Колебательный контур: принцип работы, виды контуров, параметры и характеристики. Последовательный и параллельный колебательный контур

Колебательный контур представляет собой простую электрическую цепь, состоящую из катушки индуктивности и емкости конденсатор. В такой схеме могут возникать колебания тока или напряжения. Резонансная частота таких колебаний определяется по формуле Томсона.

Эта разновидность LC колебательного контура (КК) простейший пример резонансной колебательной цепи. Состоит из последовательно соединенных катушки индуктивности и емкости. При протекание через такую схему переменного тока, величина его определяется по : I = U / Х Σ , где Х Σ - сумма реактивных сопротивлений катушки индуктивности и емкости.

Напомню зависимости реактивного сопротивления емкости и индуктивности от частоты напряжения их формулы выглядят вот так:

Из формул хорошо видно, что с ростом частоты, реактивное сопротивление индуктивности увеличивается. В отличии от катушки, у конденсатора при увеличении частоты, реактивное сопротивление снижается. На рисунке ниже приведены графические зависимости реактивных сопротивлений катушки индуктивности X L и емкости Х C от циклической частоты омега ω , и график зависимости ω от их алгебраической суммы Х Σ . График показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура состоящего из конденсатора и индуктивности.

Из графика хорошо видно, что на определенной частоте ω=ω р , реактивные сопротивления индуктивности и емкости совпадают по значению, но противоположны по знаку, а общее сопротивление цепи равно нулю. На этой частоте в контуре будет протекать максимально возможный ток, ограниченный только омическими потерями в индуктивности (т.е. активным сопротивлением катушки) и внутренним активным сопротивлением источника тока. Эту частоту, при которой происходит это явление называют частотой резонанса. Кроме того из графика можно сделать следующий вывод: на частотах, ниже резонансной частоты реактивное сопротивление последовательного КК имеет емкостной фактор, а на более высоких частотах носит индуктивный характер. Резонансная частоты, может быть найдена при помощи формулы Томсона, которая легко выводится из формул реактивных сопротивлений обоих компонентов КК, приравняв их реактивные сопротивления:

На рисунке ниже, отобразим эквивалентную схему последовательного резонансного контура с учетом активных омических потерь R , при идеальном источнике тока гармонического напряжения с определенной амплитудой U . Полное сопротивление, или его еще называют импедансом схемы вычисляется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На частоте резонанса, когда обои реактивные сопротивления X L = ωL и Х С = 1/ωС равны по модулю, X Σ стремится к нулю и носит только активный характер, а ток в схеме вычисляется отношением амплитуды напряжения источника тока к сопротивлению потерь по закону Ома: I= U/R . При этом на катушке и емкости, в которых имеется запас реактивных составляющих энергии, падает одинаковое значение напряжения, т.е U L = U С = IX L = IX С .

На любой частоте, кроме резонансной, напряжения на индуктивности и емкости отличаются - они зависят от амплитуды тока в схеме и номиналами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений .

Очень важными характеристиками КК также являются его волновое сопротивление ρ и добротность КК Q . Волновым сопротивлением ρ считают величину реактивного сопротивления обоих компонентов (L,C) на резонансной частоте: ρ = Х L = Х C при ω =ω р . Волновое сопротивление можно рассчитать по следующей формуле: ρ = √(L/C) . Волновое сопротивление ρ считается количественной мерой оценки энергии, сохраненными реактивными компонентами контура - W L = (LI 2)/2 и W C =(CU 2)/2 . Отношение энергии, сохраненными реактивными элементами КК, к энергии резистивных потерь за период называют добротностью Q КК. Добротность колебательного контура - величина, определяющая амплитуду и ширину амплитудно частотной характеристики резонанса и говорящая о том, во сколько раз сохраненной энергии в КК больше, чем потери энергии за единичный период колебаний. Добротность кроме того учитывает и активного сопротивление R . Для последовательного КК в RLC цепях, в котором все три пассивных компонента соединены последовательно, добротность вычисляется по выражению:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи КК.

Величину, обратную добротности d = 1 / Q физики назвали затуханием КК. Для определения добротности обычно применяют выражение Q = ρ / R , где R -сопротивление омических потерь КК, характеризующее мощность активных потерь КК Р = I 2 R . Добротность большинства колебательных контуров варьируется от нескольких единиц до сотни и выше. Добротность таких колебательных систем, как пьезоэлектрические или может быть нескольких тысяч и даже больше.

