Нечеткая логика на практике. Нечеткая логика — математические основы

Эпименид Кносский с острова Крит – полумифический поэт и философ, живший в VI в. до н.э., однажды заявил: «Все критяне – лжецы!». Так как он и сам был критянином, то его помнят как изобре тателя так называемого критского парадокса.


В терминах аристотелевой логики, в которой утверждение не может быть одновременно истинным и ложным, и подобные самоотрицания не имеют смысла. Если они истинны, то они ложны, но если они ложны, то они истинны.


И здесь на сцену выходит нечеткая логика, где переменные могут быть частичными членами множеств. Истинность или ложность перестают быть абсолютными – утверждения могут быть частично истинными и частично ложными. Использование подобного подхода позволяет строго математически доказать, что парадокс Эпименида ровно на 50% истинен и на 50% ложен.

Таким образом, нечеткая логика в самой своей основе несовместима с аристотелевой логикой, особенно в отношении закона Tertium non datur («Третьего не дано» – лат.), который также называют законом исключения среднего1 . Если сформулировать его кратко, то звучит он так: если утверждение не является истинным, то оно является ложным. Эти постулаты настолько базовые, что их часто просто принимают на веру.


Более банальный пример пользы нечеткой логики можно привести в контексте концепции холода. Большинство людей способно ответить на вопрос: «Холодно ли вам сейчас?». В большинстве случаев (если вы разговариваете не с аспирантом-физиком) люди понимают, что речь не идет об абсолютной температуре по шкале Кельвина. Хотя температуру в 0 K можно, без сомнения, назвать холодом, но температуру в +15 C многие холодом считать не будут.


Но машины не способны проводить такую тонкую градацию. Если стандартом определения холода будет «температура ниже +15 C», то +14,99 C будет расцениваться как холод, а +15 C – не будет.

Теория нечетких множеств

Рассмотрим рис. 1. На нем представлен график, помогающий понять то, как человек воспринимает температуру. Температуру в +60 F (+12 C) человек воспринимает как холод, а температуру в +80 F (+27 C) – как жару. Температура в +65 F (+15 C) одним кажется низкой, другим – достаточно комфортной. Мы называем эту группу определений функцией принадлежности к множествам,описывающим субъективное восприятие температуры человеком.

Так же просто можно создать дополнительные множества, описывающие восприятие температуры человеком. Например, можно добавить такие множества, как «очень холодно» и «очень жарко». Можно описать подобные функции для других концепций, например, для состояний «открыто» и «закрыто», температуры в охладителе или температуры в башенном охладителе.


То есть нечеткие системы можно использовать как универсальный аппроксиматор (усреднитель) очень широкого класса линейных и нелинейных систем. Это не только делает более надежными стратегии контроля в нелинейных случаях, но и позволяет использовать оценки специалистов-экспертов для построения схем компьютерной логики.

Нечеткие операторы

Чтобы применить алгебру для работы с нечеткими значениями, нужно определить используемых операторов. Обычно в булевой логике используется лишь ограниченный набор операторов, с помощью которых и производится выполнение других операций: NOT (оператор «НЕ»), AND (оператор «И») и OR (оператор «ИЛИ»).

Можно дать множество определений для этих трех базовых операторов, три из которых приведены в таблице. Кстати, все определения одинаково справедливы для булевой логики (для проверки просто подставьте в них 0 и 1). В булевой логике значение FALSE («ЛОЖЬ») эквивалентно значению «0», а значение TRUE («ИСТИНА») эквивалентно значению «1». Аналогичным образом в нечеткой логике степень истинности может меняться в диапазоне от 0 до 1, поэтому значение «Холод» верно в степени 0,1, а операция NOT(«Холод») даст значение 0,9.


Вы можете вернуться к парадоксу Эпименида и постараться его решить (математически он выражается как A = NOT(A), где A – это степень истинности соответствующего утверждения). Если же вы хотите более сложную задачу, то попробуйте решить вопрос о звуке хлопка, производимого одной рукой…

Решение задач методами нечеткой логики

Лишь немногие клапаны способны открываться «чуть-чуть». При работе оборудования обычно используются четкие значения (например, в случае бимодального сигнала 0-10 В), которые можно получить, используя так называемое «решение задач методами нечеткой логики». Подобный подход позволяет преобразовать семантические знания, содержащиеся в нечеткой системе, в реализуемую стратегию управления2.


