Введение в многомерный анализ. OLAP системы

Целью курсовой работы является изучение технологии OLAP, понятие ее реализации и структуры.

В современном мире компьютерные сети и вычислительные системы позволяют анализировать и обрабатывать большие массивы данных.

Большой объем информации сильно усложняет поиск решений, но дает возможность получить намного точнее расчеты и анализ. Для решения такой проблемы существует целый класс информационных систем, выполняющих анализ. Такие системы называют системами поддержки принятия решений (СППР) (DSS, Decision Support System).

Для выполнения анализа СППР должна накапливать информацию, обладая средствами ее ввода и хранения. Всего можно выделить три основные задачи, решаемые в СППР:

· ввод данных;

· хранение данных;

· анализ данных.

Ввод данных в СППР осуществляется автоматически от датчиков, характеризующих состояние среды или процесса, или человеком-оператором.

Если ввод данных осуществляется автоматически от датчиков, то данные накапливаются по сигналу готовности, возникающему при появлении информации или путем циклического опроса. Если же ввод осуществляется человеком, то они должны предоставлять пользователям удобные средства для ввода данных, проверяющих их на правильность ввода, а так же выполнять необходимые вычисления.

При вводе данных одновременно несколькими операторами, необходимо решать проблемы модификации и параллельного доступа одних и тех же данных.

СППР предоставляет аналитику данные в виде отчетов, таблиц, графиков для изучения и анализа, именно поэтому такие системы обеспечивают выполнение функции поддержки принятия решений.

В подсистемах ввода данных, называемых OLTP (On-linetransactionprocessing), реализуется операционная обработка данных. Для их реализации используют обычные системы управления БД (СУБД).

Подсистема анализа может быть построена на основе:

· подсистемы информационно-поискового анализа на базе реляционных СУБД и статических запросов с использованием языка SQL;

· подсистемы оперативного анализа. Для реализации таких подсистем применяется технология оперативной аналитической обработки данных OLAP, использующая концепцию многомерного представления данных;

· подсистемы интеллектуального анализа. Данная подсистема реализует методы и алгоритмы DataMining .

С точки зрения пользователя, OLAP-системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Благодаря всему этому OLAP-системы являются решением с большими преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии, таких как, отчетов по продажам, различных форм бюджетов и других. OLAP-системы имеет большие плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

1.2 Определение OLAP -систем

Технология комплексного многомерного анализа данных получила название OLAP. OLAP - это ключевой компонент организации ХД.

OLAP-функциональность может быть реализована различными способами, как простейшими, такими как анализ данных в офисных приложениях, так и более сложными - распределенными аналитическими системами, основанными на серверных продуктах.

OLAP (On-LineAnalyticalProcessing) – технология оперативной аналитической обработки данных использующая средства и методы для сбора, хранения и анализа многомерных данных и целях поддержки процессов принятия решений.

Основное назначение OLAP-систем - поддержка аналитической деятельности, произвольных запросов пользователей-аналитиков. Целью OLAP-анализа является проверка возникающих гипотез.

2003 Intelligent enterprise

ERP + OLAP = эффективная система подготовки отчетности

За последние годы появилось достаточно публикаций по OLAP (история, описание, технология, готовые решения), но для большинства специалистов, занимающихся учетом, управлением, планированием, этот термин остаётся по-прежнему чем-то непонятным.

Цель этой статьи - познакомить с практическим опытом реализации решения для подготовки отчетности на основе OLAP-технологий в ООО "Мострансгаз" - крупнейшем отечественном предприятии по транспорту газа.

Этот непонятный OLAP

OLAP (On-line Analytical Processing) обычно переводится как аналитическая обработка данных. И это определение вводит в заблуждение потенциальных пользователей технологии. В России бытует твердое убеждение, что эти системы используются исключительно высококвалифицированными специалистами и аналитиками для проведения сложного анализа. На Западе их рассматривают, как системы, упрощающие понимание данных и обмен ими между всеми сотрудниками компании. В правильности именно западного подхода к OLAP, мы убедились на собственном опыте.

Для ИТ-практиков, OLAP - это технология быстрого создания интерактивных отчетов. Как правило, OLAP-отчет может быть разработан практически без программирования, методом drag&drop. Проектирования и программирования требует только этап извлечения и подготовки данных для отчетов из корпоративных систем предприятия. Серия отчетов для определенной предметной области может быть настроена буквально за несколько часов.

