Виды мониторов для компьютеров в. Основные характеристики монитора и что они означают

Какой тип матрицы лучше, оптимальная диагональ экрана, разъемы монитора, как выбрать лучший монитор по отношению цена/качество?

Сегодня мы с вами научимся правильно выбирать монитор. И если вы думаете, что это напрасная трата времени, то очень ошибаетесь. Дело в том, что монитор покупается на много лет, и от правильного его выбора зависит ваше здоровье и комфортная работа на многие годы.

Если же вы собираетесь работать с графикой, то к выбору монитора необходимо подойти очень ответственно, иначе вы не сможете правильно его отколибровать. Цвет в графике имеет первостепенное значение, поэтому и монитор должен быть от лучших производителей.

Какие производители мониторов лучше

На сегодня самые лучшие мониторы производят компании Dell и HP, но из-за их высокой стоимости они не пользуются такой популярностью, как мониторы фирмы Samsung и LG. Первый немного дороже, но мне он больше нравится из-за высокого качества изображения.

Если вы хотите что-то подешевле, то обратите внимание на мониторы от фирм Acer, ASUS, BenQ, Philips, Viewsonic и NEC.

На что обращать внимание при выборе монитора

Для того, чтобы правильно выбрать монитор для компьютера, необходимо знать какие основные параметры мониторов самые важные, а какие нет.

  • Тип матрицы

Матрица – это жидкокристаллический экран монитора. Современные мониторы имеют следующие типы матрицы.

TN (TN+film) – самая простая и дешевая матрица, со средней цветопередачей, четкостью, небольшой глубиной черного цвета и маленьким углом обзора. Но у такой матрицы есть и положительные стороны, — это высокая скорость отклика, которая не маловажна в играх. TN-film, означает присутствие дополнительного фильтра, увеличивающего угол обзора. Битый пиксель у таких мониторов светится белым цветом.

Мониторы с такой матрицей подходят для офисных задач, но из-за маленького угла обзора не подойдут для домашнего просмотра видео всей семьей.

IPS (AH-IPS, e-IPS, H-IPS, P-IPS, S-IPS) – матрица с высоким качеством цветопередачи, хорошей контрастностью и большим углом обзора (до 178 градусов). Зато страдает скорость отклика. Битый пиксель у такой матрицы светится черным цветом.

Мониторы с такой матрицей хорошо подойдут для любой задачи, а особенно для дизайнерской и обработки фотографий. Естественно и стоимость такой матрицы намного дороже предыдущей.

VA (PVA, SVA, WVA) – это универсальный бюджетный вариант с неплохими характеристиками: что-то среднее между матрицами TN и IPS. Высокое качество цветопередачи и четкости при хороших углах обзора. Единственный недостаток, — это плохая передача полутонов.

PLS – современный и удешевленный вариант IPS-матрицы. Обладает высоким качеством цветопередачи, четкости и хорошим углом обзора. Ввиду того, что это новинка, то и стоимость такой матрицы пока довольно высока.

  • Тип покрытия экрана

Матрицы имеют глянцевое или матовое покрытие.

Матовые экраны имеют более естественную цветопередачу и подходят для любого освещения и любых задач.

На глянцевых экранах вы увидите любые отражения и отражения всех источников света (ламп, солнца). Цвета выглядят ярче, а затемнения более четкие, поэтому они лучше всего подходят для просмотра видео и игр в затемненном помещении.

  • Размер экрана

Размер экрана измеряется в дюймах, и считается по диагонали. Большой экран занимает много места, потребляет больше электроэнергии и требователен к параметрам видеокарты. Зато на большом экране удобнее работать, смотреть фильмы и играть.

  • Соотношение сторон

Сейчас уже почти не встретишь квадратные мониторы со сторонами 5:4 и 4:3. На прилавках магазинов в основном широкоформатные экраны 16:10 и 16:9. Они более удобны, как для работы с табличными данными, так и для просмотра широкоформатных фильмов. Про игры я уже вообще молчу.

Еще бывают мониторы с ультра-широким форматом 21:9. Такие мониторы больше подойдут для тех, кому необходимо открывать большое количество окон: инженерам-проектировщикам, пользователям, занимающимся видеомонтажом или для сравнительного анализа чего-либо.

  • Диагональ экрана

От размера диагонали экрана зависит удобство работы и соответственно стоимость монитора. Широкоформатный монитор с диагональю экрана 20” хорошо подойдет для работы в офисе. Но обычно начальник так не думает, и поэтому во многих офисах стоят мониторы менее 20”, хотя разница в цене на 19” и 20” не существенна.

Для дома лучше приобрести монитор с диагональю экрана от 22” и выше. Для игр подойдет диагональ 23-27”, а для работы с 3D-графикой или чертежами лучше купить монитор с диагональю экрана от 27”.

Ваш выбор будет зависеть от места в квартире и финансовых возможностей.

  • Разрешение экрана

Разрешение монитора – это соотношение сторон, выраженное в пикселях. А, как известно, чем больше пикселей, тем отчетливей картинка и больше информации помещается на экране. Но учтите, что текст и другие элементы станут мелкими. Хотя в последних версиях Windows это легко исправляется при помощи масштабирования.