Это можно сделать с использованием различных методик, но для иллюстрации процесса в целом рассмотрим всего один пример.


В методе height defuzzification результатом является сумма пиков нечетких множеств, рассчитываемая с использованием весовых коэффициентов. У этого метода есть несколько недостатков, включая плохую работу с несимметричными функциями принадлежности к множествам, но у него есть одно преимущество – этот метод наиболее простой для понимания.

Предположим, что набор правил, управляющих открытием клапана, даст нам следующий результат:


«Клапан частично закрыт»: 0,2

«Клапан частично открыт»: 0,7

«Клапан открыт»: 0,3

Если мы используем метод height defuzzification для определения степени открытости клапана, то получим результат:

«Клапан закрыт»: 0,1

(0,1*0% + 0,2*25% + 0,7*75% + 0,3*100%)/ /(0,1 + 0,2 + 0,7 + 0,3) =

= (0% + 5% + 52,5% + 30%)/(1,3) = = 87,5/1,3 = = 67,3%,

т.е. клапан необходимо открыть на 67,3%.

Практическое применение нечеткой логики

Когда только появилась теория нечеткой логики, в научных журналах можно было найти статьи, посвященные ее возможным областям применения. По мере продвижения разработок в данной области число практических применений для нечеткой логики начало быстро расти. В настоящее время этот список был бы слишком длинным, но вот несколько примеров, которые помогут понять, насколько широко нечеткая логика используется в системах управления и в экспертных системах3.


– Устройства для автоматического поддержания скорости движения автомобиля и увеличения эффективности/стабильности работы автомобильный двигателей (компании Nissan, Subaru).

Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.
Все это грустно, потому что нечеткая логика - это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования - настолько же простой, но гораздо более мощный, чем система обычных логических операций.

Самым замечательным фактом о нечеткой логике является то, что это прежде всего логика . Из начал мат-логики известно, что любая логическая функция может быть представлена дизъюнктивной или конъюнктивной нормальной формой, из чего следует, что для реализации исчисления высказываний достаточно всего трех операций: конъюнкции (&&), дизъюнкции (||) и отрицания (!). В классической логике каждая из этих операций задана таблицей истинности:

A b || a b && a ! -------- -------- ---- 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности , принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Есть два способа реализации дизъюнкции и конъюнкции:

#Максиминный подход: a || b => max(a, b) a && b => min(a, b) #Колорометрический подход: a || b => a + b - a * b a && b => a * b
Отрицание задается единственным способом (не трудно догадаться):

A => 1 - a
Легко проверить, что для крайних случаев - когда значения переменных исключительно 1 или 0 - приведенные выше функции дают таблицы истинности операций классической логики. Готово! Теперь у нас есть расширенная логика, обладающая невероятной мощью, простотой и при этом полностью совместимая с классической логикой в предельных случаях. Значит везде, где мы [программисты] используем логические выражения, мы можем использовать выражения нечеткой логики? Не совсем.

Дело в том, что все операторы языков программирования требуют четких условий, поэтому в какой-то момент всегда приходится из нечеткой степени истинности получать четкий критерий срабатывания. Это похоже на то, что происходит в квантовом мире: до тех пор, пока система эволюционирует в соответствии с уравнением Шредингера, ее квантовое состояние изменяется детерминированно и непрерывно, но как только мы прикасаемся к системе, происходит квантовый скачок, и система сваливается в одно из дискретных состояний. В нечеткой логике это называется дефаззификацией. Природа просто превращает квантовое состояние в вероятность и бросает кости, но вообще говоря методы дефаззификации бывают разные. Я не буду углубляться в эту тему, потому что объем ее тянет на отдельную статью. Упомяну лишь только, что метод дефаззификации следует выбирать, учитывая семантику задачи.

Для примера представим себе систему управления ракетой, использующую нечеткую логику для обхода препятствий. Представим себе, что ракета летит точно в гору, и система управления вычисляет решение: лететь вправо - 0.5, лететь влево - 0.5. Если использовать дефаззификацию методом центра масс, то система управления даст команду - лететь прямо. Бум! Очевидно, что в этом случае правильное решение - бросить кости и получить команду «влево» или «вправо» с вероятностью 50%.

В простейшем случае, когда нужно принять решение на основании степени истинности, можно разбить множество на интервалы и использовать if-else-if.

