Как строить сетевой график. Построение сетевого графика

Планирование работы всегда начинается с определения количества задач, ответственных за их исполнение лиц и времени, необходимого для полного завершения. При такие схемы просто необходимы. Во-первых, для того чтобы понимать, какое общее время будет затрачено, во-вторых, чтобы знать, как планировать ресурсы. Именно этим занимаются проектные менеджеры, они в первую очередь осуществляют построение сетевого графика. Пример возможной ситуации рассмотрим далее.

Исходные данные

Руководство рекламного агентства приняло решение о выходе в свет нового рекламного продукта для своих клиентов. Перед сотрудниками фирмы были поставлены такие задачи: рассмотреть идеи рекламных брошюр, привести аргументы в пользу того или иного варианта, создать макет, подготовить проект договора для клиентов и послать всю информацию руководству на рассмотрение. Для информирования клиентов необходимо провести рассылку, расклеить плакаты и обзвонить все фирмы, имеющиеся в базе данных.

Кроме этого, главный руководитель составил детальный план всех необходимых действий, назначил ответственных сотрудников и определил время.

Начнем построение сетевого графика. Пример имеет данные, представленные на следующем рисунке:

Построение матрицы

Перед тем как сформировать необходимо создать матрицу. Построение графиков начинается с этого этапа. Представим себе систему координат, в которой вертикальные значения соответствуют i (начальное событие), а горизонтальные строки - j (завершающее событие).

Начинаем заполнять матрицу, ориентируясь на данные рисунка 1. Первая работа не имеет времени, поэтому ею можно пренебречь. Рассмотрим детальнее вторую.

Начальное событие стартует с цифры 1 и заканчивается на втором событии. Продолжительность действия равняется 30 дням. Это число заносим в ячейку на пересечении 1 строки и 2 столбца. Аналогичным способом отображаем все данные, что представлено на рисунке ниже.

Основные элементы, используемые для сетевого графика

Построение графиков начинается с обозначения теоретических основ. Рассмотрим основные элементы, требующиеся для составления модели:

  1. Любое событие обозначается кружком, в середине которого находится цифра, соответствующая порядку действий.
  2. Сама работа - это стрелка, ведущая от одного события к другому. Над стрелкой пишут время, необходимое для ее совершения, а под стрелкой обозначают ответственное лицо.

Работа может выполниться в трех состояниях:

- Действующая - это обыкновенное действие, на совершение которого требуются затраты времени и ресурсов.

- Ожидание - процесс, во время которого ничего не происходит, но он требует затрат времени для перехода от одного события к другому.

- Фиктивная работа - это логическая связь между событиями. Она не требует ни времени, ни ресурсов, но чтобы не прервать сетевой график, ее обозначают Например, подготовка зерна и приготовление мешков для него - это два отдельных процесса, они не связаны последовательно, но их связь нужна для следующего события - фасовки. Поэтому выделяют еще один кружочек, который соединяют пунктиром.

Основные принципы построения

Правила построения сетевых графиков заключаются в следующем:


Построение сетевого графика. Пример

Вернемся к исходному примеру и попробуем начертить сетевой график, используя все данные, указанные ранее.

Начинаем с первого события. Из него выходят два - второе и третье, которые соединяются в четвертом. Далее все идет последовательно до седьмого события. Из него выходят три работы: восьмая, девятая и десятая. Постараемся все отобразить:

Критические значения

Это еще не все построение сетевого графика. Пример продолжается. Далее нужно рассчитать критические моменты.

Критический путь - это наибольшее время, затраченное на выполнение задания. Для того чтобы его рассчитать, нужно сложить все наибольшие значения последовательных действий. В нашем случае это работы 1-2, 2-4, 4-5, 5-6, 6-7, 7-8, 8-11. Суммируем:

30+2+2+5+7+20+1 = 67 дней

Таким образом, критический путь равен 67 дням.

Если такое время на проект не устраивает руководство, его нужно оптимизировать согласно требованиям.

Автоматизация процесса

На сегодняшний день мало кто из проектных менеджеров вручную построения сетевых графиков - это простой и удобный способ быстро рассчитать затраты времени, определить порядок работ и назначить исполнителей.

Кратко рассмотрим самые распространенные программы:

  1. Microsoft Project 2002 - офисный продукт, в котором очень удобно рисовать схемы. Но проводить расчеты немного неудобно. Для того чтобы совершить даже самое простое действие, нужен немалый багаж знаний. Скачивая программу, позаботьтесь о приобретении инструкции по пользованию к ней.
  2. SPU v2.2. Очень распространенный бесплатный софт. Вернее, даже не программа, а файл в архиве, для использования которого не нужна установка. Изначально она была разработана для выпускной работы одного студента, но оказалась настолько полезной, что автор выложил ее в сеть.
  3. NetGraf - еще одна разработка отечественного специалиста из Краснодара. Очень легка, проста в использовании, не требует установки и огромного багажа знаний, как с ней управляться. Плюсом является то, что поддерживает импорт информации из других текстовых редакторов.
  4. Часто можно встретить вот такой экземпляр - Borghiz . О разработчике мало что известно, как и о том, как пользоваться программой. Но по примитивному методу «тыка» ее можно освоить. Главное, что она работает.

