишнее.

После подготовительных работ можно приступать к установке водоблоков. Головка охлаждения Koolance для процессора, который мы используем, требует установки металлической скобы крепления на задней стороне материнской платы за процессором. И что хорошо, эта скоба крепления поставляется вместе с пластмассовой прокладкой, чтобы предотвратить замыкание с материнской платой. Сначала мы достали материнскую плату из корпуса и установили скобу крепления.


Затем можно снять радиатор, который прикреплён к северному мосту материнской платы. Мы воспользовались материнской платой Biostar 965PT, у которой чипсет охлаждается с помощью пассивного радиатора, прикреплённого пластмассовыми фиксаторами.


Чипсет материнской платы без радиатора. Готов к установке водоблока.

После того, как радиатор чипсета снят, следует прикрепить элементы крепления водоблока для чипсета.

Во время установки мы заметили, что элементы крепления водоблока для чипсета, в частности, пластмассовая прокладка, давит на резистор на задней части материнской платы. За этим нужно внимательно следить при установке. Чрезмерно сильное затягивание болтов может нанести непоправимый ущерб материнской плате, поэтому будьте внимательны и осторожны!

После установки элементов крепления головок охлаждения процессора и чипсета можно вернуть материнскую плату в корпус ПК и подумать о подсоединении водоблоков к процессору и чипсету. Не забудьте удалить с процессора и чипсета остатки старой термопасты перед тем, как нанести новый тонкий слой.


Процессор с элементами крепления для водоблока.

Возможно, вам захочется подсоединить трубки для воды к водоблокам до того, как вы установите их на материнскую плату. Но будьте при этом осторожны: можно не рассчитать давление и силу, которые при сгибании трубок приложатся к хрупким чипсету и процессору. Главное - оставить достаточную длину трубок, ведь подрезать их по размерам можно позже.

Сейчас можно осторожно установить водоблоки на процессор и чипсет с помощью предоставленных элементов крепления. Помните, что не нужно прижимать их с силой: достаточно просто хорошо их установить на процессор и чипсет. Применяя силу, можно повредить комплектующие.


После установки водоблоков на процессор и чипсет, можно переключить внимание на видеокарту. Удаляем имеющийся на ней радиатор и заменяем его водоблоком. В нашем случае мы также сняли радиатор стабилизатора напряжения и установили на карту второй водоблок. После того, как водоблоки установлены на видеокарту, можно подсоединить трубки. После этого видеокарту можно вставить в слот PCI Express.


После установки всех водоблоков следует подсоединить оставшиеся трубки. Последней нужно подключать трубку, которая ведёт к внешнему блоку водяного охлаждения. Убедитесь в правильности направления движения воды: охлаждённая жидкость должна поступать сначала в водоблок процессора.


Настал момент, когда можно заливать воду в резервуар. Наполняйте резервуар только до уровня, указанного в инструкции производителя. По мере заполнения резервуара, вода будет медленно поступать в трубки. Особенно внимательно следите за всеми креплениями и имейте под рукой полотенце на случай непредвиденной утечки жидкости. При малейших признаках протекания, немедленно устраните проблему.


Когда все компоненты собраны вместе, можно заливать охлаждающую жидкость.

Если вы всё сделали аккуратно, и в системе не возникло протечек, то вам нужно прокачать охлаждающую жидкость, чтобы удалить пузырьки воздуха. В случае с Koolance EXOS-2 это достигается путём замыкания контактов на блоке питания ATX, чтобы подать питание водяному насосу, но не подавать питание на материнскую плату.

Пусть система поработает в таком режиме, а вы в это время медленно и осторожно наклоняйте компьютер в одну и другую стороны, чтобы пузырьки воздуха вышли из водоблоков. Когда все пузырьки выйдут, вы, скорее всего, обнаружите, что в систему требуется добавить охлаждающей жидкости. Это нормально. Примерно через 10 минут после заливки в трубках не должно быть видно никаких пузырьков воздуха. Если вы убедились, что пузырьков воздуха больше нет и вероятность протечки исключена, то можно запускать систему по-настоящему.


Тестовая конфигурация и тесты

Все заботы по сборке и установке позади. Настало время посмотреть, какие преимущества даёт система водяного охлаждения.

Аппаратное обеспечение
Процессор Intel Core 2 Duo e4300, 1,8 ГГц (разогнан до 2250 МГц), кэш 2 Мбайт L2
Платформа Biostar T-Force 965PT (Socket 775), чипсет Intel 965, BIOS vP96CA103BS
Оперативная память Patriot Signature Line, 1x 1024 Мбайт PC2-6400 (CL5-5-5-16)
Жёсткий диск Western Digital WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Сеть Встроенный адаптер Ethernet 1 Гбит/с
Видеокарта ATI X1900 XTX (PCIe), 512 Мбайт GDDR3
Блок питания Koolance 1200 Вт
Системное ПО и Драйверы
ОС Microsoft Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Графический драйвер ATI Catalyst 7.2

В нашей тестовой конфигурации мы использовали платформу Core 2 Duo, потому что процессор E4300 очень легко разогнать. Разгон позволил нам посмотреть, насколько высоко поднимется температура, и как с этим справятся стандартная система воздушного охлаждения и наша новая система водяного охлаждения.

Методика проста: максимально разогнать процессор E4300 со штатным воздушным охлаждением, а затем разогнать его с водяным охлаждением и сравнить результаты. Как оказалось, E4300 способен на большее. Мы увеличили частоту процессора с заявленных 1800 МГц до 2250 МГц. При этом процессор E4300 легко справлялся с добавленными 450 МГц без увеличения напряжения или каких-либо других проблем. Однако стандартный кулер не справился с работой, так как при нагрузке температура процессора поднялась до нежелательных 62 градусов Цельсия. Хотя ядро можно было бы разгонять и дальше, дальнейшее повышение температуры могло стать опасным, поэтому мы остановились, зафиксировали результат и установили систему водяного охлаждения.

Прежде чем рассмотреть температуру процессора при нагрузке, давайте взглянем на температуру при простое системы.

В режиме простоя водяное охлаждение даёт приличное снижение температуры процессора, примерно на 10 градусов. Однако это не такое уж большое достижение, если учесть, что собственный кулер процессора относится к классу low-end, а высококачественный воздушный кулер мог бы быть эффективнее. Тем не менее, стоит помнить, что водяное охлаждение не может снижать температуру так, чтобы она была ниже, чем температура окружающей среды, которая в нашем случае была около 22 градусов Цельсия.

При нагрузке системы - десятиминутный прогон стресс-теста Orthos - установка водяного охлаждения действительно показала, на что она способна.