Если нечеткая логика используется для поиска по нечеткому критерию, то дефаззификация вообще может быть не нужна. Производя сравнения, мы будем получать некоторое значение степени равенства для каждого элемента пространства поиска. Мы можем определить некоторую минимальную степень равенства, значения ниже которой нас не интересуют; для оставшихся элементов степень равенства будет релевантностью, по убыванию которой мы будем сортировать результаты, и пускай пользователь решит, какой результат правильный.

В качестве примера приведу использование нечеткой логики для решения задачи, которой я развлекался еще в институте - это задача поиска китайского иероглифа по изображению.

Я сразу отбросил идею распознавать любой каракуль, нарисованный пользователем на экране (тогда это был экран КПК). Вместо этого программа предлагала выбрать тип черты из порядка 23-х, определенных правилами японской каллиграфии. Выбрав тип черты, пользователь рисовал прямоугольник, в который вписывалась черта. Фактически, иероглиф - и введенный, и хранимый в словаре - представлялся в виде множества прямоугольников, для которых был определен тип.

Как определить равенство иероглифов в таком представлении? Для начала сформулируем критерий в четкой постановке:

Иероглифы A и B равны тогда и только тогда, когда для каждой черты в A существует равная ей черта в B и для каждой черты в B существует равная ей черта в A.

Неявно предполагается, что иероглифы не содержат черт-дубликатов, то есть, если некоторая черта совпала с чертой в другом иероглифе, то ни с одной другой чертой в том же иероглифе она совпасть не может.

Равенство черт можно определить следующим образом:

Черты равны тогда и только тогда, когда относятся к одному типу и их прямоугольники занимают одну и ту же площадь.

Эти два определения дают нам систему утверждений, которой достаточно для реализации алгоритма поиска.

Для начала построим матрицу E следующим образом:

For i in 1..n for j in 1..n E = A[i] == B[j] end end #A и B - это иероглифы; A[i] и B[j] - это их черты, и оператор "==" вычисляет их нечеткое равенство. #Предполагается, что оба иероглифа имеют одинаковое количество черт - n.
Затем сомкнем эту матрицу в вектор M[n]:

For i in 1..n M[i] = E.max_in_row(i) end #Метод max_in_row вычисляет максимальное значение в строке матрицы.
Я использую максиминный подход, потому что, на практике, колорометрический дает слишком маленькие значения для конъюнкций. Если вспомнить, что max - это дизъюнкция, то получается, что мы вычисляем утверждение, что i-я черта A равна первой черте B или второй или третьей и т.д. Таким образом M - это вектор совпадений черт A с чертами B.

#Просто нечеткой конъюнкцией. e = M.min #Либо так: e = M.sum / M.length #(отношение суммы элементов к длине вектора).
Оба способа работают, но по-разному, причем второй способ работает даже если сравнивать черты четко. Какой из них правильней - вопрос философский.

Еще пару слов стоит сказать о сравнении черт. В соответствии с определением, равенство черт - это конъюнкция двух условий: равенства типов и равенства прямоугольников. Черты некоторых типов очень похожи. Вводя, пользователь легко может их перепутать, поэтому стоит иметь таблицу похожести, значения которой будут отражать насколько черта i похожа на черту j (на главной диагонали, естественно, будут единицы). Как степень равенства прямоугольников можно брать отношение площади их пересечения к площади большего из прямоугольников.

Вобщем, область применения нечеткой логики весьма обширна. В любом алгоритме, в любой системе правил попробуйте заменить истину и ложь на степень истинности и, возможно, эта система правил или алгоритм станут более точно отражать реальность. В конце концов, мы живем в мире, который фундаментально нечеток.

Математическая теория нечетких множеств (fuzzy sets) инечеткая логика (fuzzy logic ) являются обобщениями классическойтеории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких иприближенных рассуждений при описании человеком процессов, систем, объектов.

Одной из основных характеристик нечеткой логики является лингвисти­ческая переменная, которая определяется набором вербальных (словесных) характеристик некоторого свойства. Рассмотрим лингвисти­ческую переменную «скорость», которую можно характеризовать через набор следующих по­нятий-значе­ний: «ма­лая», «средняя» и «большая», данные значения называются термами.

Следующей основополагающей характеристикой нечеткой логики является понятие функции принадлежности. Функция принадлежности определяет, насколько мы уверены в том, что данное значение лингвистической переменной (например, скорость) можно отнести к соответствующим ей категори­ям (в частности для лингвистической переменной скорость к категориям «малая», «средняя», «большая»).

