Разработка нейронной сети на языке Python. Самая простая нейронная сеть на Python

Мы сейчас переживаем настоящий бум нейронных сетей. Их применяют для распознания, локализации и обработки изображений. Нейронные сети уже сейчас умеют многое что не доступно человеку. Нужно же и самим вклиниваться в это дело! Рассмотрим нейтронную сеть которая будет распознавать числа на входном изображении. Все очень просто: всего один слой и функция активации. Это не позволит нам распознать абсолютно все тестовые изображения, но мы справимся с подавляющим большинством. В качестве данных будем использовать известную в мире распознания чисел подборку данных MNIST.

Для работы с ней в Python есть библиотека python-mnist. Что-бы установить:

Pip install python-mnist

Теперь можем загрузить данные

From mnist import MNIST mndata = MNIST("/path_to_mnist_data_folder/") tr_images, tr_labels = mndata.load_training() test_images, test_labels = mndata.load_testing()

Архивы с данными нужно загрузить самостоятельно, а программе указать путь к каталогу с ними. Теперь переменные tr_images и test_images содержат изображения для тренировки сети и тестирования соотвественно. А переменные tr_labels и test_labels - метки с правильной классификацией (т.е. цифры с изображений). Все изображения имеют размер 28х28. Зададим переменную с размером.

Img_shape = (28, 28)

Преобразуем все данные в массивы numpy и нормализуем их (приведем к размеру от -1 до 1). Это увеличит точность вычислений.

Import numpy as np for i in range(0, len(test_images)): test_images[i] = np.array(test_images[i]) / 255 for i in range(0, len(tr_images)): tr_images[i] = np.array(tr_images[i]) / 255

Отмечу, что хоть и изображения принято представлять в виде двумерного массива мы будем использовать одномерный, это проще для вычислений. Теперь нужно понять "что же такое нейронная сеть"! А это просто уравнение с большим количеством коэффициентов. Мы имеем на входе массив из 28*28=784 элементов и еще по 784 веса для определения каждой цифры. В процессе работы нейронной сети нужно перемножить значения входов на веса. Сложить полученные данные и добавить смещение. Полученный результат подать на функцию активации. В нашем случае это будет Relu. Эта функция равна нулю для всех отрицательных аргументов и аргументу для всех положительных.

Есть еще много функций активации! Но это же самая простая нейронная сеть! Определим эту функцию при помощи numpy

Def relu(x): return np.maximum(x, 0)

Теперь чтобы вычислить изображение на картинке нужно просчитать результат для 10 наборов коэффициентов.

Def nn_calculate(img): resp = list(range(0, 10)) for i in range(0,10): r = w[:, i] * img r = relu(np.sum(r) + b[i]) resp[i] = r return np.argmax(resp)

Для каждого набора мы получим выходной результат. Выход с наибольшим результатом вероятнее всего и есть наше число.

В данном случае 7. Вот и все! Но нет... Ведь нужно эти самые коэффициенты где-то взять. Нужно обучить нашу нейронную сеть. Для этого применяют метод обратного распространения ошибки. Его суть в том чтобы рассчитать выходы сети, сравнить их с правильными, а затем отнять от коэффициентов числа необходимые чтобы результат был правильным. Нужно помнить, что для того чтобы вычислить эти значения нужна производная функции активации. В нашем случае она равна нулю для всех отрицательных чисел и 1 для всех положительных. Определим коэффициенты случайным образом.

W = (2*np.random.rand(10, 784) - 1) / 10 b = (2*np.random.rand(10) - 1) / 10 for n in range(len(tr_images)): img = tr_images[n] cls = tr_labels[n] #forward propagation resp = np.zeros(10, dtype=np.float32) for i in range(0,10): r = w[i] * img r = relu(np.sum(r) + b[i]) resp[i] = r resp_cls = np.argmax(resp) resp = np.zeros(10, dtype=np.float32) resp = 1.0 #back propagation true_resp = np.zeros(10, dtype=np.float32) true_resp = 1.0 error = resp - true_resp delta = error * ((resp >= 0) * np.ones(10)) for i in range(0,10): w[i] -= np.dot(img, delta[i]) b[i] -= delta[i]

В процессе обучения коэффициенты станут слегка похожи на числа:

Проверим точность работы:

Def nn_calculate(img): resp = list(range(0, 10)) for i in range(0,10): r = w[i] * img r = np.maximum(np.sum(r) + b[i], 0) #relu resp[i] = r return np.argmax(resp) total = len(test_images) valid = 0 invalid = for i in range(0, total): img = test_images[i] predicted = nn_calculate(img) true = test_labels[i] if predicted == true: valid = valid + 1 else: invalid.append({"image":img, "predicted":predicted, "true":true}) print("accuracy {}".format(valid/total))

У меня получилось 88%. Не так уж круто, но очень интересно!