Вот это уже на самом деле интересно. Штатный воздушный кулер не может даже поддерживать температуру процессора ниже нежелательно высоких для него 60 градусов, а система водяного охлаждения снизила температуру до 49 градусов при самой низкой скорости вентиляторов. Кроме снижения температуры, система водяного охлаждения работает гораздо тише, чем штатный кулер процессора.

При максимальной скорости вентиляторов в системе водяного охлаждения температура процессора опускается ниже 40 градусов! Это на 24 градуса ниже, чем со штатным кулером при нагрузке, и практически столько же, сколько собственный кулер выдаёт при простое. Результат производит впечатление, хотя при высокой скорости вентиляторов система водяного охлаждения производит больше шума, чем хотелось бы. Однако скорость вентиляторов регулируется по 10-бальной шкале, и вряд ли в повседневном использовании придётся устанавливать её на полную мощность. Orthos нагружает процессор сильнее, чем другие тесты, и нам было весьма интересно посмотреть, на что способна система водяного охлаждения.

В заключение обратите внимание на результаты, полученные для видеокарты. Обычно X1900 XTX нагревается очень сильно, но в нашем распоряжении был один из лучших воздушных кулеров - Thermalright HR-03. Посмотрим, какими преимуществами обладает водяное охлаждение по сравнению с этим кулером после 10 минут стресс-теста Atitool в режиме тестирования на артефакты.

Температура, поддерживаемая штатным кулером, ужасна: 89 градусов на графическом процессоре и свыше 100 градусов на стабилизаторе напряжения! Кулер Thermalright HR-03 потрясающе сработал, охладив графический процессор до 65 градусов, но температура стабилизаторов напряжения по-прежнему слишком высока - 97 градусов!

Система водяного охлаждения снизила температуру графического процессора до 59 градусов. Это на 30 градусов лучше, чем со штатным кулером, и всего на 6 градусов лучше, чем с HR-03, что ещё больше подчёркивает её эффективность.

Отдельный водоблок для стабилизатора напряжения демонстрирует отличный результат. HR-03 не имеет средств для охлаждения стабилизатора напряжения, а водоблок снизил температуру до 77 градусов, что на 25 градусов лучше, чем со штатным кулером. Это очень хороший результат.

Заключение

Результаты, полученные при тестировании с использованием системы водяного охлаждения, достаточно очевидны: жидкостное охлаждение намного эффективнее воздушного.

Водяное охлаждение доступно сейчас не только ограниченному кругу профессионалов, но и простым пользователям. К тому же, современные системы водяного охлаждения, такие, как EXOS-2, очень легко устанавливать, они работают по принципу "включай и работай", в отличие от старых систем, которые требовали сборки. Кроме того, современные наборы водяного охлаждения с подсвеченными и стилизованными корпусами выглядят очень симпатично.

Если вы энтузиаст и испробовали уже все системы воздушного охлаждения, то жидкостное охлаждение будет для вас следующим логическим шагом. Конечно, существует риск, и оборудование для водяного охлаждения будет стоить больше, чем для воздушного, но выгода очевидна.

Мнение редактора

Долгое время я избегал водяного охлаждения, так как опасался, что от него будет больше проблем, чем пользы. Но сейчас могу с уверенностью сказать, что моё мнение изменилось: системы водяного охлаждения гораздо легче устанавливать, чем я думал, а результаты охлаждения говорят сами за себя. Также хотелось бы выразить благодарность компании Koolance за предоставленный нам набор EXOS-2, работа с которым доставила удовольствие.

То мы решили написать специальную статью, посвященную системам водяного охлаждения компьютеров . Мы постараемся рассказать обо всех аспектах водяного охлаждения для компьютеров , в частности мы расскажем о том, что такое система водяного охлаждения, из чего она состоит и как работает . Также мы затронем такие популярные вопросы, как сборка системы водяного охлаждения, обслуживание системы водяного охлаждения и многие смежные темы.

Что такое система водяного охлаждения

Система водяного охлаждения - это система охлаждения , которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде .

Принцип работы системы водяного охлаждения

В системе водяного охлаждения компьютера тепло , вырабатываемое процессором, передается воде через специальный теплообменник , называемый ватерблоком . Нагретая таким образом вода, в свою очередь, переноситься в следующий теплообменник - радиатор , в котором тепло из воды передается воздуху и выходит за пределы компьютера. Движение воды в системе осуществляется с помощь специального насоса , который, чаще всего, называют помпой .

Превосходство систем водяного охлаждения над воздушными объясняется тем, что вода имеет более высокие, чем у воздуха, теплоемкость (4,183 кДж·кг -1 ·K -1 у воды против 1,005 кДж·кг -1 ·K -1 у воздуха) и теплопроводность (0,6 Вт/(м·K) у воды против 0,024-0,031Вт/(м·K) у воздуха). СВО обеспечивает более быстрый и эффективный отвод тепла от охлаждаемых элементов и, соответственно, более низкие температуры на них.

Эффективность и надежность систем водяного охлаждения доказана временем и применением в большом количестве различных механизмов и устройств, нуждающихся в мощном и надежном охлаждении, например двигателях внутреннего сгорания, мощных лазерах, радиолампах, заводских станках и даже АЭС .

Зачем компьютеру водяное охлаждение

Благодаря своей высокой эффективности, используя систему водяного охлаждения можно добиться как более продуктивного охлаждения, которое положительно скажется на разгоне, периоде жизни и стабильности системы, так и более низкого уровня шума от компьютера. При желании также можно собрать систему водяного охлаждения , которая позволит работать разогнанному компьютеру при минимуме шума . По этой причине системы водяного охлаждения в первую очередь актуальны для пользователей особо мощных компьютеров, любителей мощного разгона, а также людей, которые хотят сделать свой компьютер тише , но в тоже время не хотят идти на компромиссы с его мощностью.

Довольно-таки часто можно увидеть геймеров с трех и четырех чиповыми видео подсистемами (3-Way SLI, Quad SLI, CrossFire X) , которые жалуются на высокие температуры работы (более 90 градусов ) и постоянный перегрев видеокарт, которые при этом создают очень высокий уровень шума своими системами охлаждения . Иной раз кажется, что системы охлаждения современных видеокарт проектируются без учета возможности их использования в мультичиповых конфигурациях, что приводит к плачевным последствиям, когда видеокарты устанавливаются вплотную одна к другой - холодный воздух для нормального охлаждения им просто неоткуда черпать. Не спасают и альтернативные системы воздушного охлаждения , ведь всего несколько доступных на рынке моделей обеспечивают совместимость с мультичиповыми конфигурациями. В такой ситуации именно водяное охлаждение способно решить проблему - радикально понизить температуры, улучшить стабильность и повысить надежность функционирования мощного компьютера.