Долго думали с чего начать: маршрутизация, VLAN"ы, настройка оборудования.
В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.

Предполагается, что вы, как минимум читали о эталонной модели OSI (то же на англ.), о стеке протоколов TCP/IP (англ.), знаете о типах существующих VLAN’ов (эту статью я настоятельно рекомендую к прочтению), о наиболее популярном сейчас port-based VLAN и о IP адресах (). Мы понимаем, что для новичков «OSI» и «TCP/IP» - это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.

Начнём с постановки задачи. Есть некая фирма, занимающаяся, допустим, производством лифтов, идущих только вверх, и потому называется ООО «Лифт ми ап». Расположены они в старом здании на Арбате, и сгнившие провода, воткнутые в пожжёные и прожжёные коммутаторы времён 10Base-T не ожидают подключения новых серверов по гигабитным карточкам. Итак у них катастрофическая потребность в сетевой инфраструктуре и денег куры не клюют, что даёт вам возможность безграничного выбора. Это чудесный сон любого инженера. А вы вчера выдержали собеседование и в сложной борьбе по праву получили должность сетевого администратора. И теперь вы в ней первый и единственный в своём роде. Поздравляем! Что дальше?

Следует несколько конкретизировать ситуацию.

  1. В данный момент у компании есть два офиса: 200 квадратов на Арбате под рабочие места и серверную. Там представлены несколько провайдеров. Другой на Рублёвке.
  2. Есть четыре группы пользователей: бухгалтерия (Б), финансово-экономический отдел (ФЭО), производственно-технический отдел (ПТО), другие пользователи (Д). А так же есть сервера (С), которые вынесены в отдельную группу. Все группы разграничены и не имеют прямого доступа друг к другу.
  3. Пользователи групп С, Б и ФЭО будут только в офисе на Арбате, ПТО и Д будут в обоих офисах.
Прикинув количество пользователей, необходимые интерфейсы, каналы связи, вы готовите схему сети и IP-план.
При проектировании сети следует стараться придерживаться иерархической модели сети , которая имеет много достоинств по сравнению с “плоской сетью”:
  • упрощается понимание организации сети
  • модель подразумевает модульность, что означает простоту наращивания мощностей именно там, где необходимо
  • легче найти и изолировать проблему
  • повышенная отказоустойчивость засчет дублирования устройств и/или соединений
  • распределение функций по обеспечению работоспособности сети по различным устройствам.

Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение - быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).

В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.
Составим приблизительную схему:

На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.

Именовать устройства будем следующим образом: сокращённое название города (msk ) - географическое расположение (улица, здание) (arbat ) - роль устройства в сети + порядковый номер.
Соответственно их ролям и месту расположения выбираем hostname :
Маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз)
Коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch)
Коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch)

Документация сети

Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.
Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:
Схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (Физический, канальный, сетевой)
План IP-адресации = IP-план.
Список VLAN
Подписи (description ) интерфейсов
Список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAM\NVRAM, список интерфейсов)
Метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах
Единый регламент, определяющий все вышеприведённые параметры и другие.

Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.

Говоря о метках/наклейках на кабели, мы имеем ввиду это:


На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.

Подготовим нужные нам документы:

Список VLAN

Каждая группа будет выделена в отдельный влан. Таким образом мы ограничим широковещательные домены. Также введём специальный VLAN для управления устройствами.
Номера VLAN c 4 по 100 зарезервированы для будущих нужд.

IP-план
IP-адрес
Примечание
VLAN
172.16.0.0/16
172.16.0.0/24
Серверная ферма
3
172.16.0.1 Шлюз
172.16.0.2 Web
172.16.0.3 File
172.16.0.4 Mail
172.16.0.5 - 172.16.0.254 Зарезервировано
172.16.1.0/24
Управление
2
172.16.1.1 Шлюз
172.16.1.2 msk-arbat-dswl
172.16.1.3 msk-arbat-aswl
172.16.1.4 msk-arbat-asw2
172.16.1.5 msk-arbat-asw3
172.16.1.6 msk-rubl-aswl
172.16.1.6 - 172.16.1.254 Зарезервировано
172.16.2.0/24
Сеть Point-to-Point
172.16.2.1 Шлюз
172.16.2.2 - 172.16.2.254 Зарезервировано
172.16.3.0/24
ПТО
101
172.16.3.1 Шлюз
172.16.3.2 - 172.16.3.254 Пул для пользователей
172.16.4.0/24
ФЭО
102
172.16.4.1 Шлюз
172.16.4.2 - 172.16.4.254 Пул для пользователей
172.16.5.0/24
Бухгалтерия
103
172.16.5.1 Шлюз
172.16.5.2 - 172.16.5.254 Пул для пользователей
172.16.6.0/24
Другие пользователи
104
172.16.6.1 Шлюз
172.16.6.2 - 172.16.6.254 Пул для пользователей