Сейчас самое распространенное разрешение монитора – 1920х1080 пикселей, или как его еще называют FullHD 1080.

Но опять же не стоит забывать, что чем больше , тем больше нагрузка на . Особенно это касается игр.

В мониторах с диагональю экрана до 20” это не существенно, т.к. они имеют оптимальное разрешение.

Мониторы 22” могут иметь разрешение 1680х1050 или 1920х1080 (Full HD). Лучше выбирать монитор с разрешением 1920х1080, хотя это и дороже, т.к. при разрешении 1680х1050 смотреть видео или играть в игры будет не совсем комфортно за счет не пропорциональности изображения предметов.

Мониторы с ультра-широким экраном (21:9) имеют разрешение 2560х1080, и для игр вам понадобится более мощная видеокарта..

  • Цветопередача

Это количество цветов и их оттенков, которые способна передать матрица. Для многих достаточно стандартного набора цветов, — это свыше 65 тысяч. А для дизайнеров больше подойдут более высокие показатели, максимум, которых 16, 7 миллионов оттенков.

  • Яркость экрана

Этот показатель может быть от 200 до 400 кд/м². Если вы собираетесь смотреть фильмы всей семьей в солнечную погоду и при открытых шторах, то вам необходимо от300 до 400 кд/м², а в остальных случаях хватит и 200-250 кд/м².

  • Угол обзора

Если экран имеет маленький угол обзора, то вы не сможете смотреть фильмы в компании с друзьями. Ваш экран будет отсвечивать темными или светлыми пятнами.

Все качественные матрицы (IPS, VA, PLS) имеют хорошие углы обзоры, а матрица TN имеет плохой угол обзора.

Выбирайте хорошую матрицу, тогда ис углом обзора у вас не будет проблем.

  • Время отклика матрицы

Это время в миллисекундах (мс) за которое кристаллы могут повернуться и пикселы изменят свой цвет. Современные матрицы имеют время отклика 2-14 мс, поэтому проблем с задержкой изображения (шлейф за курсором мыши) уже нет.

Не надо покупать мониторы со слишком низким временем отклика (2 мс), т.к. низкое время отклика только в матрицах низкого качества (TN). А матрицы IPS, VA,PLS имеют время отклика от 5 до 14 мс.

Для домашнего мультимедийного компьютера вполне достаточно времени отклика 8 мс, а для дизайнера, если ему не интересно играть в игры, подойдет время отклика матрицы 14 мс.

  • Виды разъемов

Качество изображения зависит в первую очередь от матрицы, а уже потом от вида разъема, к которому подключается монитор.

1.Разъем питания 220 В

  1. Разъем питания для мониторов с внешним блоком питания или питания колонок
  2. VGA (D-SUB) – аналоговый разъем для подключения старой видеокарты. Он не передает изображение в должном качестве. Устаревший разъем.
  3. и 8. Разъем Display Port, есть не на всех видеокартах. Используется для подключения нескольких мониторов.
  4. Разъем Mini Display Port
  5. DVI – цифровой тип разъема, который набирает популярность в связи с качественной передачей изображения.
  6. HDMI – тоже цифровой разъем, передающий не только четкую картинку, но и звук. Подходит для подключения монитора к другим различным устройствам (ТВ-тюнера, ноутбука, и др.)
  7. Аудио разъем 3,5 мм для подключения звука от внешних колонок или наушников к мониторам со встроенными динамиками.
  8. Разъем USB для подключения встроенного в монитор USB концентратора.
  9. Разъемы USB в мониторах с USB концентратором для подключения флешек, мышки, клавиатуры и др. устройств.

Все эти разъемы могут присутствовать на мониторе, а могут и нет. Обязательными являются только разъем питания и разъем DVI.

  • Кнопки управления

Могут быть расположены на передней панели, сзади и сбоку. Обычно настройки производятся один раз, поэтому их расположение не играет существенной роли.

  • Возможность регулировки высоты и наклона монитора

Это тоже немаловажный пункт. Не всегда есть возможность подогнать высоту стола или кресла, поэтому наличие регулировки высоты и наклона монитора будет очень кстати. У нас дома у всех есть свой компьютер, но покупать каждому компьютерный стол нет желания, хотя бы потому, что мы не хотим превращать квартиру в офисный кабинет. Два монитора имеют подставки с хорошей регулировкой высоты и установлены на журнальных столиках. А до их покупки приходилось подкладывать коробки и книги, что совсем не удобно.

  • Встроенные динамики

Не пригодны ни для игр, ни для прослушивания музыки. Поэтому лучше такой монитор не покупать.

  • Встроенный ТВ-тюнер

Скорее всего вам не пригодится, т.к. теперь можно посмотреть любой канал онлайн, а стоить такой монитор будет гораздо дороже.

  • Встроенная веб-камера

Тоже излишество. Лучше купить качественную камеру по приемлемой цене.

  • Цена монитора

Цена зависит от размера экрана, а не от качества матрицы, поэтому выбирайте качественную матрицу.

Главные параметры для выбора монитора

Для того, чтобы правильно выбрать монитор для компьютера важно определиться, для каких целей он будет вам служить.