Для конечных пользователей, OLAP - это табличный отчет с промежуточными и окончательными итогами. Он выпускается практически мгновенно и можно самостоятельно изменить его форму: расположение колонок и строк, порядок фильтров и сортировки и т.д. Это позволяет взглянуть на одни и те же данные под разным углом зрения. Например, получив перечень по дебиторской задолженности, углубиться в архивные данные и оценить, были ли у должника проблемы с платежами в прошлом квартале, полгода назад, в ушедшем году? Разносторонний анализ позволяет быстро оценить ситуацию и получить максимум информации о проблеме, чтобы наметить пути ее решения.

Каким образом работает OLAP-система? OLAP-клиент получает данные из исходной информационной системы, и организует их в иерархические структуры в памяти компьютера пользователя. Это позволяет выполнять вычисления промежуточных и окончательных итогов (фактов) практически мгновенно. Пользователь получает простой и интуитивно понятный интерфейс отчета. Это таблица, в которой с помощью "мыши" можно менять местами строки и колонки (измерения), перетаскивать их в область фильтров, тем самым, сворачивая данные, устанавливая самые сложные комбинации фильтров. Функциональные возможности системы позволяют за один сеанс работы выпустить десятки разновидностей одного и того же отчета.

С применением OLAP-инструмента, традиционная задача отдела автоматизации - разработка новых отчетов, в которых одни данные показаны в разрезе других, превращается в задачу предоставления пользователю исходных данных. После этого экономист или бухгалтер не тратит время на написание служебных записок с требованием создания новой разновидности отчета и не ждет, пока программисты спроектируют, разработают и протестируют его. Пользователь сам конструирует нужный вид отчета, выбирая из настроенной для него "заготовки" нужные поля, меняя порядок их следования, устанавливая фильтры и др. Созданный отчет может быть проиллюстрирован графиками и диаграммами, распечатан на бумагу или выгружен в Excel.

Итак, OLAP-инструмент дает два основных преимущества пользователю:

  • высокая скорость и простота настройки нового отчета
  • высокая скорость выпуска отчетов.

Подготовка отчетности в ERP-системах

Обратимся к определению ERP-системы: ERP-система (Enterprise Resource Planning system) - комплексная интегрированная система, создающая единую среду для автоматизации планирования, учета, контроля и анализа всех основных бизнес-операций предприятия.

Традиционно, создатели ERP-систем наибольшее внимание уделяют функциям, направленным на реализацию бизнес-процессов предприятий, документооборота, учета, планирования и других сфер. Поэтому в первую очередь они оптимизируют ввод новых учетных данных в систему. При этом на второй план уходит возможность использования накопленных данных, развитие встроенной системы отчетности и, что наиболее важно, - преобразование огромных массивов данных в информацию для принятия управленческих решений.

Все без исключения ERP-системы имеют подсистему формирования отчетов. Но созданные с ее помощью отчеты не позволяют менеджменту предприятия оценить финансовые показатели деятельности, выявить наиболее прибыльные продукты и услуги, проанализировать затраты, дебиторскую и кредиторскую задолженности и т.д. Обычно в составе подсистемы отчетности поставляется базовый минимум отчетов по предметным разделам, например, наличие товаров на складах, ведомость износа основных фондов, кассовая книга, ведомость реализации услуг и др. Номенклатура, уровень достаточности и глубина штатных отчетов определяются разработчиками без учета потребностей конкретного конечного пользователя продукта. В результате, штатные отчеты ориентированы на пользователей "нижнего" уровня. Эти отчеты выпускаются из базы данных, на которой работает учетная система. Скорость формирования таких отчетов находится в обратной зависимости от фильтров, группировок и информационного состава.

Создать дополнительные отчеты, в том числе, управленческие, можно с помощью инструментария для разработки отчетов, который поставляется в составе ERP-системы. В некоторых системах это "продвинутый" конструктор с возможностью визуального проектирования, в некоторых - встроенный язык программирования.

В любом случае настройка нового отчета выполняется силами программистов и занимает от нескольких часов до нескольких дней в зависимости от сложности. Даже незначительное изменение структуры отчета вызывает существенные затраты по ресурсам.