Компоненты системы водяного охлаждения

Компьютерные системы водяного охлаждения состоят из определенного набора компонентов, которые можно условно разделить на обязательные и необязательные, которые устанавливаются в СВО по своему желанию.

К обязательным компонентам системы водяного охлаждения компьютера относятся:

  • ватерблок (минимум один в системе, но можно и больше)
  • радиатор
  • помпа
  • шланги
  • фитинги
  • вода

Хотя данный список и не является исчерпывающим, к необязательным можно отнести такие компоненты как:

  • резервуар
  • термодатчики
  • контролеры помпы и вентиляторов
  • сливные краны
  • индикаторы и измерители (потока, давления, расхода, температуры)
  • второстепенные ватерблоки (для силовых транзисторов, модулей памяти, жестких дисков и т.д.)
  • присадки к воде и готовые водные смеси
  • бэкплейты
  • фильтры

Для начала мы рассмотрим обязательные компоненты, без которых СВО попросту не может работать.

Ватерблок (от англ. waterblock) - это специальный теплообменник , с помощь которого тепло от греющегося элемента (процессора, видео чипа или иного элемента) передается воде . Обычно, конструкция ватерблока состоит из медного основания , а также металлической или пластиковой крышки и набора креплений, которые позволяют закрепить ватерблок на охлаждаемом элементе. Ватерблоки существуют для всех тепловыделяющих элементов компьютера, даже для тех, которым они не очень-то и нужны .

К основным типам ватерблоков можно смело отнести процессорные ватерблоки, ватерблоки для видеокарт , а также ватерблоки на системный чип (северный мост ). В свою очередь, ватерблоки для видеокарт также бывают двух типов:

  • Ватерблоки, закрывающие только графический чип - так называемые «gpu only» ватерблоки
  • Ватерблоки, закрывающие все нагревающиеся элементы видеокарты (графический чип, видеопамять, регуляторы напряжения и т.д.) - так называемые фулкавер (от англ. fullcover) ватерблоки

Хотя первые ватерблоки обычно делались из довольно-таки толстой меди (1 – 1.5 см), в соответствии с современными тенденциями в ватерблокостроении, для более эффективной работы ватерблоков их основания стараются делать тонкими. Также, для увеличения поверхности теплопередачи , в современных ватерблоках обычно применяют микроканальную или микроигольчатую структуру. В тех же случаях, когда производительность не столь критична и не ведется борьба за каждый отыгранный градус, например на системном чипе, ватерблоки делают без изощренной внутренней структуры, иногда с простыми каналами или вообще плоским дном.

Радиатор . Радиатором в системах водяного охлаждения называют водно-воздушный теплообменник, который передает воздуху тепло воды, набранное в ватерблоке. Радиаторы систем водяного охлаждения подразделяются на два подтипа :

  • Пассивные, т.е. безвентиляторные
  • Активные, т.е. продуваемые вентиляторами

Безвентиляторные (пассивные) радиаторы для систем водяного охлаждения встречаются сравнительно редко (например, радиатор в СВО Zalman Reserator) из-за того, что, помимо очевидных плюсов (отсутствие шума от вентиляторов), данный тип радиаторов отличается более низкой эффективностью (по сравнению с активными радиаторами ), что характерно для всех пассивных систем охлаждения. Помимо низкой производительности, радиаторы данного типа, обычно, занимают много места и редко помещаются даже в модифицированные корпуса.

Продуваемые вентиляторами (активные) радиаторы являются более распространенными в компьютерных системах водяного охлаждения так как обладают намного более высокой эффективностью . При этом, в случае использования тихих или бесшумных вентиляторов, можно добиться, соответственно, тихой или бесшумной работы системы охлаждения - основного преимущества пассивных радиаторов. Радиаторы данного типа бывают самого разного размера, но размер большинства популярных моделей радиаторов идет кратным к размеру 120 мм или 140мм вентилятора, то есть радиатор на три 120 мм вентилятора будет обладать размером примерно в 360 мм в длинну и 120 мм в ширину - для простоты, радиаторы такого размера, обычно, называют тройными или 360 миллиметровыми.

Не смотря на то, что редко в каких компьютерных корпусах есть места для установки радиаторов водяного охлаждения большего чем 120 мм размера, для настоящего моддера установить радиатор не составит труда.

Помпа - это электрический насос, ответственный за циркуляцию воды в контуре системы водяного охлаждения компьютера, без которого СВО бы попросту не работала. Помпы применяемые в системах водяного охлаждения бывают как работающие от 220 вольт, так и от 12 вольт. Ранее, когда в продаже редко можно было встретить специализированные компоненты для СВО, энтузиасты, в основном, использовали аквариумные помпы, которые работали от 220 вольт, что создавало определенные трудности так как помпу необходимо было включать синхронно с компьютером - для этого, чаще всего, применяли реле, которое включало помпу автоматически при старте компьютера. С развитием систем водяного охлаждения стали появляться специализированные помпы , например Laing DDC, которые обладали компактными размерами и высокой производительностью , при этом питались от стандартных компьютерных 12 вольт.

Поскольку современные ватерблоки обладают довольно-таки высоким коэффициентом гидросопротивления , что является платой за высокую производительность, то с ними рекомендуется применять специализированные мощные помпы, так как с аквариумной помпой (даже мощной) современная СВО не полностью раскроет свою производительность. Особо гнаться за мощностью, применяя в одном контуре по 2 – 3 последовательно установленные помпы или используя циркуляционный насос от системы домашнего отопления, тоже не стоит так как это не приведет к росту производительности системы в целом, ведь она, в первую очередь, ограничена максимальной теплорассеивающей способностью радиатора и эффективностью ватерблока.