Искусственные нейронные сети (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов).

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. wikipedia

Нейронные сети были вдохновлены нашим собственным мозгом. Модель стандартного нейрона изобретена более пятидесяти лет назад и состоит из трех основных частей:

  • Дентрит(ы) (Dendrite) - ответственны за сбор поступающих сигналов;
  • Сома (Soma) - ответствена за основную обработку и суммирование сигналов;
  • Аксон (Axon) - отвечает за передачу сигналов другим дендритам.

Работу нейрона можно описать примерно так: дендриды собирают сигналы, полученные от других нейронов, затем сомы выполняют суммирование и вычисление сигналов и данных, и наконец на основе результата обработки могут "сказать" аксонам передать сигнал дальше. Передача далее зависит от ряда факторов, но мы можем смоделировать это поведение как передаточную функцию, которая принимает входные данные, обрабатывает их и готовит выходные данные, если выполняются свойства передаточной функции.

Биологический нейрон - сложная система, математическая модель которого до сих пор полностью не построена. Введено множество моделей, различающихся вычислительной сложностью и сходством с реальным нейроном. Одна из важнейших - формальный нейрон (ФН). Несмотря на простоту ФН, сети, построенные из таких нейронов, могут сформировать произвольную много мерную функцию на выходе (источник: Заенцев И. В. Нейронные сети: основные модели).

Нейрон состоит из взвешенного сумматора и нелинейного элемента. Функционирование нейрона определяется формулами:

Нейрон имеет несколько входных сигналов x и один выходной сигнал OUT . Параметрами нейрона, определяющими его работу, являются: вектор весов w , пороговый уровень θ и вид функции активации F .

Нейронные сети привлекают к себе внимание за счет следующих возможностей:

  • способны решать трудно формализуемые задачи;
  • присущ параллельный принцип работы, что очень важно при обработке больших объемов данных;
  • способность к обучению и способность к обобщению;
  • толерантность к ошибкам;

К основным свойствам нейронных сетей можно отнести:

    Способность обучаться . Нейронные сети не программируются, а обучаются на примерах. После предъявления входных сигналов (возможно, вместе с требуемыми выходами) сеть настраивают свои параметры таким образом, чтобы обеспечивать требуемую реакцию.

    Обобщение . Отклик сети после обучения может быть до некоторой степени нечувствителен к небольшим изменениям входных сигналов. Эта внутренне присущая способность "видеть"" образ сквозь шум и искажения очень важна для распознавания образов. Важно отметить, что искусственная нейронная сеть делает обобщения автоматически благодаря своей структуре, а не с помощью использования "человеческого интеллекта"" в форме специально написанных компьютерных программ.

    Параллелизм . Информация в сети обрабатывается параллельно, что позволяет достаточно выполнять сложную обработку данных с помощью большого числа простых устройств.

    Высокая надежность . Сеть может правильно функционировать даже при выходе из строя части нейронов, за счет того, что вычисления производятся локально и параллельно.

Алгоритм решения задач с помощью многослойного персептрона (источник: Заенцев И. В. Нейронные сети: основные модели)

Чтобы построить многослойный персептрон, необходимо выбрать его параметры. Чаще всего выбор значений весов и порогов требует обучения, т.е. пошаговых изменений весовых коэффициентов и пороговых уровней.

Общий алгоритм решения:

  1. Определить, какой смысл вкладывается в компоненты входного вектора x . Входной вектор должен содержать формализованное условие задачи, т.е. всю информацию, необходимую для получения ответа.
  2. Выбрать выходной вектор y таким образом, чтобы его компоненты содержали полный ответ поставленной задачи.
  3. Выбрать вид нелинейности в нейронах (функцию активации). При этом желательно учесть специфику задачи, т.к. удачный выбор сократит время обучения.
  4. Выбрать число слоев и нейронов в слое.
  5. Задать диапазон изменения входов, выходов, весов и пороговых уровней, учитывая множество значений выбранной функции активации.
  6. Присвоить начальные значения весовым коэффициентам и пороговым уровням и дополнительным параметрам (например, крутизне функции активации, если она будет настраиваться при обучении). Начальные значения не должны быть большими, чтобы нейроны не оказались в насыщении (на горизонтальном участке функции активации), иначе обучение будет очень медленным. Начальные значения не должны быть и слишком малыми, чтобы выходы большей части нейронов не были равны нулю, иначе обучение также замедлится.
  7. Провести обучение, т.е. подобрать параметры сети так, чтобы задача решалась наилучшим образом. По окончании обучения сеть готова решить задачи того типа, которым она обучена.
  8. Подать на вход сети условия задачи в виде вектора x . Рассчитать выходной вектор y , который и даст формализованное решение задачи.

Решаемые проблемы

Проблемы решаемые с помощью нейронных сетей ().

    Классификация образов . Задача состоит в указании принадлежности входного образа (например, речевого сигнала или рукописного символа), представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.

    Кластеризация/категоризация . При решении задачи кластеризации, которая известна также как классификация образов "без учителя", отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.

    Аппроксимация функций . Предположим, что имеется обучающая выборка ((x1,y1), (x2,y2)..., (xn,yn)) (пары данных вход-выход), которая генерируется неизвестной функцией (x), искаженной шумом. Задача аппроксимации состоит в нахождении оценки неизвестной функции (x). Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.

    Предсказание/прогноз . Пусть заданы n дискретных отсчетов {y(t1), y(t2)..., y(tn)} в последовательные моменты времени t1, t2,..., tn . Задача состоит в предсказании значения y(tn+1) в некоторый будущий момент времени tn+1. Предсказание/прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике. Предсказание цен на фондовой бирже и прогноз погоды являются типичными приложениями техники предсказания/прогноза.

    Оптимизация . Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию. Задача коммивояжера, относящаяся к классу NP-полных, является классическим примером задачи оптимизации.

    Память, адресуемая по содержанию . В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Ассоциативная память, или память, адресуемая по содержанию, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному входу или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании мультимедийных информационных баз данных.

    Управление . Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, а y(t) - выходом системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система следует по желаемой траектории, диктуемой эталонной моделью. Примером является оптимальное управление двигателем.

Виды архитектур

Архитектура нейронной сети - способ организации и связи отдельных элементов нейросети(нейронов). Архитектурные отличия самих нейронов заключаются главным образом в использовании различных активационных (возбуждающих) функций. По архитектуре связей нейронные сети можно разделить на два класса: сети прямого распространения и рекуррентные сети.

Классификация искусственных нейронных сетей по их архитектуре приведена на рисунке ниже.

Похожая классификация, но немного расширенная

Сеть прямого распространения сигнала (сеть прямой передачи) - нейронная сеть без обратных связей (петель). В такой сети обработка информации носит однонаправленный характер: сигнал передается от слоя к слою в направлении от входного слоя нейросети к выходному. Выходной сигнал (ответ сети) гарантирован через заранее известное число шагов (равное числу слоев). Сети прямого распространения просты в реализации, хорошо изучены. Для решения сложных задач требуют большого числа нейронов.

Сравнительная таблица многослойного персепторна и RBF-сети

Многослойный персептрон RBF-сети
Граница решения представляет собой пересечение гиперплоскостей Граница решения - это пересечение гиперсфер, что задает границу более сложной формы
Сложная топология связей нейронов и слоев Простая 2-слойная нейронная сеть
Сложный и медленно сходящийся алгоритм обучения Быстрая процедура обучения: решение системы уравнений + кластеризация
Работа на небольшой обучающей выборке Требуется значительное число обучающих данных для приемлемого результат
Универсальность применения: кластеризация, аппроксимация, управление и проч Как правило, только аппроксимация функций и кластеризация

Значение производной легко выражается через саму функцию. Быстрый расчет производной ускоряет обучение.

Гауссова кривая

Применяется в случаях, когда реакция нейрона должна быть максимальной для некоторого определенного значения NET.

Модули python для нейронных сетей

Простой пример

В качестве примера приведу простую нейроную сеть (простой персептрон ), которая после обучения сможет распознавать летающие объекты, не все, а только чайку :), все остальные входные образы будут распознаваться как НЛО .

# encoding=utf8 import random class NN: def __init__(self, threshold, size): """ Установим начальные параметры. """ self.threshold = threshold self.size = size self.init_weight() def init_weight(self): """ Инициализируем матрицу весов случайными данными. """ self.weights = [ for j in xrange(self.size)] def check(self, sample): """ Считаем выходной сигнал для образа sample. Если vsum > self.threshold то можно предположить, что в sample есть образ чайки. """ vsum = 0 for i in xrange(self.size): for j in xrange(self.size): vsum += self.weights[i][j] * sample[i][j] if vsum > self.threshold: return True else: return False def teach(self, sample): """ Обучение нейронной сети. """ for i in xrange(self.size): for j in xrange(self.size): self.weights[i][j] += sample[i][j] nn = NN(20, 6) # Обучаем нейронную сеть. tsample1 = [ , , , , , , ] nn.teach(tsample1) tsample2 = [ , , , , , , ] nn.teach(tsample2) tsample3 = [ , , , , , , ] nn.teach(tsample3) tsample4 = [ , , , , , , ] nn.teach(tsample4) # Проверим что может нейронная сеть. # Передадим образ чайки, который примерно похож на тот, про который знает персептрон. wsample1 = [ , , , , , , ] print u"чайка" if nn.check(wsample1) else u"НЛО" # Передадим неизвестный образ. wsample2 = [ , , , , , , ] print u"чайка" if nn.check(wsample2) else u"НЛО" # Передадим образ чайки, который примерно похож на тот, про который знает персептрон. wsample3 = [ , , , , , , ] print u"чайка" if nn.check(wsample3) else u"НЛО"

Джеймс Лой, Технологический университет штата Джорджия. Руководство для новичков, после которого вы сможете создать собственную нейронную сеть на Python.

Мотивация: ориентируясь на личный опыт в изучении глубокого обучения, я решил создать нейронную сеть с нуля без сложной учебной библиотеки, такой как, например, . Я считаю, что для начинающего Data Scientist-а важно понимание внутренней структуры .

Эта статья содержит то, что я усвоил, и, надеюсь, она будет полезна и для вас! Другие полезные статьи по теме:

Что такое нейронная сеть?

Большинство статей по нейронным сетям при их описании проводят параллели с мозгом. Мне проще описать нейронные сети как математическую функцию, которая отображает заданный вход в желаемый результат, не вникая в подробности.

Нейронные сети состоят из следующих компонентов:

  • входной слой, x
  • произвольное количество скрытых слоев
  • выходной слой, ŷ
  • набор весов и смещений между каждым слоем W и b
  • выбор для каждого скрытого слоя σ ; в этой работе мы будем использовать функцию активации Sigmoid

На приведенной ниже диаграмме показана архитектура двухслойной нейронной сети (обратите внимание, что входной уровень обычно исключается при подсчете количества слоев в нейронной сети).

Создание класса Neural Network на Python выглядит просто:

Обучение нейронной сети

Выход ŷ простой двухслойной нейронной сети:

В приведенном выше уравнении, веса W и смещения b являются единственными переменными, которые влияют на выход ŷ.

Естественно, правильные значения для весов и смещений определяют точность предсказаний. Процесс тонкой настройки весов и смещений из входных данных известен как .

Каждая итерация обучающего процесса состоит из следующих шагов

  • вычисление прогнозируемого выхода ŷ, называемого прямым распространением
  • обновление весов и смещений, называемых

Последовательный график ниже иллюстрирует процесс:

Прямое распространение

Как мы видели на графике выше, прямое распространение - это просто несложное вычисление, а для базовой 2-слойной нейронной сети вывод нейронной сети дается формулой:

Давайте добавим функцию прямого распространения в наш код на Python-е, чтобы сделать это. Заметим, что для простоты, мы предположили, что смещения равны 0.

Однако нужен способ оценить «добротность» наших прогнозов, то есть насколько далеки наши прогнозы). Функция потери как раз позволяет нам сделать это.

Функция потери

Есть много доступных функций потерь, и характер нашей проблемы должен диктовать нам выбор функции потери. В этой работе мы будем использовать сумму квадратов ошибок в качестве функции потери.

Сумма квадратов ошибок - это среднее значение разницы между каждым прогнозируемым и фактическим значением.

Цель обучения - найти набор весов и смещений, который минимизирует функцию потери.

Обратное распространение

Теперь, когда мы измерили ошибку нашего прогноза (потери), нам нужно найти способ распространения ошибки обратно и обновить наши веса и смещения.

Чтобы узнать подходящую сумму для корректировки весов и смещений, нам нужно знать производную функции потери по отношению к весам и смещениям.

Напомним из анализа, что производная функции - это тангенс угла наклона функции.

Если у нас есть производная, то мы можем просто обновить веса и смещения, увеличив/уменьшив их (см. диаграмму выше). Это называется .

Однако мы не можем непосредственно вычислить производную функции потерь по отношению к весам и смещениям, так как уравнение функции потерь не содержит весов и смещений. Поэтому нам нужно правило цепи для помощи в вычислении.

Фух! Это было громоздко, но позволило получить то, что нам нужно - производную (наклон) функции потерь по отношению к весам. Теперь мы можем соответствующим образом регулировать веса.

Добавим функцию backpropagation (обратного распространения) в наш код на Python-е:

Проверка работы нейросети

Теперь, когда у нас есть наш полный код на Python-е для выполнения прямого и обратного распространения, давайте рассмотрим нашу нейронную сеть на примере и посмотрим, как это работает.


Идеальный набор весов

Наша нейронная сеть должна изучить идеальный набор весов для представления этой функции.

Давайте тренируем нейронную сеть на 1500 итераций и посмотрим, что произойдет. Рассматривая график потерь на итерации ниже, мы можем ясно видеть, что потеря монотонно уменьшается до минимума. Это согласуется с алгоритмом спуска градиента, о котором мы говорили ранее.

Посмотрим на окончательное предсказание (вывод) из нейронной сети после 1500 итераций.

Мы сделали это! Наш алгоритм прямого и обратного распространения показал успешную работу нейронной сети, а предсказания сходятся на истинных значениях.

Заметим, что есть небольшая разница между предсказаниями и фактическими значениями. Это желательно, поскольку предотвращает переобучение и позволяет нейронной сети лучше обобщать невидимые данные.

Финальные размышления

Я многому научился в процессе написания с нуля своей собственной нейронной сети. Хотя библиотеки глубинного обучения, такие как TensorFlow и Keras, допускают создание глубоких сетей без полного понимания внутренней работы нейронной сети, я нахожу, что начинающим Data Scientist-ам полезно получить более глубокое их понимание.

Я инвестировал много своего личного времени в данную работу, и я надеюсь, что она будет полезной для вас!

Оригинал: Creating a Neural Network in Python
Автор: John Serrano
Дата публикации: 26 мая 2016 г.
Перевод: А.Панин
Дата перевода: 6 декабря 2016 г.

Нейронные сети являются крайне сложными программами, доступными для понимания лишь академикам и гениям, с которыми по определению не могут работать обычные разработчики, не говоря уже обо мне. Вы ведь так думаете?

Ну, на самом деле все совсем не так. После отличного выступления Луиса Моньера и Грега Ренарда в Колледже Холбертон я понял, что нейронные сети являются достаточно простыми для понимания и реализации любым разработчиком программами. Разумеется, самые сложные сети представляют собой масштабные проекты с элегантной и замысловатой архитектурой, но положенные в их основу концепции также являются более или менее очевидными. Разработка любой нейронной сети с нуля может оказаться достаточно сложной задачей, но, к счастью, существует несколько отличных библиотек, которые могут выполнять всю низкоуровневую работу за вас.

В данном контексте нейрон является довольно простой сущностью. Он принимает несколько входных значений и в том случае, если сумма этих значений превышает заданный предел, активируется. При этом каждое входное значение умножается на его вес. Процесс обучения по сути является процессом установки весов значений для генерации необходимых выходных значений. Сети, которые будут рассматриваться в данной статье, называются сетями "прямого распространения", и это означает, что нейроны в них расположены по уровням, причем их входные данные приходят с предыдущего уровня а выходные - отправляются на следующий уровень.

Существуют нейронные сети и других типов, такие, как рекуррентные нейронные сети, которые организованы отличным образом, но это тема для другой статьи.

Нейрон, работающий по описанному выше принципу, называется перцептроном и основан на оригинальной модели искусственных нейронов, которая на сегодняшний день используется крайне редко. Проблема перцептронов заключается в том, что небольшое изменение входных значений может привести к значительному изменению выходного значения из-за ступенчатой функции активации. При этом незначительное уменьшение входного значения может привести к тому, что внутреннее значение не будет превышать установленный предел и нейрон не будет активироваться, что приведет к еще более значительным изменениям состояния следующих за ним нейронов. К счастью, эта проблема легко решается с помощью более плавной функции активации, которая используется в большинстве современных сетей.

Однако, наша нейронная сеть будет настолько простой, что для ее создания вполне подойдут перцептроны. Мы будем создавать сеть, выполняющую логическую операцию "И". Это означает, что нам понадобятся два входных нейрона и один выходной нейрон, а также несколько нейронов на промежуточном "скрытом" уровне. На иллюстрации ниже показана архитектура данной сети, которая должна быть вполне очевидной.

Моньер и Ренард использовали сценарий convnet.js для создания демонстрационных сетей для своего выступления. Convnet.js может использоваться для создания нейронных сетей непосредственно в вашем веб-браузере, что позволяет вам исследовать и модифицировать их практически на любой платформе. Конечно же, у данной реализации на языке JavaScript присутствуют и значительные недостатки, одним из которых является низкая скорость работы. Ну а в рамках данной статьи мы будем использовать библиотеку FANN (Fast Artifical Neural Networks). При этом на уровне языка программирования Python будет использоваться модуль pyfann, который содержит биндинги для библиотеки FANN. Вам следует установить пакет программного обеспечения с данным модулем прямо сейчас.

Импорт модуля для работы с библиотекой FANN осуществляется следующим образом:

>>> from pyfann import libfann

Теперь мы можем начать работу! Первой операцией, которую нам придется выполнить, является создание пустой нейронной сети.

>>> neural_net = libfann.neural_network()

Созданный объект neural_net на данный момент не содержит нейронов, поэтому давайте попробуем создать их. Для этой цели мы будем использовать функцию libfann.create_standard_array() . Функция create_standard_array() создает нейронную сеть, в которой все нейроны соединены с нейронами из соседних уровней, поэтому ее можно назвать "полностью соединенной" сетью. В качестве параметра функция create_standard_array() принимает массив с числовыми значениями, соответствующими количеству нейронов на каждом из уровней. В нашем случае это массив .

>>> neural_net.create_standard((2, 4, 1))

После этого нам придется установить значение скорости обучения. Данное значение соответствует количеству изменений весов в рамках одной итерации. Мы установим достаточно высокую скорость обучения, равную 0.7 , так как мы будем решать с помощью нашей сети достаточно простую задачу.

>>> neural_net.set_learning_rate(0.7)

Теперь пришло время установить функцию активации, назначение которой обсуждалось выше. Мы будем использовать режим активации SIGMOID_SYMMETRIC_STEPWISE , который соответствует функции ступенчатой аппроксимации гиперболического тангенса. Она является менее точной и более быстрой, чем обычная функция гиперболического тангенса и отлично подходит для нашей задачи.

>>> neural_net.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)

Наконец, нам нужно запустить алгоритм обучения сети и сохранить данные сети в файле. Функция обучения сети принимает четыре аргумента: имя файла с данными, на основе которых будет осуществляться обучение, максимальное количество попыток запуска алгоритма обучения, количество операций обучения перед выводом данных о состоянии сети, а также частота ошибок.

>>> neural_network.train_on_file("and.data", 10000, 1000, .00001) >>> neural_network.save("and.net")

Файл "and.data" должен содержать следующие данные:

4 2 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 1

Первая строка содержит три значения: количество примеров в файле, количество входных значений и количество выходных значений. Ниже расположены строки примеров, причем в строках с двумя значениями приведены входные значения, а в строках с одним значением - выходные.

Вы успешно закончили обучение сети и теперь хотите испытать ее в работе, не так ли? Но сначала нам придется загрузить данные сети из файла, в котором они были сохранены ранее.

>>> neural_net = libfann.neural_net() >>> neural_net.create_from_file("and.net")

После этого мы можем просто активировать ее аналогичным образом:

>>> print neural_net.run()

В результате должно быть выведено значение [-1.0] или аналогичное значение, зависящее от данных сети, сгенерированных в процессе ее обучения.

Поздравляю! Вы только что научили компьютер выполнять простейшие логические операции!

Keras — популярная библиотека глубокого обучения, которая внесла большой вклад в коммерциализацию глубокого обучения. Библиотека Keras проста в использовании и позволяет создавать нейронные сети с помощью лишь нескольких строк кода Python.

Из статьи вы узнаете, как с помощью Keras создать нейронную сеть, предсказывающую оценку продукта пользователями по их отзывам, классифицируя ее по двум категориям: положительная или отрицательная. Эта задача называется анализом настроений (сентимент-анализ) , и мы решим ее с помощью сайта с кинорецензиями IMDb. Модель, которую мы построим, также может быть применена для решения других задач после незначительной модификации.

Обратите внимание, что мы не будем вдаваться в подробности Keras и глубокого обучения. Этот пост предназначен для того, чтобы предоставить схему в Keras и познакомить с ее реализацией.

  • Что такое Keras?
  • Что такое анализ настроений?
  • Датасет IMDB
  • Изучение данных
  • Подготовка данных
  • Создание и обучение модели

Что такое Keras?

Keras — это библиотека для Python с открытым исходным кодом, которая позволяет легко создавать нейронные сети. Библиотека совместима с , Microsoft Cognitive Toolkit, Theano и MXNet. Tensorflow и Theano являются наиболее часто используемыми численными платформами на Python для разработки алгоритмов глубокого обучения, но они довольно сложны в использовании.


Оценка популярности фреймворков машинного обучения по 7 категориям

Keras, наоборот, предоставляет простой и удобный способ создания моделей глубокого обучения. Ее создатель, François Chollet, разработал ее для того, чтобы максимально ускорить и упростить процесс создания нейронных сетей. Он сосредоточил свое внимание на расширяемости, модульности, минимализме и поддержке Python. Keras можно использовать с GPU и CPU; она поддерживает как Python 2, так и Python 3. Keras компании Google внесла большой вклад в коммерциализацию глубокого обучения и , поскольку она содержит cовременные алгоритмы глубокого обучения, которые ранее были не только недоступными, но и непригодными для использования.

Что такое анализ настроений (сентимент-анализ)?

С помощью анализа настроений можно определить отношение (например, настроение) человека к тексту, взаимодействию или событию. Поэтому сентимент-анализ относится к области обработки естественного языка, в которой смысл текста должен быть расшифрован для извлечения из него тональности и настроений.


Пример шкалы анализа настроений

Спектр настроений обычно подразделяется на положительные, отрицательные и нейтральные категории. С использованием анализа настроений можно, например, прогнозировать мнение клиентов и их отношение к продукту на основе написанных ими обзоров. Поэтому анализ настроений широко применяется к обзорам, опросам, текстам и многому другому.

Датасет IMDb


Рецензии на сайте IMDb

Датасет IMDb состоит из 50 000 обзоров фильмов от пользователей, помеченных как положительные (1) и отрицательные (0).

  • Рецензии предварительно обрабатываются, и каждая из них кодируется последовательностью индексов слов в виде целых чисел.
  • Слова в обзорах индексируются по их общей частоте появления в датасете. Например, целое число «2» кодирует второе наиболее частое используемое слово.
  • 50 000 обзоров разделены на два набора: 25 000 для обучения и 25 000 для тестирования.

Датасет был создан исследователями Стэнфордского университета и представлен в статье 2011 года, в котором достигнутая точность предсказаний была равна 88,89%. Датасет также использовался в рамках конкурса сообщества Keggle «Bag of Words Meets Bags of Popcorn» в 2011 году.

Импорт зависимостей и получение данных

Начнем с импорта необходимых зависимостей для предварительной обработки данных и построения модели.

%matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np from keras.utils import to_categorical from keras import models from keras import layers

Загрузим датесет IMDb, который уже встроен в Keras. Поскольку мы не хотим иметь данные обучения и тестирования в пропорции 50/50, мы сразу же объединим эти данные после загрузки для последующего разделения в пропорции 80/20 :

From keras.datasets import imdb (training_data, training_targets), (testing_data, testing_targets) = imdb.load_data(num_words=10000) data = np.concatenate((training_data, testing_data), axis=0) targets = np.concatenate((training_targets, testing_targets), axis=0)

Изучение данных

Изучим наш датасет:

Print("Categories:", np.unique(targets)) print("Number of unique words:", len(np.unique(np.hstack(data)))) Categories: Number of unique words: 9998 length = print("Average Review length:", np.mean(length)) print("Standard Deviation:", round(np.std(length))) Average Review length: 234.75892 Standard Deviation: 173.0

Можно видеть, что все данные относятся к двум категориям: 0 или 1, что представляет собой настроение обзора. Весь датасет содержит 9998 уникальных слов, средний размер обзора составляет 234 слова со стандартным отклонением 173.

Рассмотрим простой способ обучения:

Print("Label:", targets) Label: 1 print(data)

Здесь вы видите первый обзор из датасета, который помечен как положительный (1). Нижеследующий код производит обратное преобразование индексов в слова, чтобы мы могли их прочесть. В нем каждое неизвестное слово заменяется на «#». Это делается с помощью функции get_word_index () .

Index = imdb.get_word_index() reverse_index = dict([(value, key) for (key, value) in index.items()]) decoded = " ".join() print(decoded) # this film was just brilliant casting location scenery story direction everyone"s really suited the part they played and you could just imagine being there robert # is an amazing actor and now the same being director # father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for # and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also # to the two little boy"s that played the # of norman and paul they were just brilliant children are often left out of the # list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don"t you think the whole story was so lovely because it was true and was someone"s life after all that was shared with us all

Подготовка данных

Пришло время подготовить данные. Нужно векторизовать каждый обзор и заполнить его нулями, чтобы вектор содержал ровно 10 000 чисел. Это означает, что каждый обзор, который короче 10 000 слов, мы заполняем нулями. Это делается потому, что самый большой обзор имеет почти такой же размер, а каждый элемент входных данных нашей нейронной сети должен иметь одинаковый размер. Также нужно выполнить преобразование переменных в тип float .

Def vectorize(sequences, dimension = 10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results = 1 return results data = vectorize(data) targets = np.array(targets).astype("float32")

Разделим датасет на обучающий и тестировочный наборы. Обучающий набор будет состоять из 40 000 обзоров, тестировочный — из 10 000.

Test_x = data[:10000] test_y = targets[:10000] train_x = data train_y = targets

Создание и обучение модели

Теперь можно создать простую нейронную сеть. Начнем с определения типа модели, которую мы хотим создать. В Keras доступны два типа моделей: последовательные и с функциональным API .

Затем нужно добавить входные, скрытые и выходные слои. Для предотвращения переобучения будем использовать между ними исключение («dropout» ). Обратите внимание, что вы всегда должны использовать коэффициент исключения в диапазоне от 20% до 50%. На каждом слое используется функция «dense» для полного соединения слоев друг с другом. В скрытых слоях будем используем «relu» , потому это практически всегда приводит к удовлетворительным результатам. Не бойтесь экспериментировать с другими функциями активации. На выходном слое используем сигмоидную функцию, которая выполняет перенормировку значений в диапазоне от 0 до 1. Обратите внимание, что мы устанавливаем размер входных элементов датасета равным 10 000, потому что наши обзоры имеют размер до 10 000 целых чисел. Входной слой принимает элементы с размером 10 000, а выдает — с размером 50.

Наконец, пусть Keras выведет краткое описание модели, которую мы только что создали.

# Input - Layer model.add(layers.Dense(50, activation = "relu", input_shape=(10000,))) # Hidden - Layers model.add(layers.Dropout(0.3, noise_shape=None, seed=None)) model.add(layers.Dense(50, activation = "relu") model.add(layers.Dropout(0.2, noise_shape=None, seed=None)) model.add(layers.Dense(50, activation = "relu")) # Output- Layer model.add(layers.Dense(1, activation = "sigmoid"))model.summary() model.summary() _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 50) 500050 _________________________________________________________________ dropout_1 (Dropout) (None, 50) 0 _________________________________________________________________ dense_2 (Dense) (None, 50) 2550 _________________________________________________________________ dropout_2 (Dropout) (None, 50) 0 _________________________________________________________________ dense_3 (Dense) (None, 50) 2550 _________________________________________________________________ dense_4 (Dense) (None, 1) 51 ================================================================= Total params: 505,201 Trainable params: 505,201 Non-trainable params: 0 _________________________________________________________________

Теперь нужно скомпилировать нашу модель, то есть, по существу, настроить ее для обучения. Будем использовать оптимизатор «adam» . Оптимизатор — это алгоритм, который изменяет веса и смещения во время обучения. В качестве функции потерь используем бинарную кросс-энтропию (так как мы работаем с бинарной классификацией), в качестве метрики оценки — точность.

Model.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"])

Теперь можно обучить нашу модель. Мы будем делать это с размером партии 500 и только двумя эпохами, поскольку я выяснил, что модель начинает переобучаться , если тренировать ее дольше. Размер партии определяет количество элементов, которые будут распространяться по сети, а эпоха — это один проход всех элементов датасета. Обычно больший размер партии приводит к более быстрому обучению, но не всегда — к быстрой сходимости. Меньший размер партии обучает медленнее, но может быстрее сходиться. Выбор того или иного варианта определенно зависит от типа решаемой задачи, и лучше попробовать каждый из них. Если вы новичок в этом вопросе, я бы посоветовал вам сначала использовать размер партии 32 , что является своего рода стандартом.

Results = model.fit(train_x, train_y, epochs= 2, batch_size = 500, validation_data = (test_x, test_y)) Train on 40000 samples, validate on 10000 samples Epoch 1/2 40000/40000 [==============================] - 5s 129us/step - loss: 0.4051 - acc: 0.8212 - val_loss: 0.2635 - val_acc: 0.8945 Epoch 2/2 40000/40000 [==============================] - 4s 90us/step - loss: 0.2122 - acc: 0.9190 - val_loss: 0.2598 - val_acc: 0.8950

Проведем оценку работы модели:

Print(np.mean(results.history["val_acc"])) 0.894750000536

Отлично! Наша простая модель уже побила рекорд точности в статье 2011 года , упомянутой в начале поста. Смело экспериментируйте с параметрами сети и количеством слоев.

Полный код модели приведен ниже:

Import numpy as np from keras.utils import to_categorical from keras import models from keras import layers from keras.datasets import imdb (training_data, training_targets), (testing_data, testing_targets) = imdb.load_data(num_words=10000) data = np.concatenate((training_data, testing_data), axis=0) targets = np.concatenate((training_targets, testing_targets), axis=0) def vectorize(sequences, dimension = 10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results = 1 return results data = vectorize(data) targets = np.array(targets).astype("float32") test_x = data[:10000] test_y = targets[:10000] train_x = data train_y = targets model = models.Sequential() # Input - Layer model.add(layers.Dense(50, activation = "relu", input_shape=(10000,))) # Hidden - Layers model.add(layers.Dropout(0.3, noise_shape=None, seed=None)) model.add(layers.Dense(50, activation = "relu")) model.add(layers.Dropout(0.2, noise_shape=None, seed=None)) model.add(layers.Dense(50, activation = "relu")) # Output- Layer model.add(layers.Dense(1, activation = "sigmoid")) model.summary() # compiling the model model.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"]) results = model.fit(train_x, train_y, epochs= 2, batch_size = 500, validation_data = (test_x, test_y)) print("Test-Accuracy:", np.mean(results.history["val_acc"]))

Итоги

Вы узнали, что такое анализ настроений и почему Keras является одной из наиболее популярных библиотек глубокого обучения.

Мы создали простую нейронную сеть с шестью слоями, которая может вычислять настроение авторов кинорецензий с точностью 89%. Теперь вы можете использовать эту модель для анализа бинарных настроений в других источниках, но для этого вам придется сделать их размер равным 10 000 или изменить параметры входного слоя.

Эту модель (с небольшими изменениями) можно применить и для решения других задач машинного обучения.