Для дома:

  1. От 22 дюймов и выше
  2. Большой угол обзора
  3. Скорость отклика 8 мс

Для игрового монитора важны три параметра:

  1. Время отклика от 4 мс и меньше
  2. Угол обзора от 170 градусов
  3. Размер монитора от 24 дюймов.

Для дизайнера или фотографа:

  1. Точная цветопередача
  2. Большой размер экрана
  3. Оптимальная яркость и контрастность
  4. Большой угол обзора

Вот такие параметры важны при выборе монитора, но прежде, чем покупать почитайте в интернете отзывы по выбранной модели. Бывает, что у какой-то партии есть определенный изъян и люди часто пишут об этом на сайтах интернет-магазинов.

О том, как правильно выбрать монитор для компьютера можете посмотреть в видеоролике ниже:

О том, как нас обманывают при продаже мониторов смотрите ниже:

Теперь вы подкованы и знаете, как выбрать монитор для компьютера.

В мониторе на основе электронно-лучевой трубки точки изображения отображаются с помощью луча (потока электронов), который заставляет светиться поверхность экрана, покрытую люминофором. Луч обегает экран построчно, слева направо и сверху вниз. Полный цикл отображения картинки называют «кадром». Чем быстрее монитор отображает и перерисовывает кадры, тем более устойчивой кажется картинка, меньше заметно мерцание и меньше устают наши глаза.

Устройство ЭЛТ-монитора. 1 -Электронные пушки. 2 - Электронные лучи. 3 - Фокусирующая катушка. 4 - Отклоняющие катушки. 5 - Анод. 6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 - Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

ЖК

Жидкокристаллические дисплеи были разработаны в 1963 году в исследовательском центре Дэвида Сарнова компании RCA (Принстон, штат Нью-Джерси).

Устройство

Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости. Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. Если бы жидких кристаллов не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром. Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной. Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом, полноценный монитор с ЖК-дисплеем состоит из высокоточной электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса с элементами управления. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Подсветка

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее были видимым, нужен источник света. Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

  • Внешнее освещение
  • Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени использует внешнее освещение (от Солнца, ламп комнатного освещения и т.д.). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи, в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

  • Подсветка лампами накаливания
  • В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания. Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.
  • Подсветка газоразрядными ("плазменными") лампами
  • В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких газоразрядных ламп (чаще всего с холодным катодом - CCFL). В этих лампах источником света является плазма, возникающая при электрическом разряде через газ. Такие дисплеи не следует путать с плазменными дисплеями, в которых каждый пиксель сам светится и является миниатюрной газоразрядной лампой.
  • Светодиодная (LED) подветка
  • На границе первого и второго десятилетий XXI века получили распространение ЖК-дисплеи, имеющие подсветку из одного или небольшого числа светодиодов (LED). Такие ЖК-дисплеи (в торговле нередко называемые LED-дисплеями) не следует путать с настоящими LED-дисплеями, в которых каждый пиксель сам светится и является миниатюрным светодиодом.

Преимущества и недостатки

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малые размер и масса в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может как совпадать с потреблением ЭЛТ и плазменных экранов сравнимых размеров, так и быть существенно - до пяти раз - ниже. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц. С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320*200) вообще не могут быть отображены на многих мониторах.
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ртутных ламп.
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.
  • Пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, не подверженных ей.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи (матрица с органическими светодиодами), однако она встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

Плазменные мониторы

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

OLED-мониторы

Органический светодиод (англ. Organic Light-Emitting Diode (OLED) - органический светоизлучающий диод) - полупроводниковый прибор, изготовленный из органических соединений, который эффективно излучает свет, если пропустить через него электрический ток. На его основе и изготовлены OLED-мониторы. Предполагается, что производство таких дисплеев будет гораздо дешевле, нежели производство жидкокристаллических дисплеев.

Принцип действия

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона, которое сопровождается испусканием (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит. В качестве материала анода обычно используется оксид индия, легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Преимущества

В сравнении c плазменными дисплеями

  • меньшие габариты и вес
  • более низкое энергопотребление при той же яркости
  • возможность длительное время показывать статическую картинку без выгорания экрана

В сравнении c жидкокристаллическими дисплеями

  • меньшие габариты и вес
  • отсутствие необходимости в подсветке
  • отсутствие такого параметра как угол обзора - изображение видно без потери качества с любого угла
  • мгновенный отклик (на порядок выше, чем у LCD) - по сути полное отсутствие инерционности
  • более качественная цветопередача (высокий контраст)
  • возможность создания гибких экранов
  • большой диапазон рабочих температур (от?40 до +70 °C)

Яркость. OLED-дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2.

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD до 2000:1, CRT до 5000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения. Впрочем, современные ЖК дисплеи (за исключением основанных на TN+Film матрицах) также сохраняют приемлемое качество картинки при больших углах обзора.

Энергопотребление.

Недостатки


Главная проблема для OLED - время непрерывной работы должно быть более 15 тыс. часов. Одна проблема, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED всё-таки добрался до отметки в 17,5 тыс. часов (примерно 2 года) непрерывной работы.

При этом для дисплеев телефонов, фотокамер, планшетов и иных малых устройств достаточно в среднем около 5 тысяч часов непрерывной работы, в связи с быстрыми темпами устаревания аппаратуры и еe неактуальности после нескольких последующих лет. Поэтому в них OLED успешно применяется уже сегодня.

