Техпроцесс процессора — что это такое? Технологический процесс. Техпроцесс

Центральный процессор в компьютере играет самую главную роль. Его можно считать "мозгом" всей системы, так как от него зависит количество обработанных данных, возможность запуска системы, совместимость оборудования. В серверах используются особые виды процессоров, которые предназначены именно для таких задач, то есть для вычислений. Вот компьютера.

Существует и такое понятие, как графический процессор, — он находится не на материнской плате, как центральный, а в графическом адаптере. Его задача — обрабатывать графические данные, передавать их на компьютер и выводить изображение на экран монитора.

У каждого из них свое строение и техпроцесс процессора, о котором дальше пойдет речь.

Последние полвека в изготовлении процессоров и прочей подобной техники используется кристалл кремния. Литографический метод обработки позволяет создавать отдельные транзисторы, которые очень важны, ведь из них и состоят процессоры.

Ориентируясь на актуальное состояние электрического поля, транзисторы могут блокировать или пропускать электрический ток. Это, кстати, основополагающая часть работы двоичной системы, которая заключена в этих двух положениях — включенном и выключенном.

Так что такое техпроцесс? Этот термин используется в показателях для того, чтобы указать на размер используемых транзисторов, из которых состоит любой процессор.

Возвращаясь к производству процессоров, можно выделить такой процесс, как фотолитография. Эта функция нужна для того, чтобы покрыть кристалл диэлектрическим материалом, из которого с помощью света выделяются транзисторы. В зависимости от возможности аппарата — тонкости и чувствительности, определяется техпроцесс процессора, то есть его толщина в нанометрах.

Как известно, чем тоньше техпроцесс процессора, тем большее количество транзисторов будет расположено на чипе.

Если размер будет небольшим, то его энергопотребление и количество выделяемого тепла будут в разы меньше. Именно по этой причине небольшой техпроцесс процессора позволяет размещать чип на портативных устройствах, а за счет этого мобильное устройство сможет дольше держать заряд.

Размер имеет значение еще и в экономических целях, так как при небольших затратах материала увеличивается численность изготавливаемых чипов. Однако это палка о двух концах, потому что для более тонкого техпроцесса процессора необходимо топовое дорогое оборудование.

Малые детали строения позволяют разместить на чипе большее количество элементов, за счет чего растет производительность процессора. При всем при этом параметры размера самого чипа остаются неизменными.

Если у процессора есть техническая возможность для того, чтобы разогнаться, то чем меньше предел техпроцесса процессора, тем выше будут частоты.

Примерно с 70-х по 80-е годы были созданы процессоры с техпроцессом в три микрометра. Такого прорыва в компьютерных технологиях достигли компании "Зилог" и "Интел" в 75-79-х годах. С тех пор было принято решение улучшать качество литографического оборудования.

С 1990 года в архитектуре процессора появились значимые изменения, тогда же и были выпущены чипы с 0,35-микрометровым техпроцессом, или 350-нанометровым. Однако в начале двадцать первого века размеры транзисторов были уменьшены в три раза, что равнялось 130 нанометрам.

Самый значимый технологический прорыв пришелся на 2004 год — именно в то время производители освоили технологию 65-нанометрового технологического процесса. Тогда же поступили в продажу Core 2 Duo и его конкурент — AMD Phenom X4. Что касается консолей, то для Xbox 360 были произведены процессоры Falcon и Jasper.

Значимые изменения

Две ведущие компании по достигли размера в 32 нанометра, демонстрируя это в процессорах поколения Sandy Bridge и AMD Bulldozer.

Компания "Интел" создала кристалл, способный работать с частотой 3500 мегагерц, а количество ядер стало равно четырем. Также появился более усовершенствованный графический чип, встроенный в процессор, частота которого доходит до полутора гигагерц. В то же время чип обладал поддержкой новой оперативной памяти, контроллером интерфейса PCI-E второго поколения и протоколами x86. Увеличилась скорость потока данных, благодаря наличию кэша третьего уровня, размер которого - восемь мегабайт.

Что касается ее прямого конкурента, AMD, то ему удалось оснастить процессор шестнадцатью ядрами с частотой до 4000 мегагерц. В остальном отличия от "Интела" практически нет.

Однако только "синей" команде удалось достичь ощутимого прорыва и выпустить чипы с 22-нанометровым техпроцессом, что позволило процессорам семейства Ivy Bridge, Haswell и Xeon, серий Core i5 и i7 обеспечить высокую производительность, понижая при этом потребляемую энергию.

Производительность процессоров увеличивается только за счет количества транзисторов, при этом значение тепловыделения не подвергается изменению.

Когда уменьшается технологический процесс, производители имеют возможность разместить на территории чипа большее количество остальных составляющих вроде ядер и дополнительных компонентов.

Производство микросхем — весьма непростое дело, и закрытость этого рынка диктуется в первую очередь особенностями главенствующей в наши дни технологии фотолитографии. Микроскопические электронные схемы проецируются на кремниевую пластину через фотошаблоны, стоимость каждого из которых может достигать $200 000. А между тем для изготовления одного чипа требуется не меньше 50 таких масок. Добавьте к этому стоимость «проб и ошибок» при разработке новых моделей, и вы поймете, что производить процессоры могут только очень большие компании очень большими тиражами.

А что делать научным лабораториям и высокотехнологичным стартапам, которым необходимы нестандартные схемы? Как быть военным, для которых закупать процессоры у «вероятного противника» — мягко говоря, не комильфо?