Шланги или трубки , как бы их не называли , также являются одним из обязательных компоненто в любой системы водяного охлаждения, ведь именно по ним вода течет от одного компонента СВО к другому. Чаще всего, в компьютерной системе водяного охлаждения применяются шланги изготовленные из ПВХ, реже из силикона. Несмотря на популярные заблуждения, размер шланга не оказывает сильного влияния на производительность СВО в целом, главное не брать слишком тонкие (внутренний диаметр, которых меньше 8 миллиметров ) шланги и все будет ОК

Фитинги - это специальные соединительные элементы, которые позволяют подключить шланги к компонентам СВО (ватерблокам, радиатору, помпе). Фитинг и вкручиваться в отверстие с резьбой на компоненте СВО , сильно вкручивать их не нужно (никаких гаечных ключей) так как уплотнение соединения чаще всего осуществляется при помощи уплотнительного кольца из резины. Современные тенденции на рынке комплектующих для СВО таковы, что подавляющее большинство компонентов поставляются без фитингов в комплекте. Делается это для того, чтобы пользователь имел возможность самостоятельно подобрать фитинги , необходимые конкретно для его системы водяного охлаждения, ведь существуют фитинги разного типа и под разный размер шлангов. Самые популярные типом фитингов можно считать компрессионные фитинги (фитинги с накидной гайкой) и фитинги типа ёлочка (штуцеры). Фитинги бывают как прямыми, так и угловыми (которые часто идут поворотными) и ставятся они в зависимости от того, как вы собираетесь размещать систему водяного охлаждения у себя в компьютере. Фитинги также различаются по типу резьбы, чаще всего, в компьютерных системах водяного охлаждения встречается резьба стандарта G1/4, но в редких случаях встречаются также резьбы стандартов G1/8 или G3/8.

Также является обязательным компонентом СВО Для заправки систем водяного охлаждения лучше всего использовать дистиллированную воду , то есть воду, очищенную от всех примесей методом дистилляции. Иногда на западных сайтах можно встретить упоминания о деионизированной воде - существенных отличий у нее от дистиллированной нет, разве что производят ее другим способом. Иногда, вместо воды применяют специально приготовленные смеси или воду с различными присадками - существенных отличий в этом нет, поэтому данные варианты мы рассмотрим в рубрике необязательных компонентов систем водяного охлаждения. В любом случае, заливать воду из под крана или минеральную/бутилированную воду для питья крайне не рекомендуется.

Теперь остановимся подробнее на необязательных компонентах для систем водяного охлаждения .

Необязательные компоненты - это компоненты без которых система водяного охлаждения может стабильно и без проблем работать, обычно, они никак не влияют на производительность СВО, хотя в некоторых случаях могут немного ее уменьшить . Основной смысл необязательных компонентов в том, чтобы сделать эксплуатацию системы водяного охлаждения более удобной и красивой или вызывать у пользователя чувство безопасности эксплуатации СВО. Итак, перейдем к рассмотрению необязательных компонентов:

Резервуар (расширительный бачек) не является обязательным компонентом системы водяного охлаждения , несмотря на то, что большинство систем водяного охлаждения всетаки оснащены ими. Достаточно часто для удобной заправки системы жидкостью вместо резервуара применяют фитинг-тройник (T-Line) и заливную горловину. Преимущество безрезервуарных систем в том, что в случае установки СВО в компактный корпус ее можно разместить более удобно. Преимущество систем с резервуаром в более удобной заправке системы (хотя это зависит от резервуара) и более удобном удалении пузырей воздуха из системы. Резервуары встречаются самого разного размера и формы и выбирать их необходимо по критериям удобства установки и внешнего вида.

Cливной кран - это компонент, который позволяет более удобно сливать воду из контура системы водяного охлаждения . В обычном состоянии он перекрыт, но, когда появляется необходимость слить из системы воду, то его открывают. Достаточно простой компонент, который может сильно повысить удобство пользования, а точнее обслуживания , системы водяного охлаждения.

Датчики, индикаторы и измерители. Поскольку энтузиасты, обычно, любят всякие примочки и навороты, то производители просто не могли остаться в стороне и выпустили довольно много различных контролеров, измерителей и датчиков для СВО, хотя система водяного охлаждения может совершенно спокойно (и при этом надежно) работать и без них. Среди таких компонентов встречаются электронные датчики давления и потока воды, температуры воды, контролеры, подстраивающие работу вентиляторов под температуру, механически индикаторы движения воды, контролеры помп и так далее. Тем не менее, по нашему мнению, например, датчики давления и расхода воды имеет смысл ставить только в системы, предназначенные для тестирования компонентов СВО, так как особого смысла с этой информации для обычного пользователя просто нету . Ставить по несколько термодатчиков в разные места контура СВО, надеясь увидеть большой перепад температур, тоже особого смысла нет, так как вода имеет очень высокую теплоемкость, то есть нагреваясь буквально один градус вода «впитывает» большое количество тепла, при этом в контуре СВО она движется с довольно большой скоростью, что приводит к тому, что температура воды в разных местах контура СВО в одно время довольно слабо отличается, так что впечатляющих значений вам не увидеть Да и не стоит забывать, что большинство компьютерных термодатчиков имеют погрешность в ±1 градус.

Фильтр. В некоторых системах водяного охлаждения можно встретить фильтр, подключенный в контур. Его задача состоит в том, чтобы отфильтровывать разнообразные мелкие частицы , попавшие в систему - это может быть пыль которая была в шлангах, остатки пайки в радиаторе, осадок, появившийся от использования красителя или антикоррозионной добавки.

Присадки к воде и готовые смеси. В дополнение к воде, в контуре СВО можно применять различные присадки для воды, некоторые из них защищают от коррозии, другие предотвращают развитие бактерий в системе, а третьи позволяют подкрасить воду в системе водяного охлаждения нужным вам цветом. Существуют также готовые смеси, которые содержат воду в качестве основного компонента с антикоррозионными присадками и красителем. Также бывают готовые смеси в состав которых входят присадки, повышающие производительность СВО, хотя повышение производительности от них незначительное. В продаже также можно встретить жидкости для систем водяного охлаждения, сделанные не на основе воды, а на основе специальной диэлектрической жидкости, которая не проводит электрический ток и, соответственно, не вызовет короткого замыкания при утечке на компоненты ПК. Обычная дистиллированная вода, в принципе, тоже не проводит ток, но, пролившись на запыленные компоненты ПК, может стать электропроводной. Особого смысла в диэлектрической жидкости нет так как нормально собранная и протестированная система водяного охлаждения не протекает и достаточно надежна. Также стоит заметить, что антикоррозионные присадки, иногда, в процессе своей роботы выпадают в осадок мелкой пылью, а красящие присадки могут немного прокрасить шланги и акрил в компонентах СВО, но, по нашему опыту, на это не стоит обращать внимание, так как это не критично. Главное соблюдать инструкцию к присадкам и не лить их сверх меры, так как это уже может привести к более плачевным последствиям. Применять ли в системе просто дистиллированную воду, воду с присадками или готовую смесь - особой разницы нет, а оптимальный вариант зависит от того, что вам необходимо.