Можно считать это временными трудностями становления новой технологии, поскольку разрабатываются новые долговечные люминофоры. Также растут мощности по производству матриц. Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени дисплеи произведeнные по OLED технологиям, с высокой вероятностью станут доминантными на рынке электроники народного потребления.

Проекционные мониторы

Проекционным монитором мы назвали систему, состоящую из проектора и поверхности для проецирования.

Проектор

Проектор - световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Проекторы являются в основном оптико-механическими или оптическо-цифровыми приборами, позволяющими при помощи источника света проецировать изображения объектов на поверхность, расположенную вне прибора - экран.

В паре с компьютером используется именно мультимедийный проектор (также используется термин «Цифровой проектор»).На вход устройства подаётся видеосигнал в реальном времени (аналоговый или цифровой). Устройство проецирует изображение на экран. Возможно при этом наличие звукового канала.

Говоря о проекторах, стоит упомянуть так назыввемый пико-проектор. Это проектор небольшого, карманного размера. Часто выполнен в форм-факторе сотового телефона и имеет аналогичный размер. Термин «пико-проектор» также может означать миниатюрный проектор, встроенный в фотокамеру, мобильный телефон, PDA и другую мобильную технику.

Существующие карманные проекторы позволяют получать проекции размером до 100 дюймов по диагонали, яркостью до 40 люмен. У мини-проекторов, выполненных как самостоятельное устройство, часто имеется отверстие с резьбой для стандартного штатива и почти всегда - встроенные кард-ридеры или флеш-память, что позволяет работать без источника сигнала. Для снижения энергопотребления в пико-проекторах применяются светодиоды.

Всё о 3D

Только современные технологии способны формировать на экране кинотеатра, телевизора или компьютерного монитора трехмерную картинку. Мы расскажем, как работают эти технологии

Футуристический вертолет проходит низко над головами зрителей, закованные в экзоброню роботизованные морпехи сметают все на своем пути, здоровенный космический шаттл сотрясает воздух ревом двигателей – так близко и устрашающе реально, что непроизвольно вжимаешь голову в плечи. Недавно вышедший на экраны «Аватар» Джеймса Камерона или трехмерная компьютерная игра заставляют зрителя, сидящего в кресле перед экраном, чувствовать себя участником фантастического действа... Совсем скоро инопланетные монстры будут прогуливаться в каждом доме, где есть современный домашний кинотеатр. Но каким же образом плоский экран способен показывать объемную картинку?

Человек в трехмерном пространстве

Один и тот же объект левым и правым глазом мы видим под разными углами, таким образом формируются два изображения – стереопара. Мозг соединяет обе картинки в одну, которая интерпретируется сознанием как объемная. Различия в перспективе позволяют мозгу определить размер объекта и расстояние до него. На основании всей этой информации человек получает пространственное представление с правильными пропорциями.

Как возникает объемное изображение

Для того чтобы картинка на экране казалась объемной, каждый глаз зрителя, как в жизни, должен видеть несколько отличающееся изо­бражение, из которых мозг сложит единую трехмерную картину.

Первые фильмы в формате 3D, созданные с учетом этого принципа, появились на экранах кинотеатров еще в 50-е годы. По­скольку набирающее популярность телевидение уже тогда составляло серьезную конкуренцию киноиндустрии, дельцы от кинематографа хотели заставить людей оторваться от диванов и направиться в кино, прельщая их визуальными эффектами, которые в то время не мог обеспечить ни один телевизор: цветным изображением, широким экраном, многоканальным звуком и, разумеется, трехмерностью. Эффект объема при этом создавался несколькими разными способами.


Анаглифический метод
(ана­глиф – по-гречески «рельефный»). На ранних этапах 3D-кинема­то­графа в прокат выпускались только черно-белые 3D-фильмы. В каждом соответствующим образом оснащенном кинотеатре для их показа использовались два кинопроектора. Один проецировал фильм через красный фильтр, другой выводил на экран слегка смещенные по горизонтали кинокадры, пропуская их через зеленый фильтр. Посетители надевали легкие картонные очки, в которые вместо стекол были уcтановлены кусочки красной и зеленой прозрачной пленки, благодаря чему каждый глаз видел только нужную часть изобра­жения, а зрители воспринимали «объемную» картинку. Однако оба кинопроектора при этом должны быть направлены строго на экран и работать абсолютно синхронно. В противном случае неизбежно раздвоение изображения и, как следствие, головные боли вместо удовольствия от просмотра – у зрителей.

Подобные очки хорошо подходят и для современных цветных 3D-фильмов, в частности, записанных методом Dolby 3D. В этом случае достаточно одного проектора с установленными перед объективом световыми фильтрами. Каждый из фильтров пропускает для левого и правого глаза красный и синий свет. Одно изображение имеет синеватый, другое – красноватый оттенок. Световые фильтры в очках пропускают только соответствующие, предназначенные для определенного глаза кадры. Однако данная технология позволяет добиться лишь незначительного 3D-эффекта, с малой глубиной.