Мы побывали на российском производственном участке голландской компании Mapper, благодаря которой изготовление микросхем может перестать быть уделом небожителей и превратится в занятие для простых смертных. Ну или почти простых. Здесь, на территории Технополиса «Москва» при финансовой поддержке корпорации «Роснано» производится ключевой компонент технологии Mapper — электронно-оптическая система.

Однако прежде чем разбираться в нюансах безмасочной литографии Mapper, стоит вспомнить основы обычной фотолитографии.

Неповоротливый свет

На современном процессоре Intel Core i7 может располагаться около 2 млрд транзисторов (в зависимости от модели), размер каждого из которых — 14 нм. В погоне за вычислительной мощностью производители ежегодно уменьшают размеры транзисторов и увеличивают их число. Вероятным технологическим пределом в этой гонке можно считать 5 нм: на таких расстояниях начинают проявляться квантовые эффекты, из-за которых электроны в соседних ячейках могут вести себя непредсказуемо.

Чтобы нанести на кремниевую пластину микроскопические полупроводниковые структуры, используют процесс, похожий на работу с фотоувеличителем. Разве что цель у него обратная — сделать изображение как можно меньше. Пластину (или защитную пленку) покрывают фоторезистом — полимерным фоточувствительным материалом, который меняет свои свойства при облучении светом. Требуемый рисунок чипа экспонируют на фоторезист через маску и собирающую линзу. Напечатанные пластины, как правило, в четыре раза меньше, чем маски.


Такие вещества, как кремний или германий, имеют по четыре электрона на внешнем энергетическом уровне. Они образуют красивые кристаллы, похожие на металл. Но, в отличие от металла, они не проводят электрический ток: все их электроны задействованы в мощных ковалентных связях и не могут двигаться. Однако все меняется, если добавить к ним немного донорной примеси из вещества с пятью электронами на внешнем уровне (фосфора или мышьяка). Четыре электрона вступают в связь с кремнием, а один остается свободным. Кремний с донорной примесью (n-типа) — неплохой проводник. Если добавить к кремнию акцепторную примесь из вещества с тремя электронами на внешнем уровне (бор, индий), аналогичным образом образуются «дырки», виртуальный аналог положительного заряда. В таком случае речь идет о полупроводнике p-типа. Соединив проводники p- и n-типа, мы получим диод — полупроводниковый прибор, пропускающий ток только в одном направлении. Комбинация p-n-p или n-p-n дает нам транзистор — через него ток протекает только в том случае, если на центральный проводник подается определенное напряжение.

Свои коррективы в этот процесс вносит дифракция света: луч, проходя через отверстия маски, немного преломляется, и вместо одной точки экспонируется серия концентрических кругов, как от брошенного в омут камня. К счастью, дифракция находится в обратной зависимости от длины волны, чем и пользуются инженеры, применяя свет ультрафиолетового диапазона с длиной волны 195 нм. Почему не еще меньше? Просто более короткая волна не будет преломляться собирающей линзой, лучи будут проходить насквозь, не фокусируясь. Увеличить собирающую способность линзы тоже нельзя — не позволит сферическая аберрация: каждый луч будет проходить оптическую ось в своей точке, нарушая фокусировку.

Максимальная ширина контура, которую можно отобразить с помощью фотолитографии, — 70 нм. Чипы с более высоким разрешением печатают в несколько приемов: наносят 70-нанометровые контуры, протравливают схему, а затем экспонируют следующую часть через новую маску.

Сейчас в разработке находится технология фотолитографии в глубоком ультрафиолете, с применением света с экстремальной длиной волны около 13,5 нм. Технология предполагает использование вакуума и многослойных зеркал с отражением на основе межслойной интерференции. Маска тоже будет не просвечивающим, а отражающим элементом. Зеркала лишены явления преломления, поэтому могут работать со светом любой длины волны. Но пока это лишь концепция, которую, возможно, станут применять в будущем.

Как сегодня делают процессоры


Идеально отполированную круглую кремниевую пластину диаметром 30 см покрывают тонким слоем фоторезиста. Равномерно распределить фоторезист помогает центробежная сила.


Будущая схема экспонируется на фоторезист через маску. Этот процесс повторяется многократно, потому что из одной пластины получается множество чипов.


Та часть фоторезиста, которая подверглась ультрафиолетовому излучению, становится растворимой и с легкостью удаляется с помощью химикатов.


Участки кремниевой пластины, не защищенные фоторезистом, подвергаются химическому травлению. На их месте образуются углубления.


На пластину вновь наносят слой фоторезиста. На этот раз с помощью экспонирования обнажают те участки, которые подвергнутся ионной бомбардировке.


Под воздействием электрического поля ионы примесей разгоняются до скоростей более 300 000 км/ч и проникают в кремний, придавая ему свойства полупроводника.


После удаления остатков фоторезиста на пластине остаются готовые транзисторы. Сверху наносят слой диэлектрика, в котором по все той же технологии протравливают отверстия под контакты.


Пластину помещают в раствор сульфата меди, и с помощью электролиза на нее наносят проводящий слой. Затем весь слой снимают шлифовкой, а контакты в отверстиях остаются.


Контакты соединяются многоэтажной сетью из металлических «проводов». Количество «этажей» может достигать 20, а общая схема проводников называется архитектурой процессора.