Бэкплейт - это специальная крепежная пластина, которая помогает разгрузить текстолит материнской платы или видеокарты от усилия, создаваемого креплениями ватерблока, соответственно, уменьшая изгиб текстолита и шанс угробить дорогостоящее железо. Хотя бэкплейт и не является обязательным компонентом, его можно довольно-таки часто встреть в СВО, некоторые модели ватерблоков идут сразу укомплектованными бэкплейтами, а к другим он доступен ввиде опционального аксессуара.

Второстепенные ватерблоки. Помимо охлаждения водой важных и сильно греющихся компонентов, некоторые энтузиасты ставят дополнительные ватерблоки на компоненты, которые либо слабо греются, либо не требуют мощного активного охлаждения, например. К компонентам, которым водяное охлаждение необходимо разве что для вида, относятся: силовые транзисторы цепей питания, оперативная память, южный мост и жесткие диски. Необязательность данных компонентов в системе водяного охлаждения заключается в том, что, даже если вы и поставите на эти компоненты водяное охлаждение, то никакой дополнительной стабильности системы, улучшения разгона или других заметных результатов вы не получите - связано это, в первую очередь, с малым тепловыделением данных элементов, а также с неэффективностью ватерблоков для этих компонентов. Из четких плюсов установки данных ватерблоком можно выделить лишь внешний вид, а из минусов - повышение гидросопротивления в контуре СВО, увеличение стоимости всей системы (при этом значительное) и, обычно, малая апгрейдопригодность данных ватерблоков.

Помимо обязательных и необязательных компонентов для систем водяного охлаждения также можно выделить категорию так называемых гибридных компонентов. Иногда, в продаже можно встретить компоненты, представляющие собой два или более компонента СВО, соединенных в одно устройство. Среди таких устройств бывают: гибриды помпы и процессорного ватерблока, радиаторы для сво со встроенными помпой и резервуаром, очень распространены помпы, совмещенные с резервуаром. Смысл таких компонентов заключается в уменьшении занимаемого места и более удобной установке. Минусом таких компонентов, обычно, является их ограниченная пригодность к апгрейду.

Отдельно стоит категория самодельных компонентов для систем водяного охлаждения. Первоначально, примерно с 2000 года, все компоненты для систем водяного охлаждения изготавливались или дорабатывались энтузиастами своими руками, ведь специализированных компонентов для СВО тогда попросту не производилось. Поэтому, если человек хотел установить себе СВО, то ему приходилось делать все своими руками. После относительной популяризации водяного охлаждения для компьютеров, компоненты для них начали производить большое количество фирм и сейчас можно без особых проблем купить как готовую систему водяного охлаждения, так и все необходимые компоненты для ее самостоятельной сборки. Так что, в принципе, можно сказать, что сейчас нет необходимости самостоятельно изготавливать компоненты СВО для того чтобы установить на свой компьютер водяное охлаждение. Единственными причинами, по которым сейчас, некоторые, энтузиасты занимаются самостоятельным изготовлением компонентов СВО являются желание сэкономить или попробовать свои силы в изготовлении таких компонентов. Тем не менее, желание сэкономить не всегда удается осуществить, ведь помимо стоимости работы и компонентов изготовляемой детали, также есть затраты времени, которые, обычно, не учитываются людьми, желающими сэкономить, но реальность такова, что времени на самостоятельное изготовление прийдется потратить уйму и результат при этом не будет гарантирован. Да и производительность и надежность у самодельных компонентов, зачастую, оказывается далеко не на самом высоком уровне, так как для изготовления комплектующих серийного уровня необходимо иметь очень прямые (золотые) руки Если решитесь на самостоятельно изготовление, к примеру, ватреблока, то учитывайте данные факты.

Внешняя или внутренняя СВО

Помимо прочих признаков, системы водяного охлаждения делятся на внешние и внутренние. Внешние системы водяного охлаждения, обычно, выполнены ввиде отдельного «ящика», т.е. модуля, который при помощи шлангов подключается к ватерблокам, установленным на комплектующих в корпусе вашего ПК. В корпусе внешней системы водяного охлаждения почти всегда располагается радиатор с вентиляторами, помпа, резервуар и, иногда, блок питания для помпы с датчиками температуры и/или потока жидкости. К внешним системам относятся, например, системы водяного охлаждения Zalman семейства Reserator. Системы, устанавливаемые ввиде отдельного модуля, удобны тем, что для пользователя нет необходимости дорабатывать корпус своего компьютера, но очень неудобны, если вы планируете перемещать свой компьютер даже на минимальные расстояния, например, в соседнюю комнату

Внутренние системы водяного охлаждения, в идеале, располагаются полностью внутри корпуса ПК, но, из-за того, что далеко не все компьютерные корпуса хорошо приспособлены для установки СВО, некоторые компоненты внутренней системы водяного охлаждения (чаще всего радиатор), можно часто увидеть, установленными на внешней поверхности корпуса. К плюсам внутренних СВО можно отнести то, что они очень удобны при переноски компьютера так как они не будут мешать вам и не будут требовать сливать жидкость при транспортировке. Еще одним плюсом внутренних СВО можно назвать то, что при внутренней установки СВО ни в коей мере не страдает внешний вид корпуса, причем при моддинге компьютера система водяного охлаждения может служить отличным украшением корпуса.

К минусам внутренних систем водяного охлаждения можно отнести относительную сложность их установки, по сравнению с внешними, а также необходимость модификации корпуса для установки СВО во многих случаях. Еще одним негативным моментом можно назвать то, что внутренняя СВО добавят вашему корпусу пару килограмм веса

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так - комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Среди плюсов готовых систем можно отметить удобство - вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Плюсы и минусы систем водяного охлаждения

К основным плюсам водяного охлаждения компьютеров можно отнести: возможность сборки тихого и мощного ПК, расширенные возможности по разгону, улучшенная стабильность при разгоне, отличный внешний вид и долгий срок службы. Благодаря высокой эффективности водяного охлаждения, можно собрать такую СВО, которая позволила бы эксплуатировать очень мощный разогнанный игровой компьютер с несколькими видеокартами при относительно низком уровне шума, недостижимом для воздушных систем охлаждения. Опять же, благодаря своей высокой эффективности, систем водяного охлаждения позволяют достичь более высокого уровня разгона процессора или видеокарты, недостижимого с помощью воздушного охлаждения. Системы водяного охлаждения, чаще всего, имеют отличный внешний вид и отлично смотрятся в модифицированном (или не очень) компьютере.