Затворный метод.
Оптимален для просмотра цветных фильмов. В отличие от анаглифического этот метод предусматривает попеременную демонстрацию проектором изображений, предназначенных для левого и правого глаза. Благодаря тому, что чередование изображений осуществляется с высокой частотой – от 30 до 100 раз в секунду – мозг выстраивает целостную пространственную картину и зритель видит на экране цельное трехмерное изображение. Ранее данный метод назывался NuVision, в настоящее время он чаще именуется XpanD.

Для просмотра 3D-фильмов по этому методу используются затворные очки, в которые вместо стекол или фильтров установлены два оптических затвора. Эти небольшие светопропускающие ЖК-матрицы способны по команде от контроллера менять прозрачность – то затемняясь, то просветляясь в зависимости от того, на какой глаз в данный момент не­обходимо подать изображение.

Затворный метод используется не только в кинотеатрах: применяется он и в телевизорах, и в компьютерных мониторах. В кинотеатре подача команд осуществляется с помощью ИК-передатчика. Некоторые модели затворных очков 90-х годов, предназначенных для ПК, подключались к компьютеру с помощью кабеля (современные модели имеют беспроводной интерфейс).

Недостаток данного метода в том, что затворные очки являются сложным электронным устройством, потребляющим электроэнергию. Следовательно, они имеют достаточно высокую (особенно по сравнению с картонными очками) стоимость и значительный вес.

Поляризационный метод. В сфере кино данное решение носит название RealD. Его суть в том, что проектор попеременно демонстрирует кинокадры, в которых световые волны имеют разное направление поляризации светового потока. В необходимых для просмотра специальных очках установлены фильтры, пропускающие только световые волны, поляризованные определенным образом. Так оба глаза получают изображения с различной информацией, на основании которой мозг формирует объемную картинку.

Поляризационные очки несколько тяжелее картонных, но поскольку они работают без источника электроэнергии, то весят и стоят значительно меньше, чем затворные. Однако наряду с поляризационными фильтрами, устанавливаемыми на кинопроекторы и в очки, для показа 3D-фильмов по этому методу требуется дорогой экран со специальным покрытием.

На данный момент предпочтение окончательно не отдано ни одному из названных методов. Стоит, однако, отметить, что с двумя проекторами (по анаглифическому методу) работает все меньшее количество кинотеатров.

Как создаются 3D-фильмы

Использование сложных технических приемов требуется уже на этапе съемки, а не только в процессе просмотра 3D-фильмов. Для создания иллюзии трехмерности каждую сцену необходимо снимать одновременно двумя камерами, с разных ракурсов. Как и глаза человека, обе камеры размещают близко друг к другу, на одинаковой высоте.

3D-технологии для домашнего применения

Для просмотра 3D-фильмов на DVD до сих пор используются простые картонные очки, наследие далеких 50-х. Этим объясняется и скромный результат – плохая цветопередача и недостаточная глубина изображения.

Однако даже современные 3D-технологии привязаны к специальным очкам, и такое положение вещей, по всей видимости, изменится не скоро. Хотя в 2008 году компания Philips и представила прототип 42-дюймового жидко­кристаллического 3D-телевизора, не требующего использования очков, данная технология достигнет своей рыночной зрелости минимум через 3–4 года.

А вот о выпуске 3D-телевизоров, работающих в тандеме с очками, на международной выставке IFA 2009 объявили сразу несколько производителей. К примеру, Panasonic намерен уже к середине 2010 года выпустить модели телевизоров с поддержкой 3D, так же, как Sony и Loewe, делая ставку на затворный метод. Компании JVC, Philips и Toshiba также стремятся взойти на «3D-подиум», однако они отдают предпочтение поляризационному методу. LG и Samsung разрабатывают свои устройства на основе обеих технологий.

Контент для 3D

Основным источником трехмерного видеоконтента являются Blu-ray-диски. Контент передается на источник изображения через интерфейс HDMI. Для этого телевизор и проигрыватель должны поддерживать соответствующие технологии, а также недавно принятый стандарт HDMI 1.4 – одновременную передачу двух потоков данных формата 1080p обеспечивает только он. Пока что устройства с поддержкой HDMI 1.4 можно пересчитать по пальцам.

3D-технологии на ПК

Первоначально просмотр трехмерного изображения на компьютере был доступен только с помощью очков или специальных шлемов виртуальной реальности. И те и другие были оснащены двумя цветными ЖК-дисплеями – для каждого из глаз. Качество результирующего изображения при использовании данной технологии зависело от качества применяемых ЖК-экранов.

Однако данные устройства обладали целым рядом недостатков, которые отпугивали большинство покупателей. Кибершлем фирмы Forte, появившийся в середине 90-х, был громоздким, неэффективным и напоминал средневековое орудие пытки. Скромного разрешения в 640х480 точек для компьютерных программ и игр было явно недостаточно. И хотя позднее были выпущены более совершенные очки, к примеру модель LDI-D 100 фирмы Sony, но даже они были достаточно тяжелыми и вызывали сильный дискомфорт.