Таким образом, есть ряд факторов, которые препятствуют свободному получению информации из учетной системы:

  1. Ограниченный набор базовой отчетности.
  2. Необходимость привлечения программистов для настройки дополнительных отчетов.
  3. Низкая скорость формирования сложных отчетов из общей с системой ввода данных СУБД.
  4. Высокие требования к производительности локальных рабочих станций пользователей при формировании на них сложных отчетов

Выходом из этой ситуации может быть платформенное разделение учета и отчетности, при котором учетная система оптимизирована для отражения бизнес-процессов, а отчетная система является надстройкой над данными учетной системы и предназначена для быстрого создания и выпуска разнообразных отчетов.

Интеграция OLAP-инструментов с ERP-системой

Рассмотрим возможный вариант реализации разделения учета и отчетности на примере интеграции ERP-системы и OLAP-инструментов. В ООО "Мострансгаз" данная модель была построена на основе:

  • программного комплекса "Галактика" версии 5.84 с использованием модулей "Контур оперативного учета" и "Контур бухгалтерского учета"; разработаны компанией "Галактика" (www.galaktika.ru) ;
  • OLAP-инструментов Аналитической платформы Контур: Контур Стандарт версии 4.0, Контур Дизайнер кубов версии 1.0 и Контур Генератор кубов версии 1.0; разработаны компанией Intersoft Lab .

Предложенная модель могла быть реализована и с использованием других программных продуктов соответствующего функционального содержания. Выбор указанных систем был продиктован наличием закупленных версий, удачным сочетанием их функциональных возможностей и достаточным опытом их эксплуатации.

Система "Галактика" работает на платформе СУБД Btrieve\Pervasive, что при невысоких расходах на сопровождение обеспечивает вполне приемлемую скорость работы пользователей, выполняющих операции ввода данных и выпуска текущих отчетов. Однако отчеты за длительный период, а также отчеты, построенные на нестандартных запросах, выполняются недостаточно быстро. Это побудило ИТ-менеджеров ООО "Мострансгаз" применить современные OLAP-системы Аналитической платформы Контур для выпуска отчетов.

АНАЛИТИЧЕСКАЯ ПЛАТФОРМА КОНТУР

Контур Стандарт - это инструмент для генерации произвольных табличных отчетов и анализа данных различных информационных систем. В этой системе можно настроить прямой доступ к локальным таблицам и реляционным базам данных, сконструировать SQL-запросы и выпускать на них OLAP-отчеты в режиме реального времени. Созданный отчет сохраняется для работы в off-line режиме и передачи удаленным пользователям в виде файлов микрокубов.

Микрокуб - это мобильный контейнер OLAP-отчетов и данных для представления в отчетах. В нем хранятся данные, выгруженные из автоматизированных корпоративных систем, алгоритмы расчета вычисляемых показателей и формы OLAP-отчетов. Данные в микрокубе подготовлены для многомерного анализа и оперативного получения показателей в различных разрезах. При помещении в микрокуб объем исходной информации сжимается в десятки раз, что позволяет передавать их по Интернет-протоколам и пересылать по электронной почте.

Контур Дизайнер Кубов предназначен для проектирования микрокубов и сценариев их генерации.

Контур Генератор кубов используется для массовой генерации микрокубов по готовым сценариям.

Более подробно об OLAP-технологии, ее возможностях и конкретных примерах использования можно прочесть в статье В.Некрасова "Мобильный OLAP", опубликованной в журнале "Открытые системы" №5 (2003г.).

Общая схема решения выглядит следующим образом:


Рис. 1. Общая схема решения

Пользователи ПК "Галактика" работают в штатном режиме, то есть вводят данные и выпускают текущие отчеты для проверки корректности выполненных транзакций.

Параллельно, планировщик задач с заданным периодом в 30 минут запускает перегрузку данных из БД "Галактики" в промежуточный склад данных. Перегрузка происходит в фоновом режиме без отключения пользователей. Промежуточный склад данных является копией базы данных ERP-системы. В данном конкретном случае склад реализован на платформе Firebird, но нет никаких ограничений по другим СУБД. Основная задача создания промежуточного слоя данных - разделение системы учета и системы отчетности.