Из минусов систем водяного охлаждения, обычно, выделают: сложность сборки, дороговизну и ненадежность. Наше мнение таково, что эти минусы имеют под собой мало реальных фактов и являются очень спорными и относительными. К примеру, сложность сборки системы водяного охлаждения однозначно нельзя назвать высокой - собрать СВО не сильно сложнее, чем собрать компьютер, да и вообще времена, когда все комплектующие необходимо было дорабатывать в обязательном порядке или делать все компоненты своими руками, давно прошли и на данный момент в сфере СВО практически все стандартизировано и доступно в продаже. Надежность, правильно собранных, систем водяного охлаждения компьютера тоже не вызывает сомнений, как не вызывает сомнения надежность автомобильной системы охлаждения или системы отопления частного дома - при правильной сборке и эксплуатации проблем быть не должно. Конечно, от брака или несчастного случая никто не застрахован, но вероятность таких событий существует не только при применении СВО, а и с самыми обычными видеокартами, жесткими дисками и прочими комплектующими. Стоимость же, по нашему мнению, также не стоит выделять как минус, так как такой «минус» тогда смело можно приписывать всей высокопроизводительной технике . Да и у каждого пользователя свое понимание про дороговизну или дешевизну. О стоимости СВО я хотел бы поговорить отдельно.

Стоимость системы водяного охлаждения

Стоимость, как фактор, является, наверное наиболее часто упоминаемым «минусом», который приписывают всем системам водяного охлаждения ПК . При этом все забывают, что стоимость системы водяного охлаждения сильно зависит от того, на каких компонентах ее собрать: можно собирать СВО, чтобы общая стоимость была подешевле не в ущерб производительности, а можно - выбирать комплектующие по максимальной цене При этом итоговая стоимость похожих по эффективности СВО будет отличатся в разы.

Стоимость системы водяного охлаждения также зависит от того, на какой компьютер ее будут ставить, ведь чем мощнее компьютер, тем, в принципе, и дороже будет СВО для него, так как для мощного компьютера и СВО нужна более мощная. По нашему мнению, стоимость СВО является вполне оправданной на фоне других комплектующих, ведь система водяного охлаждения по факту и является отдельным компонентом, причем, по нашему мнению, обязательным для по-настоящему мощных ПК. Еще одним фактором, который необходимо учитывать при оценки стоимости СВО, является ее долговечность так как, правильно подобранные, компоненты СВО могут служить не один год подряд, переживая многочисленные апгрейды всего остального железа - не многие компоненты ПК могут похвастаться такой живучестью (разве что корпус или, взятый с избытком, БП), соответственно трата относительно большой суммы на СВО плавно распределяется по времени и не выглядит расточительной.

Если же вам очень хочется установить себе СВО, а с финансами напряг и в ближайшее время улучшений не намечается, то никто не отменял самодельные компоненты

Водяное охлаждение в моддинге

Помимо высокой эффективности, системы водяного охлаждения для ПК отлично выглядят, что объясняет популярность использования систем водяного охлаждения в множестве моддинг проектов. Благодаря возможности применять цветные или флуоресцентные шланги и/или жидкости, возможности подсветить светодиодами водоблоки, подобрать комплектующие, которые будут подходить вам по цветовой гамме и стилю, систему водяного охлаждения можно отлично вписать в практически любой моддинг проект, и/или сделать ее основной фишкой вашего моддинг проекта. Использование СВО в моддинг проекте , при правильной установке, позволяет улучшить обзор некоторых комплектующих, обычно скрытых большими воздушными системами охлада.

About sTs

Люблю самоделки. Стремлюсь к здоровому, гармоничному образу жизни. В людях ценю открытость и честность. Своим хочу донести до молодёжи ценность созидательных качеств в человеке. Пусть каждый обретет новые знакомства и получит массу знаний и опыта , которые сделают из него целостную личность ! Подробнее о себе рассказываю в блоге . Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке .

Законы Физики.

Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, - это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.


Основательность воздушного охлаждения

Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman , Noctua , Skythe , Cooler Master .

Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное . То, что сразу переводит в разряд «настоящих энтузиастов».



Системы Водяного Охлаждения

Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.



Как это работает:

От процессора или графического чипа тепло сначала передается через теплообменник воде. Далее нагретая вода двигается в радиатор, где тепло из водной среды отдается воздуху и отрабатывается во внешнюю среду. Качает же водный поток, как водится, специальный насос – помпа. Весьма стандартная система, которая используется во многих сферах, таких как двигатели внутреннего сгорания (куда уж без нашей любимой автомобильной аналогии). Большим преимуществом выбора СВО объясняется просто, Вода имеет куда более высокий уровень теплоемкости, что позволяет намного эффективнее охлаждать элементы и поддерживать низкий температурный режим.

Какой же сделать выбор?

Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.


Необслуживаемые СВО

Для тех, кто только начинает свой путь в мире компьютеров существуют необслуживаемые системы водяного охлаждения. Многие именитые производители предлагают готовые и надежные необслуживаемые (замкнутые) системы охлаждения по относительно невысокой цене, например: Corsair Hydro Series (существует несколько вариантов с разными типами радиаторов), Cooler Master Seidon , NZXT Kraken , Silverstone Tundra , да что там говорить, даже компания Intel рекомендует к своим процессорам Intel Core i7 в исполнении LGA 2011 в качестве штатной СО – систему водяного охлаждения от компании Asetek.


А это точно эффективнее?

Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими "рубашками". Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.



Кастомные системы:

Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные ”, от англ. custom (custom-made) - изготовленные на заказ, системы водяного охлаждения .

Cложность “кастомной СВО ” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

— Практически бесшумный и довольно производительный процессорный кулер с двумя вентиляторами; 2 — Трехвентиляторная модель с выделяющимся дизайном; 3 — Бюджетная модель с двумя вентиляторами, обеспечивающими качественное охлаждение компьютера. 1 — Практически бесшумная система охлаждения; 2 — Простая и стабильная система; 3 — Не имеющая аналогов в своем ценовом сегменте модель по уровню охлаждения.

Комплектующие компьютера в процессе работы нагреваются. Температура некоторых деталей повышается незначительно, другие же греются сильно. Больше всего это относится к видеокарте и процессору. И если первая изначально обустроена системой охлаждения, то с ЦП ситуация другая. От перегрева процессор защищает работающий кулер. Благодаря вращению лопастей вентилятора, создается воздушный поток, ими же может отводиться тепло. Именно так и обеспечивается охлаждение процессора.

Без кулера температура на ЦП может достигать критических значений, так он рискует выйти из строя. Еще для охлаждения процессора может использоваться жидкость. Водяные системы являются более дорогими, но и эффективность у них выше.