Частотные свойства КК обычно оценивают с помощью АЧХ, при этом сами схемы рассматривают как четырёхполюсники. На рисунках ниже отображены элементарные четырехполюсники, содержащие последовательный КК и АЧХ этих цепей. По оси Х графиков отложен коэффициент передачи схемы по напряжению К, или отношение выходного напряжения к входному.

Для пассивных схем (не имеющих усилительных элементов и источников энергии), величина К никогда не выше единицы. Сопротивление переменному току, будет минимально при резонансной частоте. Тогда коэффициент передачи стремится к единице. На частотах, отличных от резонансной, сопротивление КК переменному току велико и коэффициент передачи будет близок к нулевым значениям.

При резонансе источник входного сигнала практически замкнут накоротко низким сопротивлением КК, поэтому коэффициент передачи падает почти до нуля. Наоборот, при частотах входного воздействия, отстоящих от резонансной, коэффициент стремится к единице. Свойство КК изменять коэффициент передачи на частотах, около резонансных, широко применяется в радиолюбительской практике, когда необходимо выделить сигнал с требуемой частотой из множества подобных, но на других частотах. Так, в любом радиоприемнике при помощи КК выполняется настройка на частоту требуемой радиостанции. Свойство выделять из множества частот только одну называют селективностью. При этом интенсивность изменения коэффициента передачи при настройке частоты воздействия от резонанса описывают полосой пропускания. За нее берется диапазон частот, в диапазонах которого уменьшение (увеличение) коэффициента передачи относительно его значения на резонансной частоте, не выше 0,7 (дБ).

Пунктирными линиями на рисунках обозначены АЧХ подобных цепей, КК которых имеют такие же резонансы, но обладающие меньшей добротностью. Как видим из графиков, при этом увеличивается полоса пропускания и уменьшается ее селективность.

В данной цепи параллельно соединены два реактивных элемента с разным уровнем реактивности. На рисунке ниже рассмотрены графические зависимости реактивных проводимостей индуктивности B L = 1/ωL и емкости конденсатора В C = -ωC , а также общей проводимости В Σ . И в этом колебательном контуре, имеется резонансная частота на которой реактивные сопротивления обоих компонентов одинаковы. Это говорит о том, что на этой частоте параллельный КК обладает огромным сопротивлением переменному току.


Сопротивление реального параллельного КК (с потерями), разумеется, не стремится к бесконечности - оно тем ниже, чем выше омическое сопротивление потерь в контуре, т.е снижается прямо пропорционально уменьшению добротности.

Рассмотрим простейшую цепь, состоящую из источника гармонических колебаний и параллельного КК. Если, собственная частота колебаний генератора (источника напряжения) совпадает с резонансной частотой контура, то индуктивная и емкостная ветви оказывают одинаковое сопротивление переменному току, и токи в ветвях будут совершенно одинаковыми. Поэтому уверенно скажем, что в этой схеме имеет место резонанс токов . Реактивности обоих компонентов вполне успешно компенсируют друг друга, и сопротивление КК протекающему току становится полностью активным (имеет только резистивную составляющую). Величина этого сопротивления, вычисляется произведением добротности КК на характеристическое сопротивление R экв = Q·ρ . На других частотах сопротивление параллельного КК падает и приобретает реактивный характер на более низких индуктивный, а на более высоких - емкостной.

Рассмотрим, зависимость коэффициентов передачи четырехполюсников от частоты в данном случае.


Четырехполюсник, на частоте резонанса представляет собой достаточно большое сопротивление протекающему переменному току, поэтому при ω=ω р его коэффициент передачи стремится к нулю (и это даже с учетом реальных омических потерь). На прочих частотах, отличных от резонансной, сопротивление КК будет падать, а коэффициент передачи четырехполюсника - увеличиваться. Для четырехполюсника второго варианта, ситуация будет диаметрально противоположной - на резонансной частоте КК будет оказывать очень большое сопротивление, т.е коэффициент передачи будет максимален и стремится к единице). При существенном отличии частоты от резонансной, источник сигнала, окажется практически зашунтированным, а коэффициент передачи будет стремится к нулю.

Предположим нам нужно изготовить параллельный КК, с частотой резонанса 1 МГц. Осуществим предварительный упрощенный расчет такого КК. То есть, вычислим необходимые значения емкости и индуктивности. Воспользуемся упрощенной формулой:

L=(159,1/F) 2 / C где:

L индуктивность катушки в мкГн; С емкость конденсатора в пФ; F резонансная частота в МГц

Зададимся частотой в 1 МГц и емкостью 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом если в нашей радиолюбительской самоделки используется КК на частоту 1 МГц, то нам необходимо взять емкость на 1000 пФ и индуктивность на 25 мкГн. Конденсатор достаточно легко подобрать, а вот индуктивность ИМХО проще изготовить самостоятельно.