Данные промежуточного склада используются для создания микрокубов - витрин данных по разным направлениям отчетности (например, "исполнение договоров по капитальному ремонту" или "состав затрат с местами их возникновения"). Создание микрокубов и настройка OLAP-отчетов делегирована аналитикам службы информационных технологий.

Аналитик настройки отчетности в визуальной среде "Контур Дизайнер кубов" проектирует структуры микрокубов, информационный состав и внешний вид OLAP-отчетов. Все настройки сохраняются в виде файлов сценариев.

По готовым сценариям модуль "Контур Генератор кубов" каждые 30 минут генерирует микрокубы из промежуточного склада данных.

Готовые микрокубы содержат в себе метаданные (настройки внешнего вида отчетов, доступных пользователю измерений и фильтров и др.) и данные (выборки из промежуточного склада данных).

При помощи OLAP-клиента "Контур Стандарт" микрокубы доступны аналитикам, экономистам, бухгалтерам и другим потребителям отчетов.

Практические примеры использования OLAP для подготовки отчетности

Какие задачи и как помогают решить OLAP-технологии пользователям ERP-системы? Инструменты OLAP извлекают данные из БД ERP-системы и представляют их в интерактивных отчетах для разных специалистов: бухгалтеров, экономистов, руководителей и т.д. Контроль движения материальных ценностей между складами, сравнительный анализ закупочных цен поставщиков, оценка сбыта по регионам, анализ исполнения бюджетов - таков далеко не полный перечень направлений использования OLAP-систем на предприятии. Фактически интеграция ERP и OLAP выводит автоматизацию поддержки управления предприятием на новый качественный уровень.

Рассмотрим несколько примеров использования OLAP в "Мострансгазе".

Представление штатной отчетности в форме OLAP

Любую базовую отчетность ERP-системы можно представить в виде OLAP-таблицы. Это значит, что пользователь сможет сам управлять формой и содержанием отчета с помощью стандартных OLAP-операций: группировки и детализации данных, фильтрации по измерениям и периодам и т.д. После каждой операции OLAP-система выполняет перерасчет промежуточных и окончательных итогов и мгновенно отображает новый отчет.

Это дает сотрудникам разных подразделений свободный доступ к огромным объемам информации для анализа. Например, все стандартные "шахматки по счетам" за год можно поместить в одну единственную OLAP-таблицу. В колонках и строках таблицы будут представлены корреспондирующие счета, в ячейках на пересечении колонок и строк - суммы проводок. С помощью фильтров бухгалтер выбирает счета для представления в отчете, углубляется в интересующий синтетический счет, например 10 "Материалы" (см. рис.), до уровня субсчетов и сразу же получает шахматку по аналитике этого счета.


Рис. 2. OLAP-отчет

Анализ дебиторской и кредиторской задолженности

Классическая задача, которую решают OLAP-системы - генерация основных периодов из даты. Это значит, что на основе фактических значений за каждую дату, система автоматически вычисляет итоговые значения показателей за заданные периоды: неделя, декада, месяц, квартал, год.

Это помогает в решении множества повседневных задач бухгалтерии предприятия. Например, значительно сокращает время на поиск задолженности, по которой приближается срок исковой давности, при создании резерва по сомнительной задолженности и в других случаях анализа дебиторской и кредиторской задолженности. Для этого в один OLAP-отчет выводятся остатки по счету 76 "Расчеты с дебиторами и кредиторами" в разрезе периодов возникновения задолженности, например по годам.

"Мострансгаз" имеет договорные отношения с огромным количеством контрагентов. В OLAP-отчете можно оперативно просмотреть задолженность каждого контрагента и оценить суммы задолженности по разным видам деятельности в разрезе контрагентов. Для этого в отчет добавляются два измерения: "Контрагент" (объекты аналитического учета по счету 76) и "За что" (предметы договоров с контрагентами, по которым образовалась задолженность). Итоги по новым измерениям рассчитываются автоматически (см. рис).

Рис. 3. OLAP-отчет

Поиск встречной задолженности

Для поиска встречной задолженности в OLAP-отчете дебетовые и кредитовые сальдо по счетам 60 "Расчеты с поставщиками", 62 "Расчеты с покупателями и заказчиками" и 76 "Расчеты с дебиторами и кредиторами" представляются в разрезе контрагентов (измерение "Контрагент"), договоров (измерение "За что") и документов оплаты по договору (измерение "Документ").