Только теперь пластину распиливают на множество отдельных чипов. Каждый «кристалл» тестируют и лишь затем устанавливают на плату с контактами и накрывают серебряной крышкой-радиатором.

13 000 телевизоров

Альтернативой фотолитографии считают электролитографию, когда экспонируют не светом, а электронами, и не фото-, а электрорезист. Электронный пучок легко фокусируется в точку минимального размера, вплоть до 1 нм. Технология напоминает электронно-лучевую трубку телевизора: сфокусированный поток электронов отклоняется управляющими катушками, рисуя изображение на кремниевой пластине.

До последнего времени эта технология не могла конкурировать с традиционным методом из-за низкой скорости. Чтобы электрорезист среагировал на облучение, он должен принять определенное количество электронов на единицу площади, поэтому один луч может экспонировать в лучшем случае 1 см2/ч. Это приемлемо для единичных заказов от лабораторий, однако неприменимо в промышленности.

К сожалению, решить проблему, увеличив энергию луча, невозможно: одноименные заряды отталкиваются, поэтому при увеличении тока пучок электронов становится шире. Зато можно увеличить количество лучей, экспонируя несколько зон одновременно. И если несколько — это 13 000, как в технологии Mapper, то, согласно расчетам, можно печатать уже десять полноценных чипов в час.


Конечно, объединить в одном устройстве 13 000 электронно-лучевых трубок было бы невозможно. В случае Mapper излучение из источника направляется на коллиматорную линзу, которая формирует широкий параллельный пучок электронов. На его пути встает апертурная матрица, которая превращает его в 13 000 отдельных лучей. Лучи проходят через матрицу бланкеров — кремниевую пластину с 13 000 отверстий. Около каждого из них располагается отклоняющий электрод. Если на него подается ток, электроны «промахиваются» мимо своего отверстия, и один из 13 000 лучей выключается.

Пройдя бланкеры, лучи направляются к матрице дефлекторов, каждый из которых может отклонять свой луч на пару микронов вправо или влево относительно движения пластины (так что Mapper все же напоминает 13 000 кинескопов). Наконец, каждый луч дополнительно фокусируется собственной микролинзой, после чего направляется к электрорезисту. На сегодняшний день технология Mapper прошла тестирование во французском научно-исследовательском институте микроэлектроники CEA-Leti и в компании TSMC, которая производит микропроцессоры для ведущих игроков рынка (в том числе и для Apple iPhone 6S). Ключевые компоненты системы, включая кремниевые электронные линзы, производятся на московском заводе.

Технология Mapper обещает новые перспективы не только исследовательским лабораториям и мелкосерийным (в том числе военным) производствам, но и крупным игрокам. В настоящее время для тестирования прототипов новых процессоров приходится изготавливать точно такие же фотошаблоны, как для массового производства. Возможность относительно быстрого прототипирования схем обещает не только снизить стоимость разработки, но и ускорить прогресс в этой области. Что в конечном счете на руку массовому потребителю электроники, то есть всем нам.

Как делают микросхемы

тобы понять, в чем заключается основное различие между этими двумя технологиями, необходимо сделать краткий экскурс в саму технологию производства современных процессоров или интегральных микросхем.

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник — это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная. Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная — к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы — основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом — при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток. Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится. Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток — говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов. Остановимся более подробно на процессе изготовления микросхем, первый этап которого — получение кремниевых подложек.

Шаг 1. Выращивание болванок

Создание таких подложек начинается с выращивания цилиндрического по форме монокристалла кремния. В дальнейшем из таких монокристаллических заготовок (болванок) нарезают круглые пластины (wafers), толщина которых составляет приблизительно 1/40 дюйма, а диаметр — 200 мм (8 дюймов) или 300 мм (12 дюймов). Это и есть кремниевые подложки, служащие для производства микросхем.

При формировании пластин из монокристаллов кремния учитывается то обстоятельство, что для идеальных кристаллических структур физические свойства в значительной степени зависят от выбранного направления (свойство анизотропии). К примеру, сопротивление кремниевой подложки будет различным в продольном и поперечном направлениях. Аналогично, в зависимости от ориентации кристаллической решетки, кристалл кремния будет по-разному реагировать на какие-либо внешние воздействия, связанные с его дальнейшей обработкой (например, травление, напыление и т.д.). Поэтому пластина должна быть вырезана из монокристалла таким образом, чтобы ориентация кристаллической решетки относительно поверхности была строго выдержана в определенном направлении.

Как уже отмечалось, диаметр заготовки монокристалла кремния составляет либо 200, либо 300 мм. Причем диаметр 300 мм — это относительно новая технология, о которой мы расскажем ниже. Понятно, что на пластине такого диаметра может разместиться далеко не одна микросхема, даже если речь идет о процессоре Intel Pentium 4. Действительно, на одной подобной пластине-подложке формируется несколько десятков микросхем (процессоров), но для простоты мы рассмотрим лишь процессы, происходящие на небольшом участке одного будущего микропроцессора.

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

После формирования кремниевой подложки наступает этап создания сложнейшей полупроводниковой структуры.

Для этого в кремний нужно внедрить так называемые донорную и акцепторную примеси. Однако возникает вопрос — как осуществить внедрение примесей по точно заданному рисунку-шаблону? Для того чтобы это стало возможным, те области, куда не требуется внедрять примеси, защищают специальной пленкой из диоксида кремния, оставляя оголенными только те участки, которые подвергаются дальнейшей обработке (рис. 2). Процесс формирования такой защитной пленки нужного рисунка состоит из нескольких этапов.