Для этого рассчитаем число витков для катушки без сердечника

N=32 *v(L/D) где:

N необходимое число витков; L заданная индуктивность в мкГн; D диаметр каркаса катушки.

Предположим, диаметр каркаса 5 мм, тогда:

N=32*v(25/5) = 72 витка

Данная формула считается приближенной, она совершенно не учитывает собственную межвитковую емкость индуктивности. Формула служит для предварительного расчета параметров катушки, которые затем подстраиваются при регулировке контура в устройстве.

В радиолюбительской практике очень часто применяются катушки с подстроечным сердечником из феррита, обладающие длиной 12-14 мм и диаметром 2,5 - 3 мм. Такие сердечники, активно используются в колебательных контурах приемников.

В прошлой статье мы с вами рассмотрели последовательный колебательный контур , так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы рассмотрим параллельный колебательный контур, в котором катушка и конденсатор соединяются параллельно.

Параллельный колебательный контур на схеме

На схеме идеальный колебательный контур выглядит вот так:

В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:


где

R — это сопротивление потерь контура, Ом

L — собственно сама индуктивность, Генри

С — собственно сама емкость, Фарад

Работа параллельного колебательного контура

Давайте подцепим к генератору частоты реальный параллельный колебательный контур


Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока .

Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

Реактивное сопротивление катушки выражается по формуле

а конденсатора по формуле

Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки X L и конденсатора X C уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

Резонанс параллельного колебательного контура

Очень интересное свойство параллельного колебательного контура заключается в том, что при Х L = Х С у нас колебательный контур войдет в резонанс . При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току . Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

где

R рез — это сопротивление контура на резонансной частоте

L — собственно сама индуктивность катушки

C — собственно сама емкость конденсатора

R — сопротивление потерь катушки

Формула резонанса

Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

где

F — это резонансная частота контура, Герцы

L — индуктивность катушки, Генри

С — емкость конденсатора, Фарады

Как найти резонанс на практике

Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.


Итак, реальная схема этого контура будет вот такая:

Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:


На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура R кон.

Упрощенная схема будет выглядеть вот так:

Интересно, на что похожа эта схема? Не на делитель ли напряжения ? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление R кон будет максимальным, вследствие чего у нас на этом сопротивлении «упадет» бОльшее напряжение.

Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

200 Герц.


Как вы видите, на колебательном контуре «падает» малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление R кон

Добавляем частоту. 11,4 Килогерца


Как вы видите, напряжение на контуре поднялось. Это значит, что сопротивление колебательного контура увеличилось.

Добавляем еще частоту. 50 Килогерц


Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

723 Килогерца


Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.


Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:


Снова добавляем частоту и видим, что напряжение стало еще меньше:


Разбираем частоту резонанса

Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

Что здесь у нас произошло?

Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое высокое сопротивление R кон. На этой частоте Х L = Х С. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

Резонанс токов

Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

Чему будет равняться резонансный ток I рез ? Считаем по закону Ома:

I рез = U ген /R рез, где R рез = L/CR.

Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток I кон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

Добротность

Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз. Q — это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила тока в контуре I кон больше сила тока в общей цепи I рез

Или формулой:

Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

где

Q — добротность

R — сопротивление потерь на катушке, Ом

С — емкость, Ф

L — индуктивность, Гн

Заключение

Ну и в заключении хочу добавить, что параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные , которые бы выделяли нужную нам частоту, а другие частоты пропускали бы через себя, что в принципе мы и делали в нашем опыте.

Колебательный контур

электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания. Если в некоторый момент времени зарядить конденсатор до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна Е с = , где С - ёмкость конденсатора. При разрядке конденсатора в катушке потечёт ток I , который будет возрастать до тех пор, пока конденсатор полностью не разрядится. В этот момент электрическая энергия К. к. E c = 0, а магнитная, сосредоточенная в катушке, E L =L - индуктивность катушки, I 0 - максимальное значение тока. Затем ток в катушке начинает падать, а напряжение на конденсаторе возрастать по абсолютной величине, но с противоположным знаком. Спустя некоторое время ток через индуктивность прекратится, а конденсатор зарядится до напряжения - V 0 . Энергия К. к. вновь сосредоточится в заряженном конденсаторе. Далее процесс повторяется, но с противоположным направлением тока. Напряжение на обкладках конденсатора меняется по закону V = V 0 cos ω 0 t, а ток в катушке индуктивности I = I 0 sin ω 0 t , т. е. в К. к. возбуждаются собственные гармонические колебания напряжения и тока с частотой ω 0 = 2 π/T 0 , где T 0 - период собственных колебаний, равный T 0 = 2π