Выделение подсетей в общем-то произвольное, соответствующее только числу узлов в этой локальной сети с учётом возможного роста. В данном примере все подсети имеют стандартную маску /24 (/24=255.255.255.0) - зачастую такие и используются в локальных сетях, но далеко не всегда. Советуем почитать о классах сетей . В дальнейшем мы обратимся и к бесклассовой адресации (cisco). Мы понимаем, что ссылки на технические статьи в википедии - это моветон, однако они дают хорошее определение, а мы попробуем в свою очередь перенести это на картину реального мира.
Под сетью Point-to-Point подразумеваем подключение одного маршрутизатора к другому в режиме точка-точка. Обычно берутся адреса с маской 30 (возвращаясь к теме бесклассовых сетей), то есть содержащие два адреса узла. Позже станет понятно, о чём идёт речь.

План подключения оборудования по портам

Разумеется, сейчас есть коммутаторы с кучей портов 1Gb Ethernet, есть коммутаторы с 10G, на продвинутых операторских железках, стоящих немалые тысячи долларов есть 40Gb, в разработке находится 100Gb (а по слухам уже даже есть такие платы, вышедшие в промышленное производство). Соответственно, вы можете выбирать в реальном мире коммутаторы и маршрутизаторы согласно вашим потребностям, не забывая про бюджет. В частности гигабитный свич сейчас можно купить незадорого (20-30 тысяч) и это с запасом на будущее (если вы не провайдер, конечно). Маршрутизатор с гигабитными портами стоит уже ощутимо дороже, чем со 100Mbps портами, однако оно того стоит, потому что FE-модели (100Mbps FastEthernet), устарели и их пропускная способность очень невысока.
Но в программах эмуляторах/симуляторах, которые мы будем использовать, к сожалению, есть только простенькие модели оборудования, поэтому при моделировании сети будем отталкиваться от того, что имеем: маршрутизатор cisco2811, коммутаторы cisco2960 и 2950.

Имя устройства
Порт
Название
VLAN
Access
Trunk
msk-arbat-gw1 FE0/1 UpLink
FE0/0 msk-arbat-dsw1 2,3,101,102,103,104
msk-arbat-dsw1 FE0/24 msk-arbat-gw1 2,3,101,102,103,104
GE1/1 msk-arbat-asw1 2,3
GE1/2 msk-arbat-asw3 2,101,102,103,104
FE0/1 msk-rubl-asw1 2,101,104
msk-arbat-asw1 GE1/1 msk-arbat-dsw1 2,3
GE1/2 msk-arbat-asw2 2,3
FE0/1 Web-server 3
FE0/2 File-server 3
msk-arbat-asw2 GE1/1 msk-arbat-asw1 2,3
FE0/1 Mail-Server 3
msk-arbat-asw3 GE1/1 msk-arbat-dsw1 2,101,102,103,104
FE0/1-FE0/5 PTO 101
FE0/6-FE0/10 FEO 102
FE0/11-FE0/15 Accounting 103
FE0/16-FE0/24 Other 104
msk-rubl-asw1 FE0/24 msk-arbat-dsw1 2,101,104
FE0/1-FE0/15 PTO 101
FE0/20 administrator 104

Почему именно так распределены VLAN"ы, мы объясним в следующих частях.

Схемы сети

На основании этих данных можно составить все три схемы сети на этом этапе. Для этого можно воспользоваться Microsoft Visio, каким-либо бесплатным приложением, но с привязкой к своему формату, или редакторами графики (можно и от руки, но это будет сложно держать в актуальном состоянии:)).

Не пропаганды опен сорса для, а разнообразия средств ради, воспользуемся Dia. Я считаю его одним из лучших приложений для работы со схемами под Linux. Есть версия для Виндоус, но, к сожалению, совместимости в визио никакой.

То есть на схеме L1 мы отражаем физические устройства сети с номерами портов: что куда подключено.

L2
На схеме L2 мы указываем наши VLAN’ы

L3

В нашем примере схема третьего уровня получилась довольно бесполезная и не очень наглядная, из-за наличия только одного маршрутизирующего устройства. Но со временем она обрастёт подробностями.

Dia-файлы со схемами сети.

При построении сетевых графиков необходимо придерживаться следующих правил.

  • 1. Номер каждого последующего события должен быть больше номера любого предыдущего события. Выполнение этого правила позволяет обеспечить соблюдение логической последовательности выполнения работ.
  • 2. Не должно быть событий, из которых не выходит ни одной работы (исключение - последнее событие), если данное правило не выполняется, то сетевой график построен неправильно или запланирована лишняя работа (см. рис. 10.7).