Сравнивая промежуточные итоги по дебету и кредиту счетов, бухгалтер видит взаимную задолженность с расшифровкой "с кем" ("Контрагент"), "за что" и "по каким документам".

Рис. 4. OLAP-отчет

Анализ задолженности и НДС

В OLAP-таблице с помощью фильтров по фактам и измерениям легко подобрать удобную для решения конкретной задачи форму отчета и выделить данные для сравнения. Можно изменить масштаб (1хN) и формат (абсолютное значение/проценты) представления данных. Две последние функции не являются обязательными для всех OLAP-систем, но они исключительно удобны для решения бухгалтерских задач.

Например, в отчете "Сальдо 2003 года по кварталам и датам" (см. рис.) для сопоставления корректности сальдо по кредиторской задолженности на счете 60 "Расчеты с поставщиками" и налога на добавленную стоимость (НДС) на счете 19 "НДС по приобретенным ценностям" устанавливаются два фильтра. Первый фильтр - по измерению "Счет" для отображения в отчете данных только по двум счетам - 19 и 60. Второй фильтр - по фактам, он включает отображение "свернутого" сальдо по счетам. В результате в соседних колонках в отчете отражаются дебетовое и кредитовое сальдо по выбранным счетам в разрезе счетов-фактур (измерение "С/Ф"), договоров и контрагентов.

Чтобы проверить корректность выделения НДС (18/118, до 2004 года 20/120), бухгалтер одной кнопкой переводит сальдо в проценты по строкам таблицы фактов. В результате в соседних колонках по каждому счету-фактуре выводится сумма оплаты и выделенный из нее НДС. Если отношение 20/120 или 18/118 нарушено, то ситуация по бухгалтерскому документу требует дополнительного разбора и анализа.

Рис. 5. OLAP-отчет

Анализ затрат предприятия

Для анализа затрат предприятия в OLAP-отчете представляются проводки по затратным счетам (20 "Основное производство" и 23 "Вспомогательное производство") в разрезе объектов аналитического учета (измерение "Статья затрат") и их группировок (измерение "Вид деятельности"). В результате с помощью фильтров можно получить в одном отчете группировки затратных статей из различных синтетических счетов.

Помимо фильтров, полезная функция OLAP - сортировка измерений по значениям фактов. Она удобна для выявления приоритетных или, наоборот, наименее выгодных позиций: филиалов, контрагентов, видов деятельности, продуктов и т.д. Например, чтобы выявить наиболее затратные статьи заданного периода, можно отсортировать измерение "Статья затрат" по возрастанию.

Управляя составом измерений отчета, можно оценивать затраты предприятия с разных позиций. Например, для анализа затрат в разрезе структурных подразделений предприятия в отчет достаточно добавить измерение "Филиал" (см. рис.).

Рис. 6. OLAP-отчет

Анализ выполнения работ подрядчиками

OLAP-инструменты "говорят" со своими потребителями на одном языке. Это достигается за счет создания семантического слоя, когда полям из БД ERP-системы присваиваются названия, в терминах предметной области. В результате переименования колонки, строки и цифры в OLAP-таблице приобретают прикладной смысл, понятный конечным пользователям отчетов.

Наглядный пример - отчет по картотеке незавершенного строительства за 2003 год (см. рис.). Он показывает состояние расчетов с подрядчиками (измерение "Контрагент"), из которых можно оценивать ход выполнения работ по объектам строительства (измерение "Стройка"). Уплаченные суммы представлены в разрезе бухгалтерских документов: счетов-фактур (измерение "Счет-фактура") и соответствующих платежных документов и актов сдачи-приемки (измерение "Номер документа"). В таблице фактов представлены остатки по счетам 08 "Вложения во внеоборотные активы" (факт "Выполнен.работ"), 19 "НДС по приобретенным ценностям" (факт "НДС по работам") и 60 "Расчеты с поставщиками" (факт "Оплачено). К примеру, из таблицы видно, что за работы по строительству 14-этажного жилого дому на Можайском шоссе, подрядчику ЖилСтройКомплект был оплачен аванс в размере 41800 рублей по платежному документу А08016. В акте сдачи-приемки работ №34 было зафиксировано, что работы на сумму 41800 рублей, не облагаемые НДС, выполнены. Таким образом, счет-фактура №256 был закрыт.