В реальных К. к., однако, часть энергии теряется. Она тратится на нагрев проводов катушки, обладающих активным сопротивлением, на излучение электромагнитных волн в окружающее пространство и потери в диэлектриках (см. Диэлектрические потери), что приводит к затуханию колебаний. Амплитуда колебаний постепенно уменьшается, так что напряжение на обкладках конденсатора меняется уже по закону: V=V 0 e -δt cosωt, где коэффициент δ = R/2L - показатель (коэффициент) затухания, а ω = - частота затухающих колебаний. Т. о., потери приводят к изменению не только амплитуды колебаний, но и их периода Т = 2 π/ω. Качество К. к. обычно характеризуют его добротностью Q определяет число колебаний, которое совершит К. к. после однократной зарядки его конденсатора, прежде чем амплитуда колебаний уменьшится в е раз (е - основание натуральных логарифмов).

Если включить в К. к. генератор с переменной эдс: U = U 0 cosΩt (), то в К. к. возникнет сложное колебание, являющееся суммой его собственных колебаний с частотой ω 0 и вынужденных с частотой Ω. Через некоторое время после включения генератора собственные колебания в контуре затухнут и останутся только вынужденные. Амплитуда этих стационарных вынужденных колебаний определяется соотношением

Т. е. зависит не только от амплитуды внешней эдс U 0 , но и от её частоты Ω. Зависимость амплитуды колебаний в К. к.

от частоты внешней эдс называется резонансной характеристикой контура. Резкое увеличение амплитуды имеет место при значениях Ω, близких к собственной частоте ω 0 К. к. При Ω = ω 0 амплитуда колебаний V makc в Q раз превышает амплитуду внешней эдс U. Т. к. обычно 10 Q 100, то К. к. позволяет выделить из множества колебаний те, частоты которых близки к ω 0 . Именно это свойство (избирательность) К. к. используется на практике. Область (полоса) частот ΔΩ вблизи ω 0 , в пределах которой амплитуда колебаний в К. к. меняется мало, зависит от его добротности Q. Численно Q равно отношению частоты ω 0 собственных колебаний к ширине полосы частот ΔΩ.

Для повышения избирательности К. к. необходимо увеличивать Q. Однако рост добротности сопровождается увеличением времени установления колебаний в К. к. Изменения амплитуды колебаний в контуре с высокой добротностью не успевают следовать за быстрыми изменениями амплитуды внешней эдс. Требование высокой избирательности К. к. противоречит требованию передачи быстро изменяющихся сигналов. Поэтому, например, в усилителях телевизионных сигналов искусственно снижают добротность К. к. Часто используются схемы с двумя или несколькими связанными между собой К. к. Такие системы при правильно подобранных связях обладают почти прямоугольной резонансной кривой (пунктир).

Кроме описанных линейных К. к. с постоянными L и С, применяются нелинейные К. к., параметры которых L или С зависят от амплитуды колебаний. Например, если в катушку индуктивности К. к. вставлен железный сердечник, то намагниченность железа, а с ним и индуктивность L катушки меняется с изменением тока, текущего через неё. Период колебания в таком К. к. зависит от амплитуды, поэтому резонансная кривая приобретает наклон, а при больших амплитудах становится неоднозначной (). В последнем случае имеют место скачки амплитуды при плавном изменении частоты Ω внешней эдс. Нелинейные эффекты проявляются тем сильнее, чем меньше потери в К. к. В К. к. с низкой добротностью нелинейность вообще не сказывается на характере резонансной кривой.

Лит.: Стрелков С. П.. Введение в теорию колебаний, М. - Л., 1951.

В. Н. Парыгин.

Рис. 2. Колебательный контур с источником переменной эдс U =U 0 cos Ωt.

Рис. 3. Резонансная кривая колебательного контура: ω 0 - частота собственных колебаний; Ω - частота вынужденных колебаний; ΔΩ - полоса частот вблизи ω 0 , на границах которой амплитуда колебаний V = 0,7 V makc . Пунктир - резонансная кривая двух связанных контуров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Колебательный контур называется идеальным, если он состоит из катушки и емкости и в нем нет сопротивления потерь.

Рассмотрим физические процессы в следующей цепи:

1 Ключ стоит в положении 1. Конденсатор начинает заряжаться, от источника напряжения и в нем накапливается энергия электрического поля,

т.е.конденсатор становится источником электрической энергии.

2. Ключ в положении 2. Конденсатор начнет разряжаться. Электрическая энергия, запасенная в конденсаторе переходит в энергию магнитного поля катушки.

Ток в цепи достигает максимального значения(точка 1). Напряжение на обкладках конденсатора уменьшается до нуля.

В период от точки 1 до точки 2 ток в контуре уменьшается до нуля, но как только он начинает уменьшатся, то уменьшается магнитное поле катушки и в катушке индуцируется ЭДС самоиндукции, который противодействует уменьшению тока, поэтому он уменьшается до нуля не скачкообразно, а плавно. Так как возникает ЭДС самоиндукции, то катушка становится источником энергии. От этой ЭДС конденсатор начинает заряжаться, но с обратной полярностью (напряжение конденсатора отрицательное) (в точке 2 конденсатор вновь заряжается).

Вывод: в цепи LC происходит непрерывное колебание энергии между электрическим и магнитным полями, поэтому такая цепь называется колебательным контуром.

Получившиеся колебания называются свободными илисобственными , поскольку они происходят без помощи постороннего источника электрической энергии, внесенной ранее в контур (в электрическое поле конденсатора). Так как емкость и индуктивность идеальны (нет сопротивления потерь) и энергия из цепи не уходит, амплитуда колебаний с течением времени не меняется и колебания будут незатухающими .

Определим угловую частоту свободных колебаний:

Используем равенство энергий электрического и магнитного полей

Где ώ угловая частота свободных колебаний.

[ ώ ]=1/с

f 0= ώ /2π [Гц].

Период свободных колебаний Т0=1/f .

Частоту свободных колебаний называют частотой собственных колебаний контура.

Из выражения: ώ²LC=1 получимώL=1/Cώ , следовательно, при токе в контуре с частотой свободных колебаний индуктивное сопротивление равно емкостному сопротивлению.

Характеристические сопротивления.

Индуктивное или емкостное сопротивление в колебательном контуре при частоте свободных колебаний называется характеристическим сопротивлением.

Характеристическое сопротивление вычисляется по формулам:

5.2 Реальный колебательный контур

Реальный колебательный контур обладает активным сопротивлением, поэтому при воздействии в контуре свободных колебаний энергия предварительно заряженного конденсатора постепенно тратится, преобразуясь в тепловую.

Свободные колебания в контуре являются затухающими, так как в каждый период энергия уменьшается и амплитуда колебаний в каждый период будет уменьшаться.

Рисунок - реальный колебательный контур.

Угловая частота свободных колебаний в реальном колебательном контуре:

Если R=2… , то угловая частота равна нулю, следовательно свободные колебания в контуре не возникнут.

Таким образом колебательным контуром называется электрическая цепь состоящая из индуктивности и емкости и обладающая малым активным сопротивлением, меньшим удвоенного характеристического сопротивления, что обеспечивает обмен энергией между индуктивностью и емкостью.

В реальном колебательном контуре свободные колебания затухают тем быстрее, чем больше активное сопротивление.

Для характеристики интенсивности затухания свободных колебаний используется понятие «затухание контура» - отношение активного сопротивления к характеристическому.

На практике используют величину, обратную затуханию – добротность контура.

Для получения незатухающих колебаний в реальном колебательном контуре необходимо в течение каждого периода колебаний пополнять электрическую энергию на активном сопротивлении контура в такт с частотой собственных колебаний. Это осуществляется с помощью генератора.

Если подключить колебательный контур к генератору переменного тока, частота которого отличается от частоты свободных колебаний контура, то в цепи протекает ток с частотой равной частоте напряжения генератора. Эти колебания называют вынужденным.

Если частота генератора отличается от собственной частоты контура, то такой колебательный контур является ненастроенным относительно частоты внешнего воздействия, если же частоты совпадают, то настроенным.

Задача: Определить индуктивность, угловую частоту контура, характеристическое сопротивление, если емкость колебательного контура 100 пФ, частота свободных колебаний 1,59 МГц.

Решение:

Тестовые задания:

Тема занятия 8: РЕЗОНАНС НАПРЯЖЕНИЙ

Резонанс напряжений – явление возрастания напряжений на реактивных элементах, превышающих напряжение на зажимах цепи при максимальном токе в цепи, которое совпадает по фазе с входным напряжением.