На следующем рисунке (первая часть) отражено, как одни и те же значения лингвистической переменной могут соответствовать различным понятиям-значениям или термам. Тогда функции принадлежности, характеризующие нечеткие множества понятий скорости, можно выразить гра­фически, в более привычном математическом виде (рис. 35, вторая часть).

Из рисунка видно, что степень, с которой численное значение скорости, например v = 53, совместимо с понятием «большая», есть 0,7, в то время как совместимость значений скорости, рав­ных 48 и 45, с тем же понятием есть 0,5 и 0,1 соответственно.

Существует свыше десятка типовых форм кривых для задания функций принадлежности. Наибольшее распространение получили: треугольная, трапецеидальная и гауссова функции принадлежности.

Треугольная функция принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).

Аналогично для задания трапецеидальной функции принадлежности необходима четверка чисел (a,b,c,d):

При (b-a)=(d-c) трапецеидальная функция принадлежности принимает симметричный вид.

Рисунок 1. Типовые кусочно-линейные функции принадлежности.

Функция принадлежности гауссова типа описывается формулой

и оперирует двумя параметрами. Параметр c обозначает центр нечеткого множества, а параметр отвечает за крутизну функции.

Рисунок 2. Гауссова функция принадлежности.

Совокупность функций принадлежности для каждого терма из базового терм-множества T обычно изображаются вместе на одном графике. На рисунке приведен пример описанной лингвистической переменной "Цена акции".

Рис. Описание лингвистической переменной "Цена акции".

Количество термов в лингвистической переменной редко превышает 7.

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

    Существует хотя бы одно правило для каждого лингвистического терма выходной переменной .

    Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида: R 1: ЕСЛИ x 1 это A 11 … И … x n это A 1n , ТО y это B 1 … R i: ЕСЛИ x 1 это A i1 … И … x n это A in , ТО y это B i … R m: ЕСЛИ x 1 это A i1 … И … x n это A mn , ТО y это B m , где x k , k=1..n – входные переменные; y – выходная переменная; A ik – термы соответствующих переменных с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y * на основе заданных четких значений x k , k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).

Рисунок 5. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

    Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как A ik (x k), i=1..m, k=1..n.

    Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:

    Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:

где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Под дефаззификацией понимается процедура преобразования нечетких величин, получаемых в результате нечеткого вывода, в четкие. Эта процедура является необходимой в тех случаях, где требуется интерпретация нечетких выводов конкретными четкими величинами, т.е. когда на основе функции принадлежности возникает потребность определить для каждой точки вZ числовые значения.

В настоящее время отсутствует систематическая процедура выбора стратегии дефаззификации. На практике часто используют два наиболее общих метода: метод центра тяжести (ЦТ - центроидный), метод максимума (ММ).

Для дискретных пространств в центроидном методе формула для вычисления четкого значения выходной переменной представляется в следующем виде:

Стратегия дефаззификации ММ предусматривает подсчет всех тех z , чьи функции принадлежности достигли максимального значения. В этом случае (для дискретного варианта) получим

где z - выходная переменная, для которой функция принадлежности достигла максимума;m - число таких величин.

Из этих двух наиболее часто используемых стратегий дефаззификации, стратегия ММ дает лучшие результаты для переходного режима, аЦТ - в установившемся режиме из-за меньшей среднеквадратической ошибки.

Пример нечеткого правила

Как работает.

По максимальному значению функций принадлежности (для скорости 60 км в час значение функции принадлежности «низкая» = 0, а для дорожных условий 75 % от нормы значение функции принадлежности «тяжелые» = около 0.7) по 0.7 проводится прямая которая рассекает геометрическую фигуру заключения (подача топлива) на две части, в результате берется фигура лежащая ниже прямой а верхняя часть отбрасывается. Это для одного правила, таких правил может быть 100 и более в реальных задачах.

Рассмотрим процесс получения нечеткого вывода по трем правилам одновременно с последующим получением чет­кого решения. Данная процедура включает в себя три этапа. На первом этапе получают нечеткие выводы по каждому из правил в отдельности по схеме, показанной на рис. 3.13. На втором эта­пе производится сложение результирующих функций, получен­ных на предыдущем этапе (применяется логическая операция ИЛИ, т.е. берется максимум). Третий этап - этап получения чет­кого решения (дефаззификация). Здесь применяется любой из известных классических методов: метод центра тяжести и т.д. Полученное в виде числового значения четкое решение служит задающей величиной системы управления. В нашем примере это будет величина, в соответствии с которой ИСУ должна бу­дет изменить подачу топлива. Процесс получения нечетких выводов по нескольким прави­лам с последующей дефаззификацией для рассматриваемого примера показан на рис. 3.14. При начальном значении скорости = 65 км в час, и дорожным условиям = 80 % от норматива получаем следующую схему решения об уровне подачи топлива.