На первом этапе вся пластина кремния целиком покрывается тонкой пленкой диоксида кремния (SiO2), который является очень хорошим изолятором и выполняет функцию защитной пленки при дальнейшей обработке кристалла кремния. Пластины помещают в камеру, где при высокой температуре (от 900 до 1100 °С) и давлении происходит диффузия кислорода в поверхностные слои пластины, приводящая к окислению кремния и к образованию поверхностной пленки диоксида кремния. Для того чтобы пленка диоксида кремния имела точно заданную толщину и не содержала дефектов, необходимо строго поддерживать постоянную температуру во всех точках пластины в процессе окисления. Если же пленкой из диоксида кремния должна быть покрыта не вся пластина, то предварительно на кремниевую подложку наносится маска Si3N4, предотвращающая нежелательное окисление.

Шаг 3. Нанесение фоторезистива

После того как кремниевая подложка покроется защитной пленкой диоксида кремния, необходимо удалить эту пленку с тех мест, которые будут подвергаться дальнейшей обработке. Удаление пленки осуществляется посредством травления, а для защиты остальных областей от травления на поверхность пластины наносится слой так называемого фоторезиста. Термином «фоторезисты» обозначают светочувствительные и устойчивые к воздействию агрессивных факторов составы. Применяемые составы должны обладать, с одной стороны, определенными фотографическими свойствами (под воздействием ультрафиолетового света становиться растворимыми и вымываться в процессе травления), а с другой — резистивными, позволяющими выдерживать травление в кислотах и щелочах, нагрев и т.д. Основное назначение фоторезистов — создание защитного рельефа нужной конфигурации.

Процесс нанесения фоторезиста и его дальнейшее облучение ультрафиолетом по заданному рисунку называется фотолитографией и включает следующие основные операции: формирование слоя фоторезиста (обработка подложки, нанесение, сушка), формирование защитного рельефа (экспонирование, проявление, сушка) и передача изображения на подложку (травление, напыление и т.д.).

Перед нанесением слоя фоторезиста (рис. 3) на подложку последняя подвергается предварительной обработке, в результате чего улучшается ее сцепление со слоем фоторезиста. Для нанесения равномерного слоя фоторезиста используется метод центрифугирования. Подложка помещается на вращающийся диск (центрифуга), и под воздействием центробежных сил фоторезист распределяется по поверхности подложки практически равномерным слоем. (Говоря о практически равномерном слое, учитывают то обстоятельство, что под действием центробежных сил толщина образующейся пленки увеличивается от центра к краям, однако такой способ нанесения фоторезиста позволяет выдержать колебания толщины слоя в пределах ±10%.)

Шаг 4. Литография

После нанесения и сушки слоя фоторезиста наступает этап формирования необходимого защитного рельефа. Рельеф образуется в результате того, что под действием ультрафиолетового излучения, попадающего на определенные участки слоя фоторезиста, последний изменяет свойства растворимости, например освещенные участки перестают растворяться в растворителе, которые удаляют участки слоя, не подвергшиеся освещению, или наоборот — освещенные участки растворяются. По способу образования рельефа фоторезисты делят на негативные и позитивные. Негативные фоторезисты под действием ультрафиолетового излучения образуют защитные участки рельефа. Позитивные фоторезисты, напротив, под воздействием ультрафиолетового излучения приобретают свойства текучести и вымываются растворителем. Соответственно защитный слой образуется в тех участках, которые не подвергаются ультрафиолетовому облучению.

Для засветки нужных участков слоя фоторезиста используется специальный шаблон-маска. Чаще всего для этой цели применяются пластинки из оптического стекла с полученными фотографическим или иным способом непрозрачными элементами. Фактически такой шаблон содержит рисунок одного из слоев будущей микросхемы (всего таких слоев может насчитываться несколько сотен). Поскольку этот шаблон является эталоном, он должен быть выполнен с большой точностью. К тому же с учетом того, что по одному фотошаблону будет сделано очень много фотопластин, он должен быть прочным и устойчивым к повреждениям. Отсюда понятно, что фотошаблон — весьма дорогая вещь: в зависимости от сложности микросхемы он может стоить десятки тысяч долларов.

Ультрафиолетовое излучение, проходя сквозь такой шаблон (рис. 4), засвечивает только нужные участки поверхности слоя фоторезиста. После облучения фоторезист подвергается проявлению, в результате которого удаляются ненужные участки слоя. При этом открывается соответствующая часть слоя диоксида кремния.

Несмотря на кажущуюся простоту фотолитографического процесса, именно этот этап производства микросхем является наиболее сложным. Дело в том, что в соответствии с предсказанием Мура количество транзисторов на одной микросхеме возрастает экспоненциально (удваивается каждые два года). Подобное возрастание числа транзисторов возможно только благодаря уменьшению их размеров, но именно уменьшение и «упирается» в процесс литографии. Для того чтобы сделать транзисторы меньше, необходимо уменьшить геометрические размеры линий, наносимых на слой фоторезиста. Но всему есть предел — сфокусировать лазерный луч в точку оказывается не так-то просто. Дело в том, что в соответствии с законами волновой оптики минимальный размер пятна, в который фокусируется лазерный луч (на самом деле это не просто пятно, а дифракционная картина), определяется кроме прочих факторов и длиной световой волны. Развитие литографической технологии со времени ее изобретения в начале 70-х шло в направлении сокращения длины световой волны. Именно это позволяло уменьшать размеры элементов интегральной схемы. С середины 80-х в фотолитографии стало использоваться ультрафиолетовое излучение, получаемое с помощью лазера. Идея проста: длина волны ультрафиолетового излучения меньше, чем длина волны света видимого диапазона, следовательно, возможно получить и более тонкие линии на поверхности фоторезиста. До недавнего времени для литографии использовалось глубокое ультрафиолетовое излучение (Deep Ultra Violet, DUV) с длиной волны 248 нм. Однако когда фотолитография перешагнула границу 200 нм, возникли серьезные проблемы, впервые поставившие под сомнение возможность дальнейшего использования этой технологии. Например, при длине волны меньше 200 мкм слишком много света поглощается светочувствительным слоем, поэтому усложняется и замедляется процесс передачи шаблона схемы на процессор. Подобные проблемы побуждают исследователей и производителей искать альтернативу традиционной литографической технологии.

Новая технология литографии, получившая название ЕUV-литографии (Extreme UltraViolet — сверхжесткое ультрафиолетовое излучение), основана на использовании ультрафиолетового излучения с длиной волны 13 нм.

Переход с DUV- на EUV-литографию обеспечивает более чем 10-кратное уменьшение длины волны и переход в диапазон, где она сопоставима с размерами всего нескольких десятков атомов.

Применяемая сейчас литографическая технология позволяет наносить шаблон с минимальной шириной проводников 100 нм, в то время как EUV-литография делает возможной печать линий гораздо меньшей ширины — до 30 нм. Управлять ультракоротким излучением не так просто, как кажется. Поскольку EUV-излучение хорошо поглощается стеклом, то новая технология предполагает использование серии из четырех специальных выпуклых зеркал, которые уменьшают и фокусируют изображение, полученное после применения маски (рис. 5 , , ). Каждое такое зеркало содержит 80 отдельных металлических слоев толщиной примерно в 12 атомов.

Шаг 5. Травление

После засвечивания слоя фоторезиста наступает этап травления (etching) с целью удаления пленки диоксида кремния (рис. 8).

Часто процесс травления ассоциируется с кислотными ваннами. Такой способ травления в кислоте хорошо знаком радиолюбителям, которые самостоятельно делали печатные платы. Для этого на фольгированный текстолит лаком, выполняющим функцию защитного слоя, наносят рисунок дорожек будущей платы, а затем опускают пластину в ванну с азотной кислотой. Ненужные участки фольги стравливаются, обнажая чистый текстолит. Этот способ имеет ряд недостатков, главный из которых — невозможность точно контролировать процесс удаления слоя, так как слишком много факторов влияют на процесс травления: концентрация кислоты, температура, конвекция и т.д. Кроме того, кислота взаимодействует с материалом по всем направлениям и постепенно проникает под край маски из фоторезиста, то есть разрушает сбоку прикрытые фоторезистом слои. Поэтому при производстве процессоров используется сухой метод травления, называемый также плазменным. Такой метод позволяет точно контролировать процесс травления, а разрушение вытравливаемого слоя происходит строго в вертикальном направлении.

При использовании сухого травления для удаления с поверхности пластины диоксида кремния применяется ионизированный газ (плазма), который вступает в реакцию с поверхностью диоксида кремния, в результате чего образуются летучие побочные продукты.

После процедуры травления, то есть когда оголены нужные области чистого кремния, удаляется оставшаяся часть фотослоя. Таким образом, на кремниевой подложке остается рисунок, выполненный диоксидом кремния.

Шаг 6. Диффузия (ионная имплантация)

Напомним, что предыдущий процесс формирования необходимого рисунка на кремниевой подложке требовался для того, чтобы создать в нужных местах полупроводниковые структуры путем внедрения донорной или акцепторной примеси. Процесс внедрения примесей осуществляется посредством диффузии (рис. 9) — равномерного внедрения атомов примеси в кристаллическую решетку кремния. Для получения полупроводника n-типа обычно используют сурьму, мышьяк или фосфор. Для получения полупроводника p-типа в качестве примеси используют бор, галлий или алюминий.

Для процесса диффузии легирующей примеси применяется ионная имплантация. Процесс имплантации заключается в том, что ионы нужной примеси «выстреливаются» из высоковольтного ускорителя и, обладая достаточной энергией, проникают в поверхностные слои кремния.

Итак, по окончании этапа ионной имплантации необходимый слой полупроводниковой структуры создан. Однако в микропроцессорах таких слоев может насчитываться несколько. Для создания очередного слоя на полученном рисунке схемы выращивается дополнительный тонкий слой диоксида кремния. После этого наносятся слой поликристаллического кремния и еще один слой фоторезиста. Ультрафиолетовое излучение пропускается сквозь вторую маску и высвечивает соответствующий рисунок на фотослое. Затем опять следуют этапы растворения фотослоя, травления и ионной имплантации.

Шаг 7. Напыление и осаждение

Наложение новых слоев осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются «окна», которые заполняются атомами металла; в результате на кристалле создаются металлические полоски — проводящие области. Таким образом в современных процессорах устанавливаются связи между слоями, формирующими сложную трехмерную схему. Процесс выращивания и обработки всех слоев длится несколько недель, а сам производственный цикл состоит из более чем 300 стадий. В результате на кремниевой пластине формируются сотни идентичных процессоров.

Чтобы выдержать воздействия, которым подвергаются пластины в процессе нанесения слоев, кремниевые подложки изначально делаются достаточно толстыми. Поэтому, прежде чем разрезать пластину на отдельные процессоры, ее толщину уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на тыльную сторону подложки наносят слой специального материала, улучшающего крепление кристалла к корпусу будущего процессора.

Шаг 8. Заключительный этап

По окончании цикла формирования все процессоры тщательно тестируются. Затем из пластины-подложки с помощью специального устройства вырезаются конкретные, уже прошедшие проверку кристаллы (рис. 10).

Каждый микропроцессор встраивается в защитный корпус, который также обеспечивает электрическое соединение кристалла микропроцессора с внешними устройствами. Тип корпуса зависит от типа и предполагаемого применения микропроцессора.

После запечатывания в корпус каждый микропроцессор повторно тестируется. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Перспективные технологии

Технологический процесс производства микросхем (в частности, процессоров) рассмотрен нами весьма упрощенно. Но даже такое поверхностное изложение позволяет понять технологические трудности, с которыми приходится сталкиваться при уменьшении размеров транзисторов.

Однако, прежде чем рассматривать новые перспективные технологии, ответим на поставленный в самом начале статьи вопрос: что же такое проектная норма технологического процесса и чем, собственно, отличается проектная норма 130 нм от нормы 180 нм? 130 нм или 180 нм — это характерное минимальное расстояние между двумя соседними элементами в одном слое микросхемы, то есть своеобразный шаг сетки, к которой осуществляется привязка элементов микросхемы. При этом совершенно очевидно, что, чем меньше этот характерный размер, тем больше транзисторов можно разместить на одной и той же площади микросхемы.

В настоящее время в производстве процессоров Intel используется 0,13-микронный технологический процесс. По этой технологии изготавливают процессор Intel Pentium 4 с ядром Northwood, процессор Intel Pentium III с ядром Tualatin и процессор Intel Celeron. В случае применения такого технологического процесса полезная ширина канала транзистора составляет 60 нм, а толщина оксидного слоя затвора не превышает 1,5 нм. Всего же в процессоре Intel Pentium 4 размещается 55 млн. транзисторов.

Наряду с увеличением плотности размещения транзисторов в кристалле процессора, 0,13-микронная технология, пришедшая на смену 0,18-микронной, имеет и другие нововведения. Во-первых, здесь используются медные соединения между отдельными транзисторами (в 0,18-микронной технологии соединения были алюминиевыми). Во-вторых, 0,13-микронная технология обеспечивает более низкое энергопотребление. Для мобильной техники, например, это означает, что энергопотребление микропроцессоров становится меньше, а время работы от аккумуляторной батареи — больше.

Ну и последнее нововведение, которое было воплощено при переходе на 0,13-микронный технологический процесс — это использование кремниевых пластин (wafer) диаметром 300 мм. Напомним, что до этого большинство процессоров и микросхем изготовлялись на основе 200-миллиметровых пластин.

Увеличение диаметра пластин позволяет снизить себестоимость каждого процессора и увеличить выход продукции надлежащего качества. Действительно, площадь пластины диаметром 300 мм в 2,25 раза больше площади пластины диаметром 200 мм, соответственно и количество процессоров, получаемых из одной пластины диаметром 300 мм, в два с лишним раза больше.

В 2003 году ожидается внедрение нового технологического процесса с еще меньшей проектной нормой, а именно 90-нанометрового. Новый технологический процесс, по которому корпорация Intel будет производить большую часть своей продукции, в том числе процессоры, наборы микросхем и коммуникационное оборудование, был разработан на опытном заводе D1C корпорации Intel по обработке 300-миллиметровых пластин в г.Хиллсборо (шт.Орегон).

23 октября 2002 года корпорация Intel объявила об открытии нового производства стоимостью 2 млрд. долл. в Рио-Ранчо (шт.Нью-Мексико). На новом заводе, получившем название F11X, будет применяться современная технология, по которой будут производиться процессоры на 300-мм подложках с использованием технологического процесса с проектной нормой 0,13 микрон. В 2003 году завод будет переведен на технологический процесс с проектной нормой 90 нм.

Кроме того, корпорация Intel уже заявила о возобновлении строительства еще одного производственного объекта на Fab 24 в Лейкслипе (Ирландия), который предназначен для изготовления полупроводниковых компонентов на 300-миллиметровых кремниевых подложках с 90-нанометровой проектной нормой. Новое предприятие общей площадью более 1 млн. кв. футов с особо чистыми помещениями площадью 160 тыс. кв. футов предполагается ввести в строй в первой половине 2004 года, и на нем будет работать более тысячи сотрудников. Стоимость объекта составляет около 2 млрд. долл.

В 90-нанометровом процессе применяется целый ряд передовых технологий. Это и самые маленькие в мире серийно изготавливаемые КМОП-транзисторы с длиной затвора 50 нм (рис. 11), что обеспечивает рост производительности при одновременном снижении энергопотребления, и самый тонкий оксидный слой затвора среди всех когда-либо производившихся транзисторов — всего 1,2 нм (рис. 12), или менее 5 атомарных слоев, и первая в отрасли реализация высокоэффективной технологии напряженного кремния.

Из перечисленных характеристик в комментариях нуждается, пожалуй, лишь понятие «напряженного кремния» (рис. 13). В таком кремнии расстояние между атомами больше, чем в обычном полупроводнике. Это, в свою очередь, обеспечивает более свободное протекание тока, аналогично тому, как на дороге с более широкими полосами движения свободнее и быстрее движется транспорт.

В результате всех нововведений на 10-20% улучшаются рабочие характеристики транзисторов, при увеличении затрат на производство всего на 2%.

Кроме того, в 90-нанометровом технологическом процессе используется семь слоев в микросхеме (рис. 14), что на один слой больше, чем в 130-нанометровом технологическом процессе, а также медные соединения.

Все эти особенности в сочетании с 300-миллиметровыми кремниевыми подложками обеспечивают корпорации Intel выигрыш в производительности, объемах производства и себестоимости. В выигрыше оказываются и потребители, поскольку новый технологический процесс Intel позволяет продолжить развитие отрасли в соответствии с законом Мура, вновь и вновь повышая производительность процессоров.

В преддверии выхода новых поколений процессов и видеокарт от AMD и NVIDIA стоит разобрать такую важную характеристику чипа, как технологический процесс его производства. Intel уже с 2015 года клепает процессоры на 14 нм техпроцессе, в то время, как AMD и NVIDA используют уже устаревший 28 нм техпроцесс. Из нашей статьи вы узнаете о том, что такое техпроцесс производства чипа и его влияние на основные характеристики CPU/GPU , а также узнаете ответ на вопрос: «Что лучше: купить сейчас или подождать нового поколения?»

Введение

AMD для своих GPU Polaris и CPU Zen выбрали 14 Нм производства GlobalFoundries и Samsung, что меньше, чем 16 нм от NVIDIA производства TSMC. А про технологии этих компаний можете прочесть по соответствующим ссылкам: , .

Надо заранее отметить, что здесь не будут затронуты всякие тонкости производства транзисторов, здесь вы просто узнаете о значении более тонкого техпроцесса.

Что такое техпроцесс?

Вообще техпроцесс производства полупроводниковых схем подразумевает последовательность различных технологических и контрольных операций. Но почему тогда в графе техпроцесс пишется цифра с обозначением в нанометрах? Просто у фотолитографического оборудования, при помощи которого получают транзисторы, есть разрешающая способность. Чтобы лучше понять это советуем вам посмотреть это видео:

Со временем происходит эволюционное совершенствование этого процесса, что позволяет до сих пор соблюдать Закон Мура.

Интересный факт: Intel Pentium имел техпроцесс в 800 нм, что по современным меркам кажется безумно большой цифрой! И всего лишь 3,1 млн. транзисторов. (У Intel Core i7-5960X 14 нм и 2.6 млрд. транзисторов)

На что влияет техпроцесс?

Недаром же производители гордятся новым достигнутым уровнем этого технологического процесса. Ведь он дает ощутимые преимущества:

  • уменьшение самих транзисторов ведет к увеличению их количества на единице площади, а это увеличение позволяет или поместить на подложку большее число транзисторов, что увеличивает производительность за счет расширения количества вычислительных блоков или уменьшить площадь самой подложки при сохранении прежнего числа транзисторов.
  • меньший размер транзисторов позволяет уменьшить их тепловыделение и энергопотребление. Это позволяет или увеличить частоту и количество вычислительных ядер без ущерба тепловыделению или просто уменьшить энергопотребление, что особо удобно для лэптопов.
  • вместе с 14 нм техпроцессом часто применяют FinFET транзисторы. Это такие транзисторы, которые имеют трехмерный затвор в форме плавника, что позволяет уменьшить размер транзистора и уменьшить потери тока и задержки. Их бывает несколько видов, но здесь про них рассказано не будет, так что если интересно, то сходите сюда .
  • переход на новый техпроцесс требует нового оборудования, что является недешевой операцией. Это сказывается в первую очередь на цене процессоров.
  • переход на новую стадию происходит не сразу. Технологию надо обкатать, поэтому первые чипы на новом технологическом процессе могут получаться далеко не с первого раза (влияет на цену). Особенно эта сложность растет с увеличением площади чипа, что не позволяет сразу после презентации нового техпроцесса сразу «лепить» быстрые многоядерные чипы с огромной площадью кристалла. Это в большей степени касается топовых видеочипов, где может применяться до 12 млрд транзисторов!

Так чего следует ждать?

Если поразмыслить, то получается, что в этом-следующем году следует ожидать значительного скачка в энергоэффективности, что позволит поднять частоту у топовых чипов и снизить требования к охлаждению у дешевых.

По видеокартам

По процессорам


Что касается процессоров, то здесь AMD обещают нам 40% прирост производительность на такт, что сулит здоровую конкуренцию с Intel, которые последнее время что-то обленились, их 5% прирост в Skylake расстроил многих фанатов. Также с таким скачком в техпроцессе Zen наконец может дать реальное подспорье Intel в энергоэффективности. Старые 28 нм не могли составить никакой конкуренции по этому параметру.

Также на данный момент уже известно, что процессоры Zen не заменят собой FX и Opteron, эти чипы не будут выпускаться далее 2016 года.

На микроархитектуру Zen возлагаются достаточно большие надежды, ведь к ее разработке приложил свою руку Джим Келлер. Он известен, как разработчик, создавший DEC Alpha 64-bit RISC, что затем вылилось в AMD K7. Им была создана архитектура AMD K8 после чего он ушел из AMD в 1999 году. Теперь же после возвращения в 2012, он вновь покидает «красных».

Просим нас простить за такой небольшой экскурс в историю, может кто-нибудь заинтересуется этой темой.

Выводы

Техпроцесс производства чипа имеет очень большое влияние на такие параметры, как энергопотребление, количество транзисторов и косвенно влияет на производительность.

Кроме апгрейда техпроцесса AMD и NVIDIA демонстрируют и новые архитектуры, что в сумме позволит совершить скачок в энергоэффективности и производительности.

Так что если вас мучает вопрос, о том, стоит ли подождать до новых выхода новых видеокарт и процессоров или покупать здесь и сейчас, мы склоняемся ко второму варианту. Исключение, наверное будет составлять случай с самыми мощными видеокартами, так как из-за большой площади чипа их выпуск может задержаться.

Все современные вычислительные технологии базируются на основе полупроводниковой электронной техники. Для ее производства используются кристаллы кремния – одного из самых распространенных минералов в составе нашей планеты. С момента ухода в прошлое громоздких ламповых систем и с развитием транзисторных технологий этот материал занял важное место в производстве вычислительной техники.

Центральные и графические процессоры, чипы памяти, различные контроллеры – все это производится на основе кремниевых кристаллов. Уже полвека основной принцип не меняется, совершенствуются только технологии создания чипов. Они становятся более тонкими и миниатюрными, энергоэффективными и производительными. Главным параметром, который при этом усовершенствуется, является техпроцесс.

Практически все современные чипы состоят из кристаллов кремния, которые обрабатываются методом литографии, с целью формирования отдельных транзисторов. Транзистор – ключевой элемент любой интегральной микросхемы. В зависимости от состояния электрического поля, он может передавать значение, эквивалентное логической единице (пропускает ток) или нулю (выступает изолятором). В чипах памяти с помощью комбинаций нулей и единиц (положений транзистора) записываются данные, а в процессорах – при переключении производятся вычисления.

В 14-нм технологии (по сравнению с 22-нм) сокращено количество барьеров, увеличена их высота, уменьшено расстояние между диэлектрическими ребрами

Технологический процесс – это процедура и порядок изготовления какой-либо продукции. В электронной промышленности, в общепринятом значении, это величина, которая указывает на разрешающую способность оборудования, применяемого при производстве чипов. От нее также напрямую зависит размер функциональных элементов, получаемых после обработки кремния (то есть, транзисторов). Чем чувствительнее и точнее оборудование используется для обработки кристаллов под заготовки процессоров – тем тоньше будет техпроцесс.

Что значит числовая величина техпроцесса

В современном полупроводниковом производстве наиболее распространена фотолитография – вытравливание элементов на кристалле, покрытом диэлектрической пленкой, с помощью воздействия света. Именно разрешающая способность оптического оборудования, излучающего свет для вытравливания, и является техпроцессом в общепринятом толковании этого слова. Это число указывает, насколько тонким может быть элемент на кристалле.

На что влияет техпроцесс

Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.

Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.

Что дает уменьшение техпроцесса

При уменьшении технологического процесса производитель получает возможность поднять быстродействие, сохранив прежние размеры чипа. К примеру, переход с 32 нм на 22 нм позволил вдвое увеличить плотность транзисторов. Как следствие, на том же кристалле, что раньше, стало возможным размещение не 4, а уже 8 ядер процессора.

Для пользователей главное преимущество заключается в снижении энергопотребления. Чипы на более тонком техпроцессе требуют меньше энергии, выделяют меньше тепла. Благодаря этому можно упростить систему питания, уменьшить кулер, меньше внимания уделить обдуву компонентов.

Техпроцесс процессоров на смартфонах

Смартфоны требовательны к аппаратным ресурсам и быстро расходуют заряд аккумулятора. Поэтому, для замедления расхода разряда, разработчики процессоров для мобильных устройств стараются внедрять в производство самые новые техпроцессы. К примеру, некогда популярные двухъядерники MediaTek MT6577 производились по техпроцессу 40 нм, а Qualcomm Snapdragon 200 ранних серий изготавливались по 45-нанометровой технологии.

В 2013-2015 годах основным техпроцессом для чипов, используемых в смартфонах, стал 28 нм. MediaTek (вплоть до Helio X10 включительно), Qualcomm Snapdragon серий S4, 400, а также модели 600, 602, 610, 615, 616 и 617 – это все 28 нм. Он же использовался и при изготовлении Snapdragon 650, 652, 800, 801, 805. «Горячий» Snapdragon 810, что интересно, был выполнен по более тонкому техпроцессу 20 нм, но это ему не сильно помогло.

Apple в своем A7 (iPhone 5S) тоже обходилась 20-нанометровой технологией. В Apple A8 для шестого Айфона применили 20 нм, а в модели A9 (для 6s и SE) уже используется новый 16 нм технологический процесс. В 2013-2014 годах Intel делали свои Atom Z3xxx по 22-нанометровой технологии. С 2015 года в производство запустили чипы с 14 нм.

Следующим шагом в развитии процессоров для смартфонов является повсеместное освоение техпроцессов 14 и 16 нм, а дальше стоит ожидать 10 нм. Первыми экземплярами на нем могут стать Qualcomm Snapdragon 825, 828 и 830.