Условия возникновения резонанса:

    Последовательное соединение LиCс генератором переменного тока;

    Частота генератора должна быть равна частоте собственных колебаний контура, при этом характеристические сопротивления равны;

    Сопротивление должно быть меньше, чем 2ρ, так как только в этом случае в цепи возникнут свободные колебания, поддерживаемые внешним источником.

Полное сопротивление цепи:

так как равны характеристические сопротивления. Следовательно, при резонансе цепь носит чисто активный характер, значит, входное напряжение, и ток в момент резонанса совпадают по фазе. Ток принимает максимальное значение.

При максимальном значении тока напряжение на участках L и C будут большими и равными между собой.

Напряжение на зажимах цепи:

Рассмотрим следующие соотношения:

, следовательно

Q добротность контура –при резонансе напряжения показывает, во сколько раз напряжение на реактивных элементах больше входного напряжения генератора, питающего цепь. При резонансе коэффициент передачи последовательного колебательного контура

резонанса.

Пример:

Uc=Ul=QU =100В,

то есть напряжение на зажимах меньше напряжений на емкости и индуктивности. Это явление называется резонансом напряжений

При резонансе, коэффициент передачи равен добротности.

Построим векторную диаграмму напряжения

Напряжение на емкости равно напряжению на индуктивности, следовательно напряжение на сопротивлении равно напряжению на зажимах и совпадает по фазе с током.

Рассмотрим энергетический процесс в колебательном контуре:

В цепи имеется обмен энергии между электрическим полем конденсатора и магнитным полем катушки. К генератору энергия катушки не возвращается. От генератора в цепь поступает такое количество энергии, которое тратится на резисторе. Это необходимо для того, чтобы в контуре наблюдались незатухающие колебания. Мощность в цепи только активная.

Докажем это математически:

, полная мощность цепи, которая равна активной мощности.

Реактивная мощность.

8.1 Резонансная частота. Расстройка.

Lώ=l/ώC , следовательно

, угловая резонансная частота.

Из формулы видно, что резонанс наступает, если частота питающего генератора равна собственным колебаниям контура.

При работе с колебательным контуром необходимо знать, совпадает ли частота генератора и частота собственных колебаний контура. Если частоты совпадают, то контур остается настроенным в резонанс, если не совпадает – то в контуреприсутствует расстройка.

Настроить колебательный контур в резонанс можно тремя способами:

1 Изменять частоту генератора, при значениях емкости и индуктивности const, то есть изменяя частоту генератора мы подстраиваем эту частоту под частоту колебательного контура

2 Изменять индуктивность катушки, при частоте питания и емкости const;

3 Изменять емкость конденсатора, при частоте питания и индуктивности const.

Во втором и третьем способе изменяя частоту собственных колебаний контура, подстраиваем ее под частоту генератора.

При ненастроенном контуре частота генератора и контура не равны, то есть присутствует расстройка.

Расстройка – отклонение частоты от резонансной частоты.

Существует три вида расстройки :

    Абсолютная – разность между данной частотой и резонансной

    Обобщенная – отношение реактивного сопротивления к активному:

    Относительная – отношение абсолютной расстройки к резонансной частоте:

При резонансе все расстройки равны нулю , если частота генератора меньше частоты контура, то расстройка считается отрицательной,

Если больше – положительной.

Таким образом добротность характеризует качество контура, а обобщенная расстройка- удаленность от резонансной частоты.

8.2 Построение зависимостейX , X L , X C отf .

Задачи:

    Сопротивление контура 15 Ом, индуктивность 636 мкГн, Емкость 600 пФ, напряжение питающей сети 1,8 В. Найти собственную частоту контура, затухание контура, характеристическое сопротивление, ток, активную мощность, добротность, напряжение на зажимах контура.

Решение:

    Напряжение на зажимах генератора 1 В, частота питающей сети 1 МГц, добротность 100, емкость 100 пФ. Найти: затухание, характеристическое сопротивление, активное сопротивление, индуктивность, частоту контура, ток, мощность, напряжения на емкости и индуктивности.

Решение:

Тестовые задания:

Тема занятия 9 : Входные и передаточные АЧХ и ФЧХ последовательного колебательного контура.

9.1 Входные АЧХ и ФЧХ.

В последовательном колебательном контуре:

R – активное сопротивление;

X – реактивное сопротивление.