Автоматический подсчет промежуточных итогов по разным измерениям таблицы позволяет мгновенно получить дополнительную информацию - суммарные затраты по объекту строительства или конкретному поставщику.

Рис. 7. OLAP-отчет

Анализ прибыли и убытков предприятия по видам деятельности

Для "Отчета о прибыли и убытках" бухгалтер готовит различные группировки по счету 99 "Прибыли и убытки". В OLAP-системе их можно получить практически мгновенно.

В одном OLAP-отчете объединенные в группы проводки по счету 99 показывают источники возникновения прибыли (в разрезе измерения "Филиал") и прибыльные бизнес-направления (в разрезе измерения "Вид деятельности"). По каждой группе проводок автоматически рассчитываются итоговые значения для сравнения составляющих прибылей и убытков.

Если дополнительно разложить данные по датам на периоды: по месяцам, кварталам (см. рис) и др., можно с разным масштабом оценить динамику прибыли.

Рис. 8. OLAP-отчет

Реальный выигрыш

Накопленный опыт эксплуатации OLAP-системы как надстройки над ERP показал ряд существенных положительных моментов:

  • Формирование глубоких аналитических отчетов у пользователей выполняется моментально.
  • Настройка отчетов для пользователей при помощи визуальных средств проектирования, которые входят в состав OLAP-системы, происходит значительно быстрее, чем при программировании отчетов. Аналитик, настраивающий отчеты, может совершенно не владеть навыками программирования.
  • При работе с OLAP-отчетами пользователь не ограничен в возможностях анализа и синтеза данных. При необходимости он самостоятельно модифицирует представление отчета без привлечения программиста.
  • Присваивая одним и тем же измерениям различные названия, можно настраивать отчеты для потребителей информации различных уровней. При этом в отчетах за разными названиями может скрываться одна и та же информация.
  • За счет высокой скорости получения разнообразных отчетов снижается совокупное время, затрачиваемое на анализ финансового состояния предприятия.
  • Сокращаются расходы на разработку и сопровождение системы отчетности предприятия, обеспечивается независимость от поставщика ERP-систем по номенклатуре отчетов.

Автор надеется, что все изложенное в статье будет полезно IT-службам и прикладным специалистам предприятий, и поможет им преодолеть искусственный барьер перед использованием OLAP-инструментов для подготовки разнообразной отчетности на основе ERP-систем.

OLAP (от англ. OnLine Analytical Processing - оперативная аналитическая обработка данных, также: аналитическая обработка данных в реальном времени, интерактивная аналитическая обработка данных) - подход к аналитической обработке данных, базирующийся на их многомерном иерархическом представлении, являющийся частью более широкой области информационных технологий - бизнес-аналитики ().

Каталог OLAP-решений и проектов смотрите в разделе OLAP на TAdviser.

С точки зрения пользователя, OLAP -системы представляют средства гибкого просмотра информации в различных срезах, автоматического получения агрегированных данных, выполнения аналитических операций свёртки, детализации, сравнения во времени. Всё это делает OLAP-системы решением с очевидными преимуществами в области подготовки данных для всех видов бизнес-отчетности, предполагающих представление данных в различных разрезах и разных уровнях иерархии - например, отчетов по продажам, различных форм бюджетов и так далее. Очевидны плюсы подобного представления и в других формах анализа данных, в том числе для прогнозирования.

Требования к OLAP-системам. FASMI

Ключевое требование, предъявляемое к OLAP-системам - скорость, позволяющая использовать их в процессе интерактивной работы аналитика с информацией. В этом смысле OLAP-системы противопоставляются, во-первых, традиционным РСУБД , выборки из которых с типовыми для аналитиков запросами, использующими группировку и агрегирование данных, обычно затратны по времени ожидания и загрузке РСУБД , поэтому интерактивная работа с ними при сколько-нибудь значительных объемах данных сложна. Во-вторых, OLAP-системы противопоставляются и обычному плоскофайловому представлению данных, например, в виде часто используемых традиционных электронных таблиц, представление многомерных данных в которых сложно и не интуитивно, а операции по смене среза - точки зрения на данные - также требуют временных затрат и усложняют интерактивную работу с данными.