Выдержав почти десятилетнюю паузу, технологии формирования стереоизображения на экране монитора вышли на новый этап своего развития. Не может не радовать то обстоятельство, что по крайней мере один из двух крупных производителей графических адаптеров, фирма NVIDIA, разработал нечто инновационное. Комплекс 3D Vision стоимостью около 6 тыс. руб. включает в себя затворные очки и ИК-передатчик. Однако для создания пространственной картинки при помощи этих очков требуется соответствующее аппаратное обеспечение: ПК должен быть оснащен мощной видеоплатой NVIDIA. А для того чтобы псевдотрехмерная картинка не мерцала, монитор с разрешением в 1280х1024 точки должен обеспечивать частоту обновления экрана минимум в 120 Гц (по 60 Гц на каждый глаз). Первым ноутбуком, оснащенным данной технологией, стал ASUS G51J 3D.

В настоящее время доступны также так называемые 3D-профили более чем для 350 игр, которые можно скачать с веб-сайта NVIDIA (www.nvidia.ru). В их число входят как современные игры жанра экшн, к примеру Borderlands, так и выпущенные ранее.

В продолжение темы компьютерных игр, альтернативой затворному 3D является поляризационный метод. Для его реализации нужен монитор с поляризационным экраном, например Hyundai W220S. Объемное изображение становится доступно при наличии любой мощной видеокарты ATI или NVIDIA. Однако при этом разрешение снижается с 1680x1050 до 1680x525 точек, поскольку используется чересстрочный вывод кадров. Какие из игр поддерживают поляризационный метод, можно узнать в Интернете по адресу: www.ddd.com.

3D-фотоаппарат

Уже сегодня есть возможность получать трехмерные фотографии: фотокамера Fujifilm Finepix Real 3D W1 с помощью двух объективов и двух матриц способна фиксировать фотографии и даже короткие видеоролики с трехмерным пространственным эффектом. В качестве аксессуара для камеры предлагается цифровая фоторамка, демонстрирующая фото в формате 3D. Тот, кто захочет распечатать свои трехмерные снимки, может обратиться в онлайновый фотосервис Fuji. Стоимость одного отпечатка составляет около 5 евро, а срок доставки заказа из Великобритании, где печатаются фотографии, – почти две недели.

3D-сканер

3D-сканеры умеют сканировать по крайней мере сейчас небольшие предметы и сохранять их «объемные» изображения в виде файлов на жестком диске. При этом съемка объекта, как правило, производится двумя камерами. В зависимости от своей величины объект съемки либо вращается на специальной платформе, либо камеры движутся вокруг него. Цена и дата появления 3D-сканеров на массовом рынке еще не определены.

Основные параметры ЖК-мониторов

Итак, что мы знаем о жидкокристаллических мониторах? Во-первых, они различаются размерами и цветом. Во-вторых - ценой. В-третьих, их производят более десятка различных компаний. Этим, пожалуй, знания обыкновенного пользователя компьютера ограничиваются. Постараемся их расширить.

Наиболее важные потребительские характеристики ЖК-монитора (или LCD-монитора) следующие: цена, соотношение сторон экрана, разрешение, диагональ, контрастность, яркость, время отклика, угол обзора, наличие дефектных пикселей, интерфейсы, тип матрицы, размеры, потребляемая мощность.

Цена
По поводу ценообразования: в целом чем дороже монитор, тем он лучше. Однако есть нюансы. Два производителя могут создавать свои модели на базе одной и той же матрицы, но разница в цене может достигать больше тысячи рублей. Все из-за дизайна, маркетинговой политики компании и других факторов.
Кроме того, каждая дополнительная функция или возможность увеличивают конечную стоимость монитора. Причем не всегда эти улучшения необходимы пользователю. Многим из них достаточно качества картинки и функционала дешевых моделей на основе TN-матрицы. А вот некоторым требуется точное отображение цветов, которое могут обеспечить только более дороги модели на базе на основе IPS- или *VA-матрицы.
Цены на самые дешевые 18,5- и 19-дюймовые мониторы начинаются от $100.

Формат экрана
Устаревшие ныне ЭЛТ-мониторы обладали стандартным соотношением сторон 4:3 (ширина к высоте). Первые ЖК-мониторы также выпускались такими (плюс производился формат 5:4). Сейчас их уже сложно встретить в продаже: на полках магазинов стоят широкоформатники - модели с соотношением сторон 16:10, 16:9, 15:9, что связано с активным внедрением видео в HD-формате (16:9).
Мониторы 4:3 более предпочтительны для веб-серфинга, работы в текстовых, издательских и других программах, где работа ведется преимущественно над вертикальными объектами (страницами). Но в качестве домашнего монитора и средства для развлечения (просмотр разнообразного видеоконтента, трехмерных игр) широкоформатный монитор окажется лучшим выбором.

Разрешение экрана
Этот параметр показывает, сколько точек (пикселей) размещается на видимой части монитора. Например: 1680x1050 (1680 точек по горизонтали и 1050 точек по вертикали). Этот параметр определяется исходя из формата кадра (число точек кратно соотношению сторон). В данном случае это 16:10. Существует конечное число таких пар чисел (таблицу разрешений можно найти в Интернете).
В ЭЛТ-мониторах вы могли выставить любое разрешение, которое поддерживается монитором или видеокартой. В ЖК-мониторах же существует только одно фиксированное разрешение, остальные достигаются интерполяцией. При этом ухудшается качество картинки. Поэтому при выборе между мониторами с одинаковым разрешением лучше выбрать с большей диагональю. Особенно если у вас ослабленное зрение, что в наше время совсем не редкость. И еще, разрешение ЖК-монитора должно поддерживаться вашей видеокартой. Проблемы могут возникнуть с устаревшими видеокартами. Иначе придется ставить неродное разрешение. А это - ненужное искажение картинки.
Покупать монитор с разрешением 1920x1080 (Full HD) или 2560x1600 вовсе необязательно. Потому что ваш компьютер может потянуть 3D-игры при таком разрешении, а видеофильмы в Full HD еще пока мало распространены.