При выборе охлаждения для компьютера следует учитывать множество параметров. Причем не только ее эффективности, но и совместимости с компонентами компьютера. Подробнее данные параметры будут рассмотрены в списке лучших систем охлаждения для процессора.

Топ кулеров для процессора с одним вентилятором

Оценка (2018): 4.5

Преимущества: Популярный кулер от всемирно известной компании

Страна-производитель: Китай

На третьем месте топа кулеров расположился Zalman CNPS10X Optima. Это весьма популярная модель с одним вентилятором. Обрела она ее за счет низкой стоимости при довольно высоком качестве. Поддерживает большое количество процессоров.

Радиатор из-за материала исполнения обеспечивает высокую теплопроводность. У вентилятора широкие лопасти, может производиться более 1500 оборотов в минуту. Уровень шума при максимальном вращении достигает 28 децибел. Вес изделия в сборе равен 630 г.

Оценка (2018): 4.7

Преимущества: Очень надежная модель

Страна-производитель: Китай

Второе место рейтинга занимает кулер Noctua NH-U14S. По заверениям создателей, модель способна безотказно проработать более ста тысяч часов. Кулер совместим с сокетами: LGA2011-3, LGA1150, AM2+, FM2+ и множеством других. Проще говоря, данная модель подойдет для охлаждения процессоров последнего и предшествующего поколения.

Кулер оснащен шестью тепловыми трубками. Это повышает его эффективность. Скорость вращения может достигать 1500 об/мин. Уровень шума, производимого вентилятором, не превышает 25 децибел на пике. Кулер довольно большой по размерам, весит он 935 г.

Блок полезной информации

При выборе качественного кулера для процессора, прежде всего, необходимо учитывать несколько значительных характеристик. От них будет зависеть не только эффективность системы охлаждения, но и ее совместимость, а также общая надежность компьютера. Благодаря грамотному выбору кулера получится полностью раскрыть потенциал центрального процессора, выведя его производительность на максимальный уровень.

  1. Сокет. Необходимо учитывать, что у процессоров от компаний Intel и AMD различаются разъемы для подключения к материнской плате. Причем у одной и той же фирмы, в зависимости от модельного ряда, сокеты будут разными. Это очень важный момент при грамотном выборе системы охлаждения. Ведь разъемы различаются по структуре креплений. А к ним уже подсоединяется кулер. Поэтому необходимо выбирать совместимую с сокетом на материнской плате систему охлаждения. В противном случае ее установка значительно осложняется или же становится полностью невозможной. А попытки могут привести к поломке материнской платы.
  2. Размеры кулера. Когда сокет выбран, остается определиться с моделью кулера, совместимого с ним. Систем охлаждения на рынке огромное множество. Различаться они могут по множеству характеристик, в том числе и по габаритам. И тут следует учитывать, что размеры изделия разнятся в зависимости от назначения системы. Если оборудуется игровой компьютер, то для него предпочтителен кулер больших габаритов. Когда система предназначена для офисной работы, тогда устанавливается меньшая по размерам система охлаждения.
  3. Скорость вращения. Качество работы кулера определяется итоговым охлаждением процессора. И чем выше скорость вращения лопастей, тем теплоотвод лучше. Данный параметр высчитывается в количестве оборотов лопастей за единицу времени (обычно за минуту). В современных системах скорость вращения кулера регулируется автоматически. Она будет зависеть от нагрузки компьютера. Поэтому температура процессора будет поддерживаться на одном уровне.

Оценка (2018): 4.8

Преимущества: Тихое и качественное охлаждение компьютера

Страна-производитель: Китай

А первое место рейтинга занимает модель Thermalright Macho Rev.A. Отзывы большого количества пользователей говорят о том, что это лучший кулер с одним вентилятором в своем ценовом сегменте. Это также подтверждают многочисленные обзоры.

Модель подходит для последних линеек процессоров. Она обеспечивает отличное охлаждение даже в игровых компьютерах. Скорость вращения адаптивно подбирается системой от 900 до 1300 об/мин. А на пике нагрузки производимый шум ниже 21 дБ. Вес модели составляет 870г.

Топ кулеров для процессора с несколькими вентиляторами

Оценка (2018): 4.7

Преимущества: Бюджетная модель с двумя вентиляторами

Страна-производитель: Китай

Открывает топ лучших кулеров для процессора с несколькими вентиляторами Deepcool Maelstrom 240T. Это весьма серьезная система водяного охлаждения с алюминиевым радиатором. Данная модель совместима с мощнейшими процессорами нового поколения.

Система охлаждения оснащена двумя вентиляторами, скорость вращения которых может достигать 1600 об/мин. На пике нагрузки уровень шума достигает 34 дБ, он будет отчетливо слышен. По словам представителя компании Deepcool, кулер сможет безотказно проработать 50 тысяч часов.

Оценка (2018): 4.7

Преимущества: Трехвентиляторная модель с выделяющимся дизайном

Страна-производитель: Китай

Второе место кулер получил из-за специальной системы изменения скорости вращения, в зависимости от нагрузки на процессор. Таким образом получается поддерживать постоянную температуру. Весит данный кулер один килограмм.

Оценка (2018): 4.8

Преимущества: Практически бесшумный и довольно производительный процессорный кулер

Страна-производитель: Китай

Хорошее охлаждение центрального процессора и процессора видеокарты последние десятилетия является необходимым условием их бесперебойной работы. Но греются в компьютере не только процессор и видеокарта - отдельный кулер может потребоваться микросхеме чипсета, жестким дискам и даже модулям памяти. Производители корпусов добавляют дополнительные вентиляторы, увеличивают их мощность и габариты, улучшают устройство радиаторов. И, разумеется, жидкостные системы охлаждения не могли быть обойдены вниманием.


Вообще, жидкостное охлаждение процессоров – тема не новая: оверклокеры столкнулись с недостаточной эффективностью воздушного охлаждения уже давно. «Разогнанные» до теоретического максимума процессоры грелись так, что не справлялись никакие из имевшихся тогда в продаже кулеров. Систем жидкостного охлаждения в магазинах не было, и оверклокерские форумы полнились темами о самодельных «водянках». И сегодня многие ресурсы предлагают собрать систему жидкостного охлаждения самостоятельно, но смысла в этом уже немного. Стоимость комплектующих сравнима с ценой недорогих СЖО в магазинах, а качество (и, следовательно, надежность) заводской сборки обычно все же выше кустарной.

Почему эффективность СЖО выше, чем у простого кулера?