При этом, с одной стороны, специфичные для OLAP-систем требования к данным обычно подразумевают хранение данных в специальных оптимизированных под типовые задачи OLAP структурах, с другой сторны, непосредственное извлечение данных из существующих систем в процессе анализа привело бы к существенному падению их производительности.

Следовательно, важным требованием является обеспечение макимально гибкой связки импорта-экспорта между существующими системами, выступающими в качестве источника данных и OLAP-системой, а также OLAP-системой и внешними приложениями анализа данных и отчетности.

При этом такая связка должна удовлетворять очевидным требованиям поддержки импорта-экспорта из нескольких источников данных, осуществления процедур очистки и трансформации данных, унификации используемых классификаторов и справочников. Кроме того, к этим требованиям добавляется необходимость учёта различных циклов обновления данных в существующих информационных системах и унификации требуемого уровня детализации данных. Сложность и многогранность этой проблемы привела к появлению концепции хранилищ данных , и, в узком смысле, к выделению отдельного класса утилит конвертации и преобразования данных - ETL (Extract Transform Load) .

Модели хранения активных данных

Выше мы указали, что OLAP предполагает многомерное иерархическое представление данных, и, в каком-то смысле, противопоставляется базирующимся на РСУБД системам.

Это, однако, не значит, что все OLAP-системы используют многомерную модель для хранения активных, "рабочих" данных системы. Так как модель хранения активных данных оказывает влияние на все диктуемые FASMI-тестом требования, её важность подчёркивается тем, что именно по этому признаку традиционно выделяют подтипы OLAP - многомерный (MOLAP), реляционный (ROLAP) и гибридный (HOLAP).

Вместе с тем, некоторые эксперты, во главе с вышеупомянутым Найджелом Пендсом , указывают, что классификация, базирующаяся на одном критерии недостаточно полна. Тем более, что подавляющее большинство существующих OLAP-систем будут относиться к гибридному типу. Поэтому мы более подробно остановимся именно на моделях хранения активных данных, упомянув, какие из них соответствуют каким из традиционных подтипов OLAP.

Хранение активных данных в многомерной БД

В этом случае данные OLAP хранятся в многомерных СУБД , использующих оптимизированные для такого типа данных конструкции. Обычно многомерные СУБД поддерживают и все типовые для OLAP операции, включая агрегацию по требуемым уровням иерархии и так далее.

Этот тип хранения данных в каком-то смысле можно назвать классическим для OLAP. Для него, впрочем, в полной мере необходимы все шаги по предварительной подготовке данных. Обычно данные многомерной СУБД хранятся на диске, однако, в некоторых случаях, для ускорения обработки данных такие системы позволяют хранить данные в оперативной памяти . Для тех же целей иногда применяется и хранение в БД заранее рассчитанных агрегатных значений и прочих расчётных величин.

Многомерные СУБД , полностью поддерживающие многопользовательский доступ с конкурирующими транзакциями чтения и записи достаточно редки, обычным режимом для таких СУБД является однопользовательский с доступом на запись при многопользовательском на чтение, либо многопользовательский только на чтение.

Среди условных недостатков, характерных для некоторых реализаций многомерных СУБД и базирующихся на них OLAP-систем можно отметить их подверженность непредсказуемому с пользовательской точки зрения росту объёмов занимаемого БД места. Этот эффект вызван желанием максимально уменьшить время реакции системы, диктующим хранить заранее рассчитанные значения агрегатных показателей и иных величин в БД, что вызывает нелинейный рост объёма хранящейся в БД информации с добавлением в неё новых значений данных или измерений.

Степень проявления этой проблемы, а также связанных с ней проблем эффективного хранения разреженных кубов данных, определяется качеством применяемых подходов и алгоритмов конкретных реализаций OLAP-систем.

Хранение активных данных в реляционной БД

Могут храниться данные OLAP и в традиционной РСУБД . В большинстве случаев этот подход используется при попытке «безболезненной» интеграции OLAP с существующими учётными системами, либо базирующимися на РСУБД хранилищами данных . Вместе с тем, этот подход требует от РСУБД для обеспечения эффективного выполнения требований FASMI-теста (в частности, обеспечения минимального времени реакции системы) некоторых дополнительных возможностей. Обычно данные OLAP хранятся в денормализованном виде, а часть заранее рассчитанных агрегатов и значений хранится в специальных таблицах. При хранении же в нормализованном виде эффективность РСУБД в качестве метода хранения активных данных снижается.