Рис. 3.14. Процесс получения нечетких выводов по правилам и их преобразование в четкое решение.

Как видно из рис. 3.14, в результате дефаззификации получе­но четкое решение: при заданных значениях скорости и дорожных условий подача топлива должна составлять 63% от

максимального значения. Таким образом, несмотря на нечет­кость выводов, в итоге получено вполне четкое и определенное решение. Такое решение, вероятно, принял бы и водитель авто­мобиля в процессе движения. Данный пример демонстрирует великолепные возможности моделирования человеческих рас­суждений на основе методов теории нечетких множеств.

Стандартная статья о нечеткой логике обычно грешит двумя вещами:

  1. В 99% случаев статья касается исключительно применения нечеткой логики в контексте нечетких множеств, а точнее нечеткого вывода, а еще точнее алгоритма Мамдани. Складывается впечатление, что только этим способом нечеткая логика может быть применена, однако это не так.
  2. Почти всегда статья написана на математическом языке. Замечательно, но программисты пользуются другим языком с другими обозначениями. Поэтому оказывается, что статья просто непонятна тем, кому, казалось бы, должна быть полезна.
Все это грустно, потому что нечеткая логика - это одно из величайших достижений математики XX-ого века, если критерием брать практическую пользу. В этой статье я попытаюсь показать, насколько это простой и мощный инструмент программирования - настолько же простой, но гораздо более мощный, чем система обычных логических операций.

Самым замечательным фактом о нечеткой логике является то, что это прежде всего логика . Из начал мат-логики известно, что любая логическая функция может быть представлена дизъюнктивной или конъюнктивной нормальной формой, из чего следует, что для реализации исчисления высказываний достаточно всего трех операций: конъюнкции (&&), дизъюнкции (||) и отрицания (!). В классической логике каждая из этих операций задана таблицей истинности:

A b || a b && a ! -------- -------- ---- 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1
В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности , принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Есть два способа реализации дизъюнкции и конъюнкции:

#Максиминный подход: a || b => max(a, b) a && b => min(a, b) #Колорометрический подход: a || b => a + b - a * b a && b => a * b
Отрицание задается единственным способом (не трудно догадаться):

A => 1 - a
Легко проверить, что для крайних случаев - когда значения переменных исключительно 1 или 0 - приведенные выше функции дают таблицы истинности операций классической логики. Готово! Теперь у нас есть расширенная логика, обладающая невероятной мощью, простотой и при этом полностью совместимая с классической логикой в предельных случаях. Значит везде, где мы [программисты] используем логические выражения, мы можем использовать выражения нечеткой логики? Не совсем.

Дело в том, что все операторы языков программирования требуют четких условий, поэтому в какой-то момент всегда приходится из нечеткой степени истинности получать четкий критерий срабатывания. Это похоже на то, что происходит в квантовом мире: до тех пор, пока система эволюционирует в соответствии с уравнением Шредингера, ее квантовое состояние изменяется детерминированно и непрерывно, но как только мы прикасаемся к системе, происходит квантовый скачок, и система сваливается в одно из дискретных состояний. В нечеткой логике это называется дефаззификацией. Природа просто превращает квантовое состояние в вероятность и бросает кости, но вообще говоря методы дефаззификации бывают разные. Я не буду углубляться в эту тему, потому что объем ее тянет на отдельную статью. Упомяну лишь только, что метод дефаззификации следует выбирать, учитывая семантику задачи.

Для примера представим себе систему управления ракетой, использующую нечеткую логику для обхода препятствий. Представим себе, что ракета летит точно в гору, и система управления вычисляет решение: лететь вправо - 0.5, лететь влево - 0.5. Если использовать дефаззификацию методом центра масс, то система управления даст команду - лететь прямо. Бум! Очевидно, что в этом случае правильное решение - бросить кости и получить команду «влево» или «вправо» с вероятностью 50%.