Рассматриваемые СЖО не имеют вырабатывающих холод элементов, охлаждение происходит за счет воздуха возле системного блока – как и в случае обычного воздушного охлаждения. Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора. Но скорость теплоотвода зависит не только от скорости движения теплоносителя, но и от эффективности охлаждения этой жидкости и от эффективности её нагревания теплом процессора. И, если первая задача решается увеличением площади радиатора, площади теплообменника радиатора и улучшением воздухообдува, то во втором случае теплообмен ограничен площадью процессора. Поэтому общая эффективность системы ограничивается эффективностью водоблока процессора. Но даже с таким ограничением СЖО обеспечивают примерно в 3 раза лучший теплосъем по сравнению с обычным воздушным охлаждением. В числах это означает снижение температуры чипа на 15-25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Конструкция СЖО


Любая система жидкостного охлаждения содержит следующие элементы:

- Водоблок . Его назначение – эффективно снимать тепло с процессора и передавать протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора – поэтому конструкция водоблока важна ничуть не меньше материала.


Поэтому плоскодонный (бесканальный) водоблок, в котором жидкость просто протекает вдоль стенки, прилегающей к процессору, намного менее эффективен, чем водоблоки со сложной структурой дна или теплообменниками (трубчатыми или змеевидными). Минусами водоблоков со сложной структурой является то, что они создают намного большее сопротивление водяному потоку и, следовательно, требуют более мощной помпы.


- Помпа . Распространенное мнение, что чем мощнее помпа, тем лучше и что СЖО без отдельной мощной помпы вообще неэффективна – некорректно. Функция помпы – обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Т.е., с одной стороны, нагревшаяся жидкость должна вовремя выводиться из водоблока, с другой стороны – поступать в водоблок она должна уже полностью охлажденной. Поэтому мощность помпы должна быть сбалансирована с эффективностью остальных элементов системы и замена помпы на более мощную в большинстве случаев не даст положительного эффекта. Маломощные помпы часто объединены в одном корпусе с водоблоком.


- Радиатор. Назначение радиатора – рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.
- Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм – в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон.
- Теплоноситель должен иметь высокую теплоемкость и высокую теплопроводность. Из доступных и безопасных жидкостей лучше всего этим условиям удовлетворяет обычная дистиллированная вода. Часто в воду добавляются присадки для снижения её коррозирующих свойств, для предотвращения размножения микроорганизмов (зацветания) и просто для эстетического эффекта (цветные присадки в системах с прозрачными трубками).


В мощных системах с большим объемом теплоносителя становится необходимым использование расширительного бачка – резервуара, в который будут уходить излишки жидкости при её термическом расширении. В таких системах помпа обычно объединяется с расширительным бачком.

Характеристики систем жидкостного охлаждения.

Обслуживаемая/необслуживаемая СЖО.


Необслуживаемая система идет с завода полностью в сборе, залитая теплоносителем и загерметизированная. Установка такой системы отличается простотой – некоторые необслуживаемые СЖО установить ничуть не сложнее, чем обычный кулер. Минусы у необслуживаемой СЖО тоже есть:
- Низкая ремонтопригодность. Трубки часто просто запаяны в неразъемные пластиковые штуцеры. С одной стороны, это обеспечивает герметичность, с другой стороны, замена поврежденного элемента такой системы может вызвать осложнения.
- Сложность замены теплоносителя обычно тоже связана с ремонтом системы – если часть жидкости вытекла, снова заполнить необслуживаемую СЖО может оказаться весьма непросто – заливочными отверстиями такие системы, как правило, не снабжаются.
- Низкая универсальность связана с неразборностью системы. Невозможно ни расширить систему, ни заменить какой-либо из её элементов на более эффективный.
- Фиксированная длина трубок ограничивает возможности по выбору места установки радиатора.


Обслуживаемые СЖО часто поставляются в виде набора элементов и установка такой системы потребует времени и некоторой сноровки. Зато и возможности по её кастомизации намного выше – можно добавлять водоблоки для чипсета и для видеокарты, менять все элементы на более подходящие для конкретного компьютера, выносить радиатор на любое (разумное) расстояние от процессора и т.д. Можно не бояться устаревания сокета (и системы охлаждения) при замене материнской платы – для восстановления актуальности потребуется только заменить водоблок процессора. К недостаткам обслуживаемых СЖО, кроме сложности установки и высокой цены, следует отнести большую вероятность протечек через разъемные соединения и большую вероятность загрязнения теплоносителя.

СЖО должна поддерживать сокет материнской платы, на которую устанавливается. И если обслуживаемую СЖО еще можно приспособить под другой сокет, купив дополнительно соответствующий водоблок, то необслуживаемая СЖО может использоваться только с теми сокетами, что перечислены в её характеристиках.


Количество вентиляторов не оказывает прямого влияния на эффективность СЖО, но большое их количество позволяет снизить скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при сохранении эффективности. Будет ли СВО с большим количеством вентиляторов эффективнее – зависит от их суммарного максимального воздушного потока.

Максимальный воздушный поток считается в кубических футах в минуту (CFM) и определяет, какой объем воздуха прогоняется через вентилятор в минуту. Чем выше это значение, тем выше вклад этого вентилятора в эффективность радиатора. Размеры (длина, ширина, толщина ) радиатора ничуть не менее важны – четыре мощнейших вентилятора, обдувающих простой тонкий радиатор с малой площадью пластин будут охлаждать теплоноситель ничуть не лучше, чем один вентилятор, хорошо подобранный к радиатору с большой площадью пластин.


Материал радиатора определяет его теплопроводность, т.е., с какой скоростью переданное ему тепло будет распределяться по всей площади радиатора. Теплопроводность меди почти в два раза выше, чем теплопроводность алюминия, но в данном случае эффективность радиатора больше зависит от его конструкции и площади, чем от материала..

Материал водоблока , в силу ограниченности его размеров, важнее материала радиатора. Фактически, медь является единственным приемлемым вариантом. Алюминиевые водоблоки (встречающиеся в дешевых СЖО) снижают эффективность системы настолько, что пропадает смысл использования жидкостного охлаждения.

Максимальный уровень шума зависит от максимальной частоты вращения вентиляторов . Если в системе не предусмотрена регулировка частоты вращения, на этот параметр следует обратить пристальное внимание. При наличии регулировки частоты вращения, внимание следует обратить на минимальный уровень шума .

Уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении - негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

Тип коннектора питания может быть 3-pin и 4-pin.
3-pin коннектор не имеет отдельного провода для изменения скорости вращения вентилятора. Управлять скоростью вращения такого вентилятора можно только изменяя его напряжение питания. Не все материнские платы поддерживают этот способ. Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать