Типы выпрямителей переменного тока Какие бывают выпрямители? Основные характеристики выпрямителей.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку.

На рисунке 1 представлена простейшая схема выпрямления. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой.


Рисунок 1 - Однофазный однополупериодный выпрямитель: а) схема - диод открыт, б) схема - диод закрыт, в) временные диаграммы работы

Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал (рис. 1, а). При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр (рис. 1, б).

Т.о. на нагрузке выделяется только одна полуволна напряжения вторичной обмотки. Ток в нагрузке протекает только в одном направлении и представляет собой выпрямленный ток, хотя носит пульсирующий характер (рис. 1, в). Такую форму напряжения (тока) называют постоянно-импульсная.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения.

Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка (рис. 2). Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 - отрицательным полюсом.


Рисунок 2 - Однофазный мостовой выпрямитель: а) схема - выпрямление положительной полуволны, б) выпрямление отрицательной полуволны, в) временные диаграммы работы

Полярность напряжения во вторичной обмотке меняется с частотой питающей сети. Диоды в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 проводят ток диоды VD2, VD3, а к диодам VD1, VD4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 ток протекает через диоды VD1, VD4, а диоды VD2, VD3 закрыты. Ток в нагрузке проходит все время в одном направлении.

Схема является двухполупериодной (двухтактной), т.к. на нагрузке выделяется оба полупериода сетевого напряжения Uн = 0,9U2, коэффициент пульсаций - 0,67.

спользования мостовой схемы включения диодов позволяет для выпрямления двух полупериодов использовать однофазный трансформатор. Кроме того, обратное напряжение, прикладываемое к диоду в 2 раза меньше.

Питание постоянным током потребителей средней и большой мощности производится от , применение которых снижает загрузку диодов по току и уменьшает коэффициент пульсаций.

Схема состоит из шести диодов, которые разделены на две группы (рис. 2.61, а): катодную - диоды VD1, VD3, VD5 и анодную VD2, VD4, VD6. Нагрузка подключается между точками соединения катодов и анодов диодов, т.е. к диагонали выпрямленного моста. Схема подключается к трехфазной сети.


Рисунок 3 - Трехфазный мостовой выпрямитель: а) схема, б) временные диаграммы работы

В каждый момент времени ток нагрузки протекает через два диода. В катодной группе в течение каждой трети периода работает диод с наиболее высоким потенциалом анода (рис. 3, б). В анодной группе в данную часть периода работает тот диод, у которого катод имеет наиболее отрицательный потенциал. Каждый из диодов работает в течение одной трети периода. Коэффициент пульсаций данной схемы составляет всего 0,057.

Управляемыми выпрямителями - выпрямители, которые совместно с выпрямление переменного напряжения (тока) обеспечивают регулирование величины выпрямленного напряжения (тока).

Управляемые выпрямители применяют для регулирования частоты вращения двигателей постоянного тока, яркости свечения ламп накаливания, при зарядке аккумуляторных батарей и т.п.

Схемы управляемых выпрямителей строятся на тиристорах и основаны на управлении моментом открытия тиристоров.

На рисунке 4,а представлена схема однофазного управляемого выпрямителя. Для возможности выпрямления двух полуволн сетевого напряжения используется трансформатор с двухфазной вторичной обмоткой, в которой формируется два напряжения с противоположными фазами. В каждую фазу включается тиристор. Положительный полупериод напряжения U2 выпрямляет тиристор VS1, отрицательный – VS2.

Схема управления СУ формирует импульсы для открывания тиристоров. Время подачи открывающих импульсов определяет, какая часть полуволны выделяется на нагрузке. Тиристор отпирается при наличии положительного напряжения на аноде и открывающего импульса на управляющем электроде.

Если импульс приходит в момент времени t0 (рис. 4,б) тиристор открыт в течении всего полупериода и на нагрузке максимальное напряжение, если в моменты времени t1, t2, t3, то только часть сетевого напряжения выделяется в нагрузке.

Рисунок 4 - Однофазный выпрямитель: а) схема, б) временные диаграммы работы

Угол задержки, отсчитываемый от момента естественного отпирания тиристора, выраженный в градусах, называется углом управления или регулирования и обозначается буквой α. Изменяя угол α (сдвиг по фазе управляющих импульсов относительно напряжения на анодах тиристоров), мы изменяться время открытого состояния тиристоров и соответственно выпрямленное напряжение на нагрузке.

Ртутный выпрямитель

Выпрямители классифицируют по следующим признакам:

Применение

Выпрямление электрического тока

Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток. Применение выпрямителей для преобразования переменного тока в постоянный вызвало понятие среднего значения тока по модулю (т. е. без учета знака ординаты) за период. При двухполупериодном выпрямлении среднее значение по модулю определяется как среднеарифметическое значение всех ординат обеих полуволн за целый период без учета их знаков (т. е. полагая все ординаты за период положительными, что и имеет место при двухполупериодном идеальном выпрямлении).

Приемниками электроэнергии с нелинейными характеристиками являются в первую очередь всевозможные преобразовательные установки переменного тока в постоянный, использующие различные вентили.

Сюда относятся выпрямительные установки для:

  • железнодорожной тяги
  • городского электротранспорта
  • электролиза (производство алюминия, хлора, едкого натра и др.)
  • питания приводов прокатных станов
  • возбуждения генераторов электростанций

В качестве вентилей до последнего времени использовались в основном ртутные выпрямители (неуправляемые и управляемые). В настоящее время широкое применение находят преимущественно кремниевые полупроводниковые выпрямители. Внедряются тиристорные выпрямители.

Обычно выпрямительные установки выполняются большой мощности и присоединяются через специальные трансформаторы к питающей сети на напряжении 6 - 10 кВ. Выпрямительные установки небольшой мощности выполняются по трехфазной схеме с нулевым выводом.

Блоки питания аппаратуры

  • Преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

Генерация электроэнергии на транспортном средстве обычно производится генератором переменного тока, но для питания бортовой аппаратуры необходим постоянный ток. Например, в легковых автомобилях применяются электромеханические или полупроводниковые выпрямители.

Сварочные аппараты

В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах - вентилях, с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.

Вентильные блоки преобразовательных подстанций систем энергоснабжения

  • Для питания главных двигателей постоянного тока прокатных станов, кранов и другой техники

Энергоснабжение заводов осуществляется электросетью переменного тока, но для приводов прокатных станов и других агрегатов выгоднее использовать двигатели постоянного тока по той же причине, что и для двигателей транспортных средств.

  • Для гальванических ванн (электролизёров) для получения цветных металлов и стали , нанесения металлических покрытий и гальванопластики.
  • Установки электростатической очистки промышленных газов (электростатический фильтр)
  • Установки очистки и обессоливания воды
  • Для электроснабжения контактных сетей электротранспорта постоянного тока (трамвай , троллейбус , электровоз , метро)

Выпрямители высокочастотных колебаний

  • в перспективных системах сбора энергии окружающих шумовых электромагнитных сигналов.
  • в перспективных системах беспроводной передачи электроэнергии .

Детектирование высокочастотного сигнала

Допущения: нагрузка чисто активная, вентиль - идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

Эта величина вдвое меньше, чем в полномостовом.

  • Большая величина пульсаций
  • Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)
  • Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

Преимущество: экономия на количестве вентилей.

Полумост

На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура - Делона - Гренашера».

Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой».

Полный мост (Гретца)

На четырёх диодах, широко известный как «двухполупериодный», изобретён немецким физиком Лео Гретцем .

Средняя ЭДС равна то есть вдвое больше, чем в четвертьмостовом.

Эквивалентное внутреннее активое сопротивление равно .

Ток в нагрузке равен

Мощность в нагрузке равна

Наибольшее мгновенное значение напряжения на диодах -

Двухфазные выпрямители со сдвигом фаз 180°

Два четвертьмоста параллельно ("двухполупериодный со средней точкой")

Широко известный как «двухполупериодный со средней точкой». Предложил в 1901 г. профессор Миткевич В. Ф. . В этом выпрямителе две противофазных обмотки создают двухфазный переменный ток со сдвигом между фазами 180 угловых градусов. Двухфазный переменный ток выпрямляется двумя однополупериодными четвертьмостовыми выпрямителями, включенными параллельно и работающими на одну общую нагрузку. Является почти аналогом полномостового выпрямителя Гретца , но имеет почти вдвое большее эквивалентное внутреннее активное сопротивление, вдвое меньше диодов и средний ток через один диод почти вдвое больше, чем в полномостовом, при амплитуде выпрямляемого напряжения сопоставимой с падением напряжения на переходе твердотельного диода обладает значительно лучшим КПД по сравнению с мостовой схемой. Применялась, когда медь была дешевле диодов. В одной из работ отмечается, что в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции .

Площадь под интегральной кривой равна:

Средняя ЭДС равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где - частота сети.

Два полных моста параллельно

Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.

Двухфазные выпрямители со сдвигом фаз 90°

Два полных моста параллельно

На двух параллельных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть в раз больше, чем в однофазном полномостовом.

В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.

Два полных моста последовательно

На двух последовательных полных мостах.

Площадь под интегральной кривой равна:

Средняя ЭДС равна: то есть вдвое больше, чем в однофазном полномостовом.

Относительное эквивалентное внутреннее активное сопротивление равно

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна

Трёхфазные выпрямители

Является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший.

Площадь под интегральной кривой равна:

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.

Три полных моста параллельно (12 диодов)

Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А.Н.

По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А.Н., а выпрямитель Ларионова А.Н. является «недостроенным» выпрямителем «три параллельных моста».

Вид ЭДС на входе (точками) и на выходе (сплошной).

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов».

В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю.

Выпрямитель «три параллельных полных моста» на холостом ходу имеет такую же среднюю ЭДС, как в выпрямителе «треугольник-Ларионов» и такие же сопротивления обмоток, но, так как у него схема с независимыми от соседних фаз диодами, то моменты переключения диодов отличаются от моментов переключения диодов в схеме «треугольник-Ларионов». Нагрузочные характеристики этих двух выпрямителей получаются разными.

Частота пульсаций равна , где - частота сети.

Абсолютная амплитуда пульсаций равна .

Относительная амплитуда пульсаций равна .

Три полных моста последовательно (12 диодов)

Площадь под интегральной кривой равна:

Средняя ЭДС равна: , то есть вдвое больше, чем в схеме «треугольник-Ларионов».

Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть .

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где - частота сети.

Поскольку большинство радиоэлектронных устройств питаются постоянным током, а в нашей сети переменный, то самое время научиться его «выпрямлять». Для преобразования переменного напряжения или тока в постоянный служат выпрямители, о которых мы и поговорим. Самый простой выпрямитель можно выполнить всего на одном диоде:

На графиках, полученных с помощью осциллографа и представленных на рисунке, хорошо видно, что до диода напряжение было переменным, разнополярным. Диод «обрезал» отрицательные полуволны, и остались одни положительные. Таким образом, мы получили однополярное напряжение, но оно сильно пульсирует, и питать им электронику невозможно. Чтобы сгладить пульсации используют конденсаторы большой емкости:

Пока проходит положительная полуволна, конденсатор заряжается, во время провала он отдает запасенную энергию и разряжается. Теперь дело обстоит несколько лучше, но не совсем хорошо — чем мощнее нагрузка, тем глубже будут провалы и тем большую емкость нужно включать, чтобы как-то спасти положение. Поэтому такой вид выпрямителя, который называется однополупериодным , используют достаточно редко и только для выпрямления переменного тока достаточно высокой частоты и малых токов нагрузки. В противном случае размеры сглаживающих конденсаторов будут неоправданно большими.

Для улучшения формы выпрямленного напряжения достаточно добавить в схему еще три диода:

В этом выпрямителе, который называют двухполупериодным, волны перенаправляются диодами и на выходе получается тоже пульсирующее напряжение, но удвоенной частоты, а пауз между импульсами практически нет. Добавим сюда сглаживающий конденсатор и увидим, что постоянное напряжение действительно похоже на постоянное:

Преимущество такого типа выпрямителя не только в лучшей форме выпрямленного напряжения, но и в том, что в качестве диодов можно использовать приборы, рассчитанные на вдвое меньший ток, поскольку в каждый момент времени через каждый диод течет только половина тока нагрузки. Такая схема получила настолько широкое распространение, что диоды собирают в мосты прямо на заводе. Такие сборки мы называем диодными или выпрямительными мостами.

Но двухполупериодная схема может иметь и другой вид, в котором присутствует всего два диода:

Здесь «минусовым» проводом служит отвод от середины вторичной обмотки трансформатора, а положительные полуволны собираются двумя диодами на «плюсе» благодаря двум одинаковым полуобмоткам. В этой схеме диоды тоже работают с половинным током нагрузки, но оправдана она лишь тогда, когда трансформатор имеет две обмотки, каждая из которых выдает номинальное напряжение и обмотки эти можно включить последовательно.

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

U ср = U max / π = 0,318 U max

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку R н , диод VD2 и возвращается в обмотку трансформатора через точку «А».

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку R н , диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

U ср = 2*U max / π = 0,636 U max

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – U обр ;

— максимальный ток диода – I max ;

— прямое падение напряжения на диоде – U пр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода U обр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n , который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока I max выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – U пр , это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания , устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Для питания электронных устройств требуется постоянное напряжение различных значений. Наиболее распространенным источником электрической энергии является промышленная сеть переменного напряжения частотой 50 Гц. Для преобразования переменного напряжения в постоянное (однополярное) применяют выпрямительные устройства. Существует однополупериодное и двухполупериодное выпрямление переменного тока.

Рис. 9. Схема однополупериодного выпрямителя.

Схема полупроводникового однополупериодного выпрямителя приведена на рис. 9. В этом выпрямителе полупроводниковый диодVD включен последовательно с нагрузочным резисторомR н и вторичной обмоткой трансформатораT . Первичная обмотка трансформатора питается, как правило, от сети.

Из временных диаграмм (рис. 10) видно, что ток I н в нагрузке имеет импульсный характер. В течение первого полупериода напряженияU АБ , когда потенциал точкиа положителен по отношению к потенциалу точкиб , диод открыт и через нагрузку протекает ток.

Во второй полупериод полярность напряжений на вторичной обмотке трансформатора изменяется на противоположную и потенциал точки а становится отрицательным по отношению к потенциалу точкиб . При такой полярности диод включен в обратном направлении и ток в нагрузке будет равен нулю.

Рис. 10. Временные диаграммы однополупериодного выпрямителя.

Широкое применение нашли двухполупериодные выпрямители, в которых, в отличие от однополупериодных выпрямителей, используются оба полупериода напряжения сети. Из них наибольшее распространение получил мостовой двухполупериодньгй выпрямитель (рис. 11), состоящий из трансформатора, четырех полупроводниковых диодов VD 1 VD 4 (включенных по мостовой схеме) и нагрузочного резистора.

Рис. 11. Схема двухполупериодного выпрямителя.

В один из полупериодов напряжения сети, когда точка а имеет положительный по отношению к точкеб потенциал, диодыVD2 иVD 3 открыты, а диодыVD 1 иVD4 закрыты. Ток в этот полупериод имеет направление: зажима вторичной обмотки трансформатора, диодVD2 , нагрузочный резисторR н , диодVD3 и зажимб . В следующий полупериод, когда потенциал точкиа становится отрицательным по отношению к точкеб , открыты диодыVD1 иVD4, а диодыVD2 иVD3 закрыты. Протекающий в схеме ток имеет следующее направление: точкаб , диодVD4 , нагрузочный резисторR н , диодVD1 и точкаа вторичной обмотки трансформатора. Таким образом, в течение всего периода ток в нагрузочном резистореR н имеет одно и то же направление. На рис. 12 представлены временные диаграммы токов и напряжений мостового двухполупериодного выпрямителя.

Рис. 12. Временные диаграммы двухполупериодного выпрямителя.

Мостовой выпрямитель по сравнению с однополупериодным имеет ряд преимуществ. В частности, при одном и том же напряжении вторичной обмотки трансформатора и сопротивлении нагрузки R н средний выпрямленный ток / н ср и напряжениеU н ср в мостовом выпрямителе почти в два раза больше, чем в однополупериодном.

Недостатком мостовой схемы выпрямителя является необходимость применения четырех диодов.

Для того, чтобы избежать пульсирующего характера напряжения U н и токаI н нагрузки, в выпрямительных устройствах применяются различныесглаживающие фильтры . Простейшим из них является ёмкостной фильтр. Для этого параллельно сопротивлению нагрузки подключается конденсатор.

Рис. 13. Схема однополупериодного выпрямителя со сглаживающим фильтром.

На рис. 13 приведена схема однополупериодного выпрямителя с ёмкостным сглаживающим фильтром, а на рис.14 – диаграммы, иллюстрирующие его работу.

По мере роста напряжения на зажимах вторичной обмотки трансформатора U АБ конденсаторC заряжается и напряжение на нём повышается. Во время положительного полупериода диодVD пропускает ток, который заряжает конденсатор (практически до амплитудного значения переменного напряжения) и одновременно питает сопротивление нагрузки. Затем напряжениеU АБ уменьшается и, когда оно становится меньше, чем напряжение на конденсаторе, диодVD запирается, а конденсатор начинает разряжаться на резисторR н . Скорость разряда конденсатора определяется постоянной времени разр =R н С . В дальнейшем описанный процесс периодически повторяется.

Рис. 14. Временные диаграммы двухполупериодного выпрямителя со сглаживающим фильтром.

При работе такого выпрямителя существенно уменьшаются пульсации выпрямленного напряжения. Однако следует помнить, что в выпрямителе с ёмкостным сглаживающим фильтром наблюдается значительная зависимость среднего значения выпрямленного напряжения от тока нагрузки.