Рис. 10.7. Пример неправильного построения сетевого графика с лишней работой В

3. Не должно быть событий, в которые не входит ни одна работа (исключение - начальное событие). Если данное правило не выполняется, то это означает, что допущена ошибка при составлении сетевого графика или не запланирована работа, результат которого (например, событие 5 на рис. 10.8) необходим для начала работы Е.

Рис. 10.8.

А. В сетевом графике не должно быть замкнутых контуров, так как это приводит к ситуации, когда результатом выполнения последовательности работ (Б-В-Г-Д) является событие 2, с которого началась эта последовательность (рис. 10.9).

Рис. 10.9.

5. Любые два события должны быть соединены не более чем одной работой. Подобные ошибки возникают чаще всего при изображении параллельно выполняемых работ (рис. 10.10, а). Для правильного изображения этих работ необходимо ввести дополнительные фиктивные события 2" и 2" и фиктивные работы 2"-2 и 2"-2 (рис. 10.10, б).

Рис. 10.10.

6. Если какие-либо промежуточные работы сетевого графика могут быть начаты до полного окончания предшествующей работы, то последнюю следует разбить па несколько выполняемых последовательно работ, каждая из которых достаточна для начала любой из указанных ранее. Пример неправильного и правильного построения такого сетевого графика представлен на рис. 10.11.

Рис. 10.11.

Если для продолжения работы на каких-либо этапах необходимо получить результаты других работ, то следует разделить указанную работу на части, использовав промежуточные события (в данном примере - событие 4 нарис. 10.12).

Рис. 10.12.

Если до полного окончания работы необходимо видеть промежуточный результат, требующийся до начала следующей работы, также следует разделить работу на части, введя промежуточные события (рис. 10.13, б), работа 2-4).

Рис 10.13.

В заключение отметим, что эффективное применение методики сетевого планирования и управления на этой основе проектом может оказаться достаточно сложной задачей. В целом необходимо соблюдать следующие принципы:

  • обеспечивать изображение каждой отдельной задачи, за исключением задач без оговоренного срока исполнения;
  • избегать деталей, которые более уместны в календарных планах (планах ключевых событий) или списках последовательности действий;
  • использовать сетевой план для проверки, обоснования и определения способов устранения отклонений от календарного плана;
  • при необходимости использовать компьютерные программы, учитывая, что не любое программное обеспечение подходит для решения различных задач планирования;
  • проводить соответствующее обучение сотрудников проекта методам сетевого планирования;
  • представлять результаты сетевого планирования высшему руководству организации, в которой выполняется проект.
Выводы

Успешная реализация проекта возможна только на основании плана проекта, который выполняет ряд функций: дает общую, целостную картину проекта и последовательность выполнения работ; позволяет определить для каждого момента времени, в какой степени осуществляется продвижение проекта к завершению и какие препятствия существуют или могут возникнуть на этом пути; представляет общую экономическую модель проекта, в нем указаны основные виды деятельности и графики выполнения работ.

Составление плана или планирование выполняет следующие функции: определяет продолжительность, структуру работ проекта, объем необходимых ресурсов и очередность их использования, последовательность выполнения работ и их финансирования.

В зависимости от принципов, заложенных в основу, выделяются четыре вида планов: объектно-ориентированные, функционально-ориентированные, фазово-ориентированные и смешано-ориентированные.

Совокупность работ, обеспечивающих выполнение целостной части плана называется пакетом работ. Пакет работ содержит информацию об ожидаемых результатах выполнения работ, конкретных заданиях, сроках их исполнения и ответственных, информацию относительно ресурсных затрат на выполнение работ пакета.

Планирование осуществляется с помощью определенных методов, которые называются средствами планирования. Они позволяют осуществлять планирование единообразно, обеспечивать координацию выполнения работ и заданий проекта, повышать эффективность контроля и осуществления операций проекта.

Выделяются следующие методы планирования:

  • 1) составление плана ключевых событий и поэтапного плана (плана последовательности действий);
  • 2) планирование с помощью полосовых диаграмм;
  • 3) сетевое планирование.

Каждый из этих методов имеет свои преимущества и применяется для решения тех или иных задач. Так, в частности, составление списков действий используется для небольших проектов, где легко можно скоординировать выполнение отдельных работ, которые, как правило, следуют одна за другой.

Полосовые диаграммы дают наглядное представление о состоянии выполнения ряда параллельно осуществляемых работ проекта.

Сетевые графики позволяют управлять рядом взаимосвязанных работ проекта и вычислять критический путь.

Добрый день уважаемые читатели блога, сегодня я хочу рассказать про построение локальной сети Cisco простыми словами, так как очень часто мне задают разного рода вопросы связанные с данной темой. И я решил ответить на них в одной статье, уверен для начинающих сетевых инженеров эта информация будет полезна.

Lifecycle сети Cisco

Lifecycle, с английского языка переводится как время работы или жизни вашего решения, оно включает в себя шесть этапов:

  • Подготовка > на данном этапе построения локальной сети происходит, обоснование в виде экономических инвестиций в данный проект
  • Планирование > Оценка готовности к поддержке предлагаемого решения, например есть ли специалисты, кто это сделает или интеграторы
  • Проектирование > На данном этапе идет создание максимально подробного проекта, в котором описываются все хотелки и потребности бизнеса, с техническими требованиями
  • Внедрение > ну тут понятно, что то, что спроектировали нужно реализовывать
  • Работа > каждодневная эксплуатация и обеспечение бесперебойной работы сети
  • Оптимизация > поиск решений или технологий, за счет которых можно произвести улучшение работы локальной сети.

Что такое всемирная компьютерная сеть

После того как мы разобрали цикл жизни и разработки сети, нужно познакомиться с определением, описывающим ее.

Компьютерная сеть (Computer NetWork) – это совокупность компьютеров и других устройств, соединенных линиями связи и обменивающихся информацией между собой в соответствии с определенными правилами – протоколом. Протокол играет очень важную роль, поскольку недостаточно только соединить компьютеры линиями связи.

Ниже представлена общая схема, как посредством интернета все объединяется в одно целое, напомню, что интернет можно описать простым описанием, это сеть сетей, то есть куча локальных сетей объединенных в одну большую сеть. Как видите на рисунке, он позволяет Офисам общаться со своими центральными офисами, мобильным пользователя работать по удаленке или из дома, мир стал мобильным. Думаю вам теперь понятно, что такое всемирная компьютерная сеть.

Физические компоненты сети

Давайте разбираться из каких компонентов происходит построение локальной сети. Какая задача стояла перед инженерами создающими сети, чтобы из оперативной памяти устройства А, бала передана информация в оперативную память устройства В. Далее за счет приложений, работающих по определенным протоколам информация извлекается и предоставляется пользователя. Схема такая:

  • Сетевая карта вставленная в компьютер > Пользователь отправляет информацию в виде сетевых пакетов коммутатору
  • Коммутатор > в свою очередь отправляет ее вышестоящему маршрутизатору
  • Маршрутизатор > может отправить либо еще цепочке маршрутизаторов, или сразу нужному коммутатору если у него есть до него маршрут, и далее пакеты обрабатываются компьютером получателем и отдаются пользователю в виде информации.

Как видите построение локальной сети (ЛВС), очень логичное и простое.

Если посмотреть средне статистическую сеть предприятия, то она выглядит вот так. Есть корневой коммутатор, ядро сети, к нему подключены коммутаторы второго уровня, как это настраивается я описывал в статье Как настроить коммутаторы cisco 3 уровня . Вся сеть может быть сегментирована VLANами, присутствует сервер DHCP Cisco или на Windows, это не важно, далее весь трафик выходящий за рамки локальной сети идет в маршрутизатор, и дальше уже в интернет, благодаря статической маршрутизация Cisco . Примеры настройки маршрутизатора Cisco я уже приводил.

Как влияют пользовательские приложения на сеть

Давайте рассмотрим какие виды трафика присутствуют в сети и как они на нее влияют.

  • Пакетные приложения > примерами могут служить протоколы ftp или tftp, общение идет между компьютерами и нет непосредственного вмешательства человека. Тут полоса пропускания конечно важна, но не играет ключевой роли.

  • Интерактивные приложения > это следующий вид трафика > Тут уже есть интерактив между пользователем и компьютеров. Простой пример это браузер или запрос к базам данных. Так как пользователь ожидает ответа, время реакции системы для него важно, но не играет самой важной роли, если оно конечно не очень долгое. Простой пример пришел человек на работу, а по пути ему нахамили и наступили на ногу, да и еще он промок:), теперь любая искра разожжет в нем пожар, если у него браузер будет по его мнению медленно отдавать странички или письмо пришло не через минуту, а через две он будет гундосить, что все плохо работает, а вот если он с утра выспался, поел, да и еще наши в футбол выиграли у Англичан, то любая задержка, не будет у него вызывать приступов ярости, он на время ожидания поболтает о вчерашнем футболе.

  • Приложения в реальном времени > продолжаем рассматривать чем забиты каналы связи и тут уже общение человека с человеком. Примером могут быть VOIP и Видео трафик, звук более приоритетный перед видео. Очень критичное по времени запаздывания, еще примером могут служить мессенджеры, по типу ICQ, где трафик минимальный, но человек должен получить его мгновенно.

  • Трафик P2P > это одноранговые сети (Peer-to-Peer), простым примером могут служить торренты 🙂 для операторов связи это мусор, которым забиты каналы, но они еще не истреблены по одной простой причине, что мощности каналов связи позволяют им обрабатывать текущие потребности потребителей и бизнеса. Кстати Skype, так же работает по протоколу p2p.

Характеристики локальных сетей

При построении локальной сети Cisco, да и не только ее, нужно учитывать ряд требований:

  • Скорость
  • Стоимость
  • Безопасность
  • Доступность
  • Масштабируемость
  • Топологию

Модели построения сетей

Выше мы выяснили основные характеристики, теперь давайте разбираться в какие модели построения сетей существуют. Первая топология, которую придумали, называется

  • Топология шины > при данной модели построения сети, получается одна общая шина передачи данных, и все ее участники (устройства) принимают сигнал, ничего не напоминает 🙂 я вам рассказывал про хаб . Очень не безопасная топология, так как можно было легко получать данные не предназначенные для вас, плюс разрыв общей шины приводил к полной не работоспособности локальной сети. Стали думать, какие еще можно было сделать решения и придумали.

  • Топология кольца > передают сигналы по кругу. Из плюсов меньше затраты на кабели, особенно если это оптика. Присутствует единая точка отказа.

Как следствие в борьбе за отказоустойчивость делили вот такую конструкцию, FDDI двойная кольцевая топология. Тут сигналы передаются в противоположных направлениях. Используется операторами связи.

  • Топология звезда > Все данные передаются через центральный узел, это критическая точка отказа, но в современных условиях ее все стараются дублировать, за счет кластеризации. И при обрыве например одной из линий передачи все остальные продолжали работать, это было достижением по сравнению с другими моделями построения сетей.

Вот дальнейшее развитие и более устойчивое чем звездообразная топология, но как следствие и более дорогая. Даже если откажет ядро, свои сегменты локальной сети будут работать, и ждать когда поднимется ядро.

Когда вы будите производить построение корпоративной сети, вы должны хорошо все продумать и знать все слабые точки, чтобы по возможности от них избавиться или задублировать их.

Еще может быть вариант, каждый с каждым, полная отказоустойчивость, но дорогой не реально. Примером может служить узлы телефонной связи (не сотовой), называется это полносвязная ячеистая топология.

Продолжаем разбираться в построении локальной сети и рассмотрим какие провода используются для данной задачи.

Сетевые провода и розетки

Витая пара

Когда вы производите построение локальной сети, вам необходимо выбрать какие провода для этого будут использоваться. В современных офисах в большинстве случаев для локалки используется технология Ethernet, где сигнал передается по так называемой витой паре (TP- Twisted Pair) состоящему из четырех медных свитых друг с другом (для уменьшения помех) пар проводов. Каждый администратор, должен знать последовательность, обжимания данного провода, чтобы сделать из него патч корд.

Когда идет построение компьютерной сети, то чаще всего используют неэкранированный кабель категории CAT5, а чаще его усовершенствованная версия CAT5e. Кабели подобной категории позволяют передавать сигнал со скоростью 100 Мбит/c при использовании только двух пар (половины) проводов, и 1000 Мбит/с при использовании всех четырех пар.

Для подключения к устройствам (маршрутизаторам, коммутаторам, сетевым картам) на концах витой пары используются 8-контактные модульные коннекторы, повсеместно называемые RJ-45 (хотя их правильное название - 8P8C).

Помните, что обычная витая пара не предназначена для проводки на улице. Перепады температур, воздействие влаги и других природных факторов могут привести к постепенному разрушению изоляции и снижению её функциональных качеств, что, в конечном счете, приведет к выходу сегмента сети из строя. В среднем сетевой кабель выдерживает на открытом воздухе от 3 до 8 лет, причем скорость сети начнет падать задолго до полного выхода кабеля из строя. Для использования на открытом воздухе нужно использовать специальную витую пару для открытой проводки.

Построение локальной сети, подразумевает использование кабелей для объединения компьютеров в сеть, конечно можно подключать их напрямую от коммутаторов или маршрутизаторов к разъемам на сетевых картах ПК, но существует и другой вариант – использование сетевых розеток. В этом случае, один конец кабеля соединяется с портом коммутатора, а если по правильному то с патч панелью а из нее уже в коммутатор, а другой с внутренними контактами розетки, во внешний разъем которой впоследствии можно уже подключать компьютерные или сетевые устройства.

Для чего вы можете сказать использовать патч панель в нашей локальной сети, проще же воткнуть на прямую в коммутатор, приведу плюсы.

На картинке сверху представлен вид патч панели спереди и сзади. Как видите каждый порт пронумерован и сверху можно подписать номер розетки с которой он соединен, что позволяет рисовать карту сети, и поиск нужно розетки займет у вас пару мгновений, в отличии от того если бы розетка вела бы на прямую в коммутатор, элементарно слетела бумажка с подписью и ищи потом щупом данный провод.

Второе преимущество, что патч панель зафиксирована и все кабели заходящие в нее сзади крепятся стяжками, что подразумевает, что вы не будите трогать связку розетка и патч панель, а если бы у нас был провод на прямую в коммутатор, то была бы возможность нарушить связь с розеткой за счет случайного дерганья провода например.

Сетевые розетки могут быть как встраиваемыми в стену, так и монтируемыми снаружи, например в короба. Применение розеток вместо торчащих концов кабелей придаст более эстетичный вид вашему рабочему месту. Так же розетки удобно использовать в качестве опорных точек различных сегментов сети. Например, можно установить коммутатор или маршрутизатор в коридоре, а затем от него капитально развести кабели к розеткам, размещенным во всех необходимых помещениях. Таким образом, вы получите несколько точек, расположенных в разных частях квартиры, к которым можно будет в любой момент подключать не только компьютеры, но и любые сетевые устройства, например, дополнительные коммутаторы для расширения вашей домашней или офисной сети.

Еще одной мелочью, которая вам может понадобиться при построении кабельной сети является удлинитель, который можно использовать для соединения двух витых пар с уже обжатыми разъемами RJ-45. Например у вас есть пара проводов 3 метра а нужен для подключения рабочего места 5, можно из двух сделать один за счет этой маленькой коробочки.

Так же для подключения к одному кабелю сразу двух компьютеров без использования коммутатора можно использовать сетевой разветвитель. Но опять же стоит помнить, что в этом случае максимальная скорость обмена данными будет ограничена 100 Мбит/c.

Как видите при построении локальной сети очень много различных компонентов и нюансов, и знание всех его составляющих, залог успеха и отсутствие проблем у системного администратора.

Это один из первых проводников, использовавшихся для создания сетей. Содержит в себе центральный проводник, слой изолятора в медной или алюминиевой оплетке и внешнюю ПВХ изоляцию. Максимальная скорость передачи данных - 10 Мбит. Кабель достаточно сильно подвержен электромагнитным наводкам. В случае повреждения ремонтируется с трудом (требуется пайка и тщательная изоляция), но даже после этого восстановленный участок работает медленно и нестабильно: появляются искажения электромагнитных волн, распространяющихся в коаксиальном кабеле, что приводит к потерям информации.


В настоящее время коаксиальный кабель в основном используется в качестве проводника сигнала спутниковых тарелок и прочих антенн. В локальных сетях применяется кабель с волновым сопротивлением 50 Ом, а для передачи TV сигнала - 75 Ом, они не совместимы между собой. В современных компьютерных сетях использование коаксиального кабеля, как правило, не оправданно, и в этой статье рассматриваться не будет.

У меня например в Москве провайдер по коаксиальному кабелю дает мне интернет и телевидение, которое заводит в свой роутер а от туда, я уже получаю интернет по rj-45 в компьютер.

Продолжение следует

Сетевые графики и правила их построения

Сетевой график – это графическое изображение процессов, выполнение которых необходимо для достижения поставленной цели.

Методы сетевого планирования и управления (СПУ) базируются на теории графов. Графом называется совокупность двух конечных множеств: множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. В экономике обычно используются два вида графов: дерево и сеть. Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины. Сеть - это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, каждый сетевой график представляет собой сеть, состоящую из узлов(вершин) и соединяющих их ориентированных дуг (ребер). Узлы графика называются событиями, а соединяющие их ориентированные дуги - работами. На сетевом графике события изображаются кружками или иными геометрическими фигурами, а соединяющие их работы безразмерными стрелками (безразмерными они называются потому, что длина стрелки не зависит от объема работы, которую она отражает).

Каждому событию сетевого графика приписывают определенный номер (i ), а работу, соединяющие события, обозначают индексом (ij ). Каждая работа характеризуется своей продолжительностью (длительностью) t(ij) . Значение t(ij) в часах или днях проставляют в виде числа над соответствующей стрелкой сетевого графика.

В практике сетевого планирования используют несколько типов работ:

1) реальная работа, производственный процесс, который требует затрат труда, времени, материалов;

2) пассивная работа (ожидание), естественный процесс, который не требует затрат труда и материальных ресурсов, но осуществление которого может происходить лишь в течение определенного периода времени;

3) фиктивная работа (зависимость), которая не требует никаких затрат, но показывает, что какое-то событие не может свершиться ранее другого. При построении графика такие работы обычно обозначают пунктирной линией.

Каждая работа самостоятельно или в сочетании с другими работами заканчивается событиями, которые выражают результаты выполненных работ. В сетевых графиках выделяют следующие события: 1) исходное, 2) промежуточные, 3) завершающее (окончательное). Если событие имеет промежуточный характер, то оно является предпосылкой для начала следующих за ним работ. Считается, что событие не имеет продолжительности и осуществляется мгновенно после выполнения предшествующих ему работ. Исходному событию не предшествуют никакие работы. Оно выражает собой момент наступления условий для начала выполнения всего комплекса работ. Завершающее событие не имеет никаких последующих работ и выражает собой момент окончания всего комплекса работ и достижения намеченной цели.

Взаимосвязанные работы и события сетевого графика образуют пути, которые соединяют исходные и завершающие события, их называют полными. Полный путь на сетевом графике представляет собой последовательность работ по направлению стрелок от исходного до завершающего события. Полный путь максимальной продолжительности называется критическим. Продолжительность критического пути определяет конечный срок выполнения всего комплекса работ и достижения намеченной цели.

Работы, расположенные на критическом пути, называют критическими или напряженными. Все остальные работы считаются некритическими (ненапряженными) и обладают резервами времени, которые позволяют передвигать сроки их выполнения и сроки свершения событий, не влияя на общую продолжительность выполнения всего комплекса работ.

Правилапостроения сетевого графика.

1. Сеть вычерчивается слева направо, и каждое событие с большим порядковым номером изображается правее предыдущего. Общее направление стрелок, изображающих работы, также в основном должно быть расположено слева направо, при этом каждая работа должна выходить из события с меньшим номером и входить в событие с большим номером.


Неверно Правильно

3. В сети не должно быть «тупиков», то есть все события, кроме завершающего, должны иметь последующую работу (тупиками называются промежуточные события, из которых не выходит ни одна работа). Такая ситуация может иметь место, когда данная работа не нужна или какая-либо работа пропущена.


4. В сети не должно быть событий, кроме исходного, которым не предшествует хотя бы одна работа. Такие события называются «хвостовыми». Это может иметь место в случае пропуска предшествующей работы.


Для правильной нумерации событий сетевого графика используют следующую схему действий. Нумерацию начинают из исходного события, которому присваивают номер 0 или 1. Из начального события (1) вычеркивают все исходящие из него работы (ориентированные дуги), и на оставшейся сети вновь находят событие, в которое не входит ни одна работа. Этому событию присваивают номер (2). Указанная последовательность действий повторяется до тех пор, пока не буду пронумерованы все события сетевого графика. Если при очередном вычеркивании одновременно возникают два события, не имеющие входящих работ, то номера им присваиваются произвольно. Номер завершающего события должен быть равен количеству событий в сетевом графике.

Пример .


В процессе построения сетевого графика важное значение имеет определение продолжительности выполнения каждой работы, то есть необходимо дать ей временную оценку. Продолжительность выполнения работ устанавливают либо в соответствии с действующими нормативами, либо на основе экспертных оценок. В первом случае оценки продолжительности называют детерминированными, во втором - стохастическими.

Существуют различные варианты расчета стохастических временных оценок. Рассмотрим некоторые из них. В первом случае устанавливают три вида продолжительности выполнения конкретной работы:



1) максимальный срок, который исходит из наиболее неблагоприятных условий выполнения работы (t max );

2) минимальный срок, который исходит из наиболее благоприятных условий выполнения работы (t min );

3) наиболее вероятный срок, исходящий из реальной обеспеченности работы ресурсами и наличия нормальных условий ее выполнения (t в ).

На основе этих оценок рассчитывается ожидаемое время выполнения работы (ее временная оценка) по формуле

. (5.1)

Во втором случае задаются две оценки - минимальная (t min ) и максимальная (t max ). Продолжительность работы в этом случае рассматривается как случайная величина, которая в результате реализации может принять любое значение в заданном интервале. Ожидаемое значение данных оценок (t ож ) (при бета-распределении плотности вероятности) оценивается по формуле

. (5.2)

Для характеристики степени разброса возможных значений вокруг ожидаемого уровня используется показатель дисперсии (S 2 )

. (5.3)

Построение любого сетевого графика начинается с составления полного перечня работ. Затем устанавливается очередность работ, и для каждой конкретной работы определяются непосредственно предшествующие и последующие работы. Для установления границ каждого вида работ используются вопросы: 1) что должно предшествовать данной работе и 2) что должно следовать за данной работой. После составления полного перечня работ, установления их очередности и временных оценок, приступают непосредственно к разработке и составлению сетевого графика.

Пример .

Рассмотрим в качестве примера программу строительства здания склада. Перечень операций, их последовательность и временную продолжительность оформим таблицей.

Таблица 5.1

Перечень работ сетевого графика

Операция Описание операции Непосредственно предшествующая операция Продолжитель-ность, дн.
А Расчистка строительной площадки -
Б Выемка котлована под фундамент А
В Уклада фундаментных блоков Б
Г Прокладка наружных инженерных сетей Б
Д Сооружение каркаса здания В
Е Кровельные работы Д
Ж Внутренние сантехнические работы Г, Е
З Настилка полов Ж
И Установка дверных и оконных рам Д
К Теплоизоляция перекрытий Е
Л Прокладка электропроводной сети З
М Штукатурка стен и потолков И, К, Л
Н Внутренняя отделка М
О Наружная отделка Е
П Благоустройство территории Н, О

Построенный на основании данных табл. 5.1 предварительный сетевой график выполнения работ выглядит следующим образом (рис. 5.1).



Рис. 5.1. Предварительный сетевой график

Ниже приведен тот же самый график строительства складского здания, пронумерованный и с проставленными временными оценками работ (рис. 5.2).


Рис. 5.2. Окончательный вариант сетевого графика