Диагональ экрана
Это значение традиционно измеряется в дюймах и показывает расстояние между двумя противоположными углами. Оптимальная на сегодня диагональ по размеру и цене - это 20-22 дюйма. Кстати, при одинаковом размере диагонали монитор с форматом 4:3 будет обладать большей площадью поверхности.

Контрастность
Эта величина показывает максимальное отношение яркостей между самой светлой и самой темной точками. Обычно указывается в виде пары чисел типа 1000:1. Чем больше статическая контрастность, тем лучше, так как это позволит увидеть больше оттенков (к примеру, вместо черных областей - оттенки черного на фотографиях, в играх или фильмах). Учтите, что информацию о статической контрастности производитель может заменять данными о динамической контрастности, которая рассчитывается по-другому и на которую не стоит полагаться при выборе монитора.

Яркость
Этот параметр показывает количество света, излучаемое дисплеем. Измеряется в канделах на квадратный метр. Высокое значение яркости не повредит. В случае чего всегда можно будет яркость уменьшить в зависимости от собственных предпочтений и освещенности рабочего места.

Время отклика
Время отклика - минимальное время, которое необходимо пикселю для изменения своей яркости от активного (белого) в бездействующий (черный) и обратно к активному. Время отклика складывается из времени буферизации и времени переключения. В характеристиках указывается последний параметр. Измеряется в миллисекундах (мс). Чем меньше, тем лучше. Большое время отклика приводит к смазыванию изображений в быстрых сценах в фильмах и играх. В большинстве недорогих моделях на базе TN-матрицы время отклика не превышает 10 мс и вполне достаточно для комфортной работы. Кстати, некоторые производители лукавят, измеряя время перехода от одного оттенка серого к другому и выдавая это значение за время отклика.

Угол обзора
Этот параметр показывает, при каком угле просмотра контраст падает до заданного значения. При этом искажения становятся неприемлемыми для просмотра. Увы, каждая компания вычисляет угол обзора по-своему, поэтому самое лучшее - внимательно присмотреться к монитору перед покупкой.

Дефектные пиксели
После производства ЖК-матрицы на ней могут оказаться дефекты изображения, подразделяющиеся на пиксели мертвые и “горячие” (зависимые). Появление последних зависит от некоторых факторов: например, они могут проявляться при повышении температуры. “Горячие” пиксели можно попробовать убрать с помощью процедуры “ремапа” (поврежденные пиксели при этом будут выключены). От пикселей избавиться вряд ли получится.
Согласитесь, неприятно работать на мониторе с постоянно горящей зеленой либо красной точкой. Поэтому при осмотре монитора в магазине запустите какую-нибудь тестовую программу, чтобы определить наличие или отсутствие дефектных пикселей. Либо поочередно залейте экран черным, белым, красным, зеленым и синим цветом и внимательно приглядитесь. Если битых пикселей нет, смело берите. К сожалению, они могут проявиться позднее, но вероятность этого невысока.
Следует знать еще один момент: стандарт ISO 13406-2 устанавливает четыре класса качества мониторов по допустимому числу битых пикселей. Поэтому продавец может отказать вам в обмене модели, если число битых пикселей не выходит за рамки определенного производителем класса качества.

Тип матрицы
При производстве дисплеев применяются три основные технологии: TN, IPS и MVA/PVA. Имеются и другие, но они не имеют такого распространения. Технологические различия нам неинтересны, перейдем к потребительским свойствам.
TN+film. Наиболее массовые и дешевые панели. Обладают хорошим временем отклика, но плохим уровнем контрастности и малым углом обзора. Также хромает цветопередача. Поэтому не применяются в сферах, где необходима точная работа с цветом. Для домашнего использования - наилучший вариант.
IPS (SFT). Дорогие панели. Хороший угол обзора, высокая контрастность, хорошая цветопередача, но большое время отклика. Единственные, которые могут передать полную гамму цветов RGB. В настоящее время ведутся разработки для уменьшения времени отклика, еще большего расширения цветового диапазона и улучшения других параметров.
MVA/PVA. Нечто среднее между TN и IPS как по стоимости, так и по характеристикам. Время отклика не сильно хуже TN, а контрастность, цветопередача и угол обзора лучше.

Интерфейсы
Современные мониторы могут подключаться к компьютеру с помощью аналоговых и цифровых интерфейсов. Аналоговый VGA (D-Sub) морально устарел, но, скорее всего, будет использоваться еще достаточно долго. Постепенно вытесняется цифровым DVI. Также могут встретиться цифровые интерфейсы HDMI и DisplayPort.
Вам, по сути, нужно знать одно: есть ли на вашей видеокарте соответствующий интерфейс. К примеру, вы купили новый монитор с цифровым DVI, а на видеокарте - только аналоговый. В таком случае придется использовать переходник.