В простейшем случае, когда нужно принять решение на основании степени истинности, можно разбить множество на интервалы и использовать if-else-if.

Если нечеткая логика используется для поиска по нечеткому критерию, то дефаззификация вообще может быть не нужна. Производя сравнения, мы будем получать некоторое значение степени равенства для каждого элемента пространства поиска. Мы можем определить некоторую минимальную степень равенства, значения ниже которой нас не интересуют; для оставшихся элементов степень равенства будет релевантностью, по убыванию которой мы будем сортировать результаты, и пускай пользователь решит, какой результат правильный.

В качестве примера приведу использование нечеткой логики для решения задачи, которой я развлекался еще в институте - это задача поиска китайского иероглифа по изображению.

Я сразу отбросил идею распознавать любой каракуль, нарисованный пользователем на экране (тогда это был экран КПК). Вместо этого программа предлагала выбрать тип черты из порядка 23-х, определенных правилами японской каллиграфии. Выбрав тип черты, пользователь рисовал прямоугольник, в который вписывалась черта. Фактически, иероглиф - и введенный, и хранимый в словаре - представлялся в виде множества прямоугольников, для которых был определен тип.

Как определить равенство иероглифов в таком представлении? Для начала сформулируем критерий в четкой постановке:

Иероглифы A и B равны тогда и только тогда, когда для каждой черты в A существует равная ей черта в B и для каждой черты в B существует равная ей черта в A.

Неявно предполагается, что иероглифы не содержат черт-дубликатов, то есть, если некоторая черта совпала с чертой в другом иероглифе, то ни с одной другой чертой в том же иероглифе она совпасть не может.

Равенство черт можно определить следующим образом:

Черты равны тогда и только тогда, когда относятся к одному типу и их прямоугольники занимают одну и ту же площадь.

Эти два определения дают нам систему утверждений, которой достаточно для реализации алгоритма поиска.

Для начала построим матрицу E следующим образом:

For i in 1..n for j in 1..n E = A[i] == B[j] end end #A и B - это иероглифы; A[i] и B[j] - это их черты, и оператор "==" вычисляет их нечеткое равенство. #Предполагается, что оба иероглифа имеют одинаковое количество черт - n.
Затем сомкнем эту матрицу в вектор M[n]:

For i in 1..n M[i] = E.max_in_row(i) end #Метод max_in_row вычисляет максимальное значение в строке матрицы.
Я использую максиминный подход, потому что, на практике, колорометрический дает слишком маленькие значения для конъюнкций. Если вспомнить, что max - это дизъюнкция, то получается, что мы вычисляем утверждение, что i-я черта A равна первой черте B или второй или третьей и т.д. Таким образом M - это вектор совпадений черт A с чертами B.

#Просто нечеткой конъюнкцией. e = M.min #Либо так: e = M.sum / M.length #(отношение суммы элементов к длине вектора).
Оба способа работают, но по-разному, причем второй способ работает даже если сравнивать черты четко. Какой из них правильней - вопрос философский.

Еще пару слов стоит сказать о сравнении черт. В соответствии с определением, равенство черт - это конъюнкция двух условий: равенства типов и равенства прямоугольников. Черты некоторых типов очень похожи. Вводя, пользователь легко может их перепутать, поэтому стоит иметь таблицу похожести, значения которой будут отражать насколько черта i похожа на черту j (на главной диагонали, естественно, будут единицы). Как степень равенства прямоугольников можно брать отношение площади их пересечения к площади большего из прямоугольников.

Вобщем, область применения нечеткой логики весьма обширна. В любом алгоритме, в любой системе правил попробуйте заменить истину и ложь на степень истинности и, возможно, эта система правил или алгоритм станут более точно отражать реальность. В конце концов, мы живем в мире, который фундаментально нечеток.

С.Д.Штовба "Введение в теорию нечетких множеств и нечеткую логику"

1.7. Нечеткая логика

Нечеткая логика это обобщение традиционной аристотелевой логики на случай, когда истинность рассматривается как лингвистическая переменная, принимающая значения типа: "очень истинно", "более-менее истинно", "не очень ложно" и т.п. Указанные лингвистические значения представляются нечеткими множествами.

1.7.1. Лингвистические переменные

Напомним, что лингвистической называется переменная, принимающая значения из множества слов или словосочетаний некоторого естественного или искусственного языка. Множество допустимых значений лингвистической переменной называется терм-множеством. Задание значения переменной словами, без использования чисел, для человека более естественно. Ежедневно мы принимаем решения на основе лингвистической информации типа: "очень высокая температура"; "длительная поездка"; "быстрый ответ"; "красивый букет"; "гармоничный вкус" и т.п. Психологи установили, что в человеческом мозге почти вся числовая информация вербально перекодируется и хранится в виде лингвистических термов. Понятие лингвистической переменной играет важную роль в нечетком логическом выводе и в принятии решений на основе приближенных рассуждений. Формально, лингвистическая переменная определяется следующим образом.

Определение 44. Лингвистическая переменная задается пятеркой , где - ; имя переменной; - ; терм-множество, каждый элемент которого (терм) представляется как нечеткое множество на универсальном множестве ; - ; синтаксические правила, часто в виде грамматики, порождающие название термов; - ; семантические правила, задающие функции принадлежности нечетких термов, порожденных синтаксическими правилами .

Пример 9. Рассмотрим лингвистическую переменную с именем "температура в комнате". Тогда оставшуюся четверку можно определить так:

Таблица 4 - Правила расчета функций принадлежности

Графики функций принадлежности термов "холодно", "не очень холодно", "комфортно", "более-менее комфортно", "жарко" и "очень жарко" лингвистической переменной "температура в комнате" показаны на рис. 13.

Рисунок 13 - Лингвистическая переменная "температура в комнате"

1.7.2. Нечеткая истинность

Особое место в нечеткой логике занимает лингвистическая переменная "истинность". В классической логике истинность может принимать только два значения: истинно и ложно. В нечеткой логике истинность "размытая". Нечеткая истинность определяется аксиоматически, причем разные авторы делают это по-разному. Интервал используется как универсальное множество для задания лингвистической переменной "истинность". Обычная, четкая истинность может быть представлена нечеткими множествами-синглтонами. В этом случае четкому понятию истинно будет соответствовать функция принадлежности , а четкому понятию ложно - ; , .

Для задания нечеткой истинности Заде предложил такие функции принадлежности термов "истинно" и "ложно":

;

где - ; параметр, определяющий носители нечетких множеств "истинно" и "ложно". Для нечеткого множества "истинно" носителем будет интервал , а для нечеткого множества ложно" - ; .

Функции принадлежности нечетких термов "истинно" и "ложно" изображены на рис. 14. Они построены при значении параметра . Как видно, графики функций принадлежности термов "истинно" и "ложно" представляют собой зеркальные отображения.

Рисунок 14 - Лингвистическая переменная "истинность" по Заде

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких "истинно" и "ложно":

Квантификаторы "более-менее" и "очень" часто применяют к нечеткими множествами "истинно" и "ложно", получая таким образом термы "очень ложно", "более-менее ложно", "более-менее истинно", "очень истинно", "очень, очень истинно", "очень, очень ложно" и т.п. Функции принадлежности новых термов получают, выполняя операции концентрации и растяжения нечетких множеств "истинно" и "ложно". Операция концентрации соответствует возведению функции принадлежности в квадрат, а операция растяжения - возведению в степень ½. Следовательно, функции принадлежности термов "очень, очень ложно", "очень ложно", "более-менее ложно", "более-менее истинно", "истинно", "очень истинно" и "очень, очень истинно" задаются так:

Графики функций принадлежности этих термов показаны на рис. 15.

Рисунок 15 - Лингвистическая переменная "истинность" по Балдвину

1.7.3. Нечеткие логические операции

Вначале кратко напомнить основные положения обычной (булевой) логики. Рассмотрим два утверждения A и B, каждое из которых может быть истинным или ложным, т.е. принимать значения "1" или "0". Для этих двух утверждений всего существует различных логических операций, из которых содержательно интерпретируются лишь пять: И (), ИЛИ (), исключающее ИЛИ (), импликация () и эквивалентность (). Таблицы истинности для этих операций приведены в табл. 5.

Таблица 5 - Таблицы истинности булевой логики

Предположим, что логическое утверждение может принимать не два значения истинности, а три, например: "истинно", "ложно" и "неопределенно". В этом случае мы будем иметь дело не с двухзначной, а трехзначной логикой. Общее количество бинарных операций, а, следовательно, и таблиц истинности, в трехзначной логике равно . Нечеткая логика является разновидностью многозначной логики, в которой значения истинности задаются лингвистическими переменными или термами лингвистической переменной "истинность". Правила выполнения нечетких логических операций получают из булевых логических операций с помощью принципа обобщения.

Определение 45. Обозначим нечеткие логические переменные через и , а функции принадлежности, задающие истинностные значения этих переменных через и , . Нечеткие логические операции И (), ИЛИ (),
НЕ () и импликация () выполняются по таким правилам:

;

В многозначной логике логические операции могут быть заданы таблицами истинности. В нечеткой логике количество возможных значений истинности может быть бесконечным, следовательно в общем виде табличное представление логических операций невозможно. Однако, в табличной форме можно представить нечеткие логические операции для ограниченного количества истинностных значений, например, для терм-множества {"истинно", "очень истинно", "не истинно", "более-менее ложно", "ложно"}. Для трехзначной логики с нечеткими значениями истинности T - ; "истинно", F - ; "ложно" и T+F - "неизвестно" Л Заде предложил такие лингвистические таблицы истинности:

Применяя правила выполнения нечетких логических операций из определения 45 можно расширить таблицы истинности для большего количества термов. Как это сделать рассмотрим на следующем примере.

Пример 10. Заданы следующие нечеткие истинностные значения:

Применяя правило из определения 45, найдем нечеткую истинность выражения "почти истинно ИЛИ истинно":

Сравним полученное нечеткое множество с нечетким множеством "более-менее истинно". Они почти равны, значит:

В результате выполнения логических операций часто получается нечеткое множество, которое не эквивалентно ни одному из ранее введенных нечетких значений истинности. В этом случае необходимо среди нечетких значений истинности найти такое, которое соответствует результату выполнения нечеткой логической операции в максимальной степени. Другими словами, необходимо провести так называемую лингвистическую аппроксимацию , которая может рассматриваться как аналог аппроксимации эмпирического статистическими распределения стандартными функциями распределения случайных величин. В качестве примера приведем предложенные Балдвином лингвистические таблицы истинности для показанных на рис. 15 нечетких значений истинности:

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

неопределенно

очень истинно

очень истинно

более-менее истинно

более-менее истинно

1.7.3. Нечеткая база знаний

Определение 46. Нечеткой базой знаний называется совокупность нечетких правил "Если - то", определяющих взаимосвязь между входами и выходами исследуемого объекта. Обобщенный формат нечетких правил такой:

Если посылка правила, то заключение правила.

Посылка правила или антецедент представляет собой утверждение типа "x есть низкий", где "низкий" - ;это терм (лингвистическое значение), заданный нечетким множеством на универсальном множестве лингвистической переменной x. Квантификаторы "очень", "более-менее", "не", "почти" и т.п. могут использоваться для модификации термов антецедента.

Заключение или следствие правила представляет собой утверждение типа "y есть d", в котором значение выходной переменной (d) может задаваться:

  1. нечетким термом: "y есть высокий";
  2. классом решений: "y есть бронхит"
  3. четкой константой: "y=5";
  4. четкой функцией от входных переменных: "y=5+4*x".

Если значение выходной переменной в правиле задано нечетким множеством, тогда правило может быть представлено нечетким отношением. Для нечеткого правила "Если x есть , то y есть ", нечеткое отношение задается на декартовом произведении , где - ; универсальное множество входной (выходной) переменной. Для расчета нечеткого отношения можно применять нечеткую импликацию и t-норму. При использовании в качестве t-нормы операции нахождения минимума, расчет нечеткого отношения осуществляется так:

Пример 11. Следующая нечеткая база знаний описывает зависимость между возрастом водителя (x) и возможностью дорожно-транспортного происшествия (y):

Если x = Молодой, то y = Высокая;

Если x = Средний, то y = Низкая;

Если x = Очень старый, то y = Высокая.

Пусть функции принадлежностей термов имеют вид, показанный на рис. 16. Тогда нечеткие отношения, соответствующие правилам базы знаний, будут такими, как на рис. 17.

Рисунок 16 - Функции принадлежности термов

Рисунок 17 - Нечеткие отношения, соответствующие правилам базы знаний из примера 11

Для задания многомерных зависимостей "входы-выходы" используют нечеткие логические операции И и ИЛИ. Удобно правила формулировать так, чтобы внутри каждого правил переменные объединялись логической операцией И, а правила в базе знаний связывались операцией ИЛИ. В этом случае нечеткую базу знаний, связывающую входы с выходом , можно представить в следующем виде.