Проблема выбора эффективных подходов и алгоритмов хранения предрассчитанных данных также актуальна для OLAP-систем, базирующихся на РСУБД, поэтому производители таких систем обычно акцентируют внимание на достоинствах применяемых подходов.

В целом считается, что базирующиеся на РСУБД OLAP-системы медленнее систем, базирующихся на многомерных СУБД, в том числе за счет менее эффективных для задач OLAP структур хранения данных, однако на практике это зависит от особенностей конкретной системы.

Среди достоинств хранения данных в РСУБД обычно называют большую масштабируемость таких систем.

Хранение активных данных в «плоских» файлах

Этот подход предполагает хранение порций данных в обычных файлах. Обычно он используется как дополнение к одному из двух основных подходов с целью ускорения работы за счет кэширования актуальных данных на диске или в оперативной памяти клиентского ПК.

Гибридный подход к хранению данных

Большинство производителей OLAP-систем, продвигающих свои комплексные решения, часто включающие помимо собственно OLAP-системы СУБД , инструменты ETL (Extract Transform Load) и отчетности, в настоящее время используют гибридный подход к организации хранения активных данных системы, распределяя их тем или иным образом между РСУБД и специализированным хранилищем, а также между дисковыми структурами и кэшированием в оперативной памяти.

Так как эффективность такого решения зависит от конкретных подходов и алгоритмов, применяемых производителем для определения того, какие данные и где хранить , то поспешно делать выводы о изначально большей эффективности таких решений как класса без оценки конкретных особенностей рассматриваемой системы.

OLAP (англ. on-line analytical processing) – совокупность методов динамической обработки многомерных запросов в аналитических базах данных. Такие источники данных обычно имеют довольно большой объем, и в применяемых для их обработки средствах одним из наиболее важных требований является высокая скорость. В реляционных БД информация хранится в отдельных таблицах, которые хорошо нормализованы. Но сложные многотабличные запросы в них выполняются довольно медленно. Значительно лучшие показатели по скорости обработки в OLAP-системах достигаются за счет особенности структуры хранения данных. Вся информация четко организована, и применяются два типа хранилищ данных: измерения (содержат справочники, разделенные по категориям, например, точки продаж, клиенты, сотрудники, услуги и т.д.) и факты (характеризуют взаимодействие элементов различных измерений, например, 3 марта 2010 г. продавец A оказал услугу клиенту Б в магазине В на сумму Г денежных единиц). Для вычисления результатов в аналитическом кубе применяются меры. Меры представляют собой совокупности фактов, агрегированных по соответствующим выбранным измерениям и их элементам. Благодаря этим особенностям на сложные запросы с многомерными данными затрачивается гораздо меньшее время, чем в реляционных источниках.

Одним из основных вендоров OLAP-систем является корпорация Microsoft . Рассмотрим реализацию принципов OLAP на практических примерах создания аналитического куба в приложениях Microsoft SQL Server Business Intelligence Development Studio (BIDS) и Microsoft Office PerformancePoint Server Planning Business Modeler (PPS) и ознакомимся с возможностями визуального представления многомерных данных в виде графиков, диаграмм и таблиц.

Например, в BIDS необходимо создать OLAP-куб по данным о страховой компании, ее работниках, партнерах (клиентах) и точках продаж. Допустим предположение, что компания предоставляет один вид услуг, поэтому измерение услуг не понадобится.

Сначала определим измерения. С деятельности компании связаны следующие сущности (категории данных):

  • Точки продаж
    - Сотрудники
    - Партнеры
Также создаются измерения Время и Сценарий, которые являются обязательными для любого куба.
Далее необходима одна таблица для хранения фактов (таблица фактов).
Информация в таблицы может вноситься вручную, но наиболее распространена загрузка данных с применением мастера импорта из различных источников.
На следующем рисунке представлена последовательность процесса создания и заполнения таблиц измерений и фактов вручную:

Рис.1. Таблицы измерений и фактов в аналитической БД. Последовательность создания
После создания многомерного источника данных в BIDS имеется возможность