Размеры, дизайн, потребляемая мощность
Монитор нужно выбирать не только исходя из потребительских характеристик, но и внешнего вида. Но это индивидуальный параметр. Как мы уже писали, красивый дизайн повышает стоимость монитора. На потребляемую мощность можно не обращать внимания. Почти у всех современных моделей она совсем невелика. В паспорте устройства указывается потребляемая мощность: активная (в режиме работы) и пассивная (когда монитор выключен, но не отключен от сети).
Еще один вопрос: брать монитор с глянцевым покрытием или с матовым? Глянец дает большую контрастность, но больше бликует и быстрее пачкается.

Минусы ЖК-мониторов
Несмотря на то что жидкокристаллические мониторы по сравнению с ЭЛТ-мониторами обладают рядом преимуществ, необходимо отметить и ряд недостатков:
1) только одно “штатное” разрешение, остальные получаются с помощью интерполяции при потере четкости;
2) цветовой охват и точность цветопередачи хуже;
3) сравнительно невысокий уровень контрастности и глубины черного цвета;
4) время отклика на изменения изображения больше, чем у ЭЛТ-мониторов;
5) до сих пор не решена проблема зависимости контраста от угла обзора;
6) возможное наличие неустранимых дефектных пикселей.

Будущее ЖК-мониторов
В настоящее время жидкокристаллические мониторы переживают век расцвета. Но еще несколько лет назад эксперты начали разговоры о технологии, которая когда-нибудь сможет их заменить. Наиболее перспективными считаются OLED-дисплеи (матрица с органическими светодиодами). Однако их массовое производство пока сопряжено с трудностями и ограничивается довольно высокой ценой. Кроме того, технологии изготовления ЖК-мониторов постоянно улучшаются, поэтому объявление об их скорой кончине преждевременно.

Монитор преобразует цифровую и (или) аналоговую информацию в видеоизображение.
Монитор по своему виду и функциональности напоминает обычный телевизор.

Классификация мониторов

По цветности

  • цветные
  • монохромные

По виду выводимой информации

  • алфавитно-цифровые
  • графические

По строению

  • ЭЛТ - на основе электронно-лучевой трубки (англ. CRT - cathode ray tube )

Устройство цветного кинескопа.
1 -Электронные пушки. 2 - Электронные лучи. 3 - Фокусирующая катушка. 4 - Отклоняющие катушки. 5 - Анод. 6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т.д. 7 - Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

Основные характеристики монитора это длина диагонали его экрана, разрешение и частота показа изображения . Длину диагонали монитора принято измерять в дюймах (1 дюйм равен 2,54 сантиметра).

ЖК - жидкокристаллические мониторы (англ. LCD - liquid crystal display )- плоский монитор на основе жидких кристаллов. Тонкопленочный транзистор - одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея. Важнейшие характеристики ЖК-мониторов:

  • Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.
  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана(формат): Отношение ширины к высоте, например: 4:3, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:10 при одинаковой диагонали.
  • Контрастность: отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки, приведенная для них цифра контрастности не относится к контрасту изображения.
  • Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц считается по-разному, и часто сравнению не подлежит.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей
  • Входы: (напр, DVI, VGA, HDMI и пр.).
  • Плазменный - на основе плазменной панели
  • Проекционный - видеопроектор и экран размещённые отдельно или объединённые в одном корпусе (как вариант через зеркало или систему зеркал)


Современные мониторы по длине диагонали делятся так: 14”, 15”, 17”, 19”, 21”, 22” – дюймовые. Чем больше длина диагонали, тем лучше и, следовательно, дороже монитор. Сейчас наиболее распространены 15”и 17” дюймовые мониторы.

Разрешение монитора – это количество точек по горизонтали и вертикали, которое может показать монитор.

Как правило чем больше длина диагонали монитора, тем больше его разрешение. Для 15” дюймовых мониторов оптимальное разрешение является 800х600 (800 точек по горизонтали и 600 точек по вертикали), для 17” дюймовых мониторов - 1024х768.

Частота показа изображения монитора – это количество показов изображения монитором за секунду. Она измеряется в Герцах (Гц). Чем больше частота, тем лучше качество изображения, которое показывает монитор, коме того, чем выше частота, тем меньше устают глаза при работе с монитором.
На разных разрешениях у мониторов различные частоты. На данный момент оптимальными частотами современных мониторов являются 100 Гц при разрешении 800х600 и 85 Гц при разрешении 1024х768.

Модель монитора современного имеет низкое излучение радиации, низкое излучение электромагнитных волн, низкий статический заряд. Поэтому почти все современные мониторы (с 1996) года выпуска являются практически безвредными для человека.

Наиболее критическим параметром монитора является частота показа изображения. Именно она определяет, насколько быстро будут уставать глаза человека при работе с монитором. Т.о. рекомендуется при работе с монитором выставлять его максимальную частоту.
Теперь все большее имеют распространение имеют мониторы на жидких кристаллах


cddiski.ru - Ответы на вопросы. Лайфхаки и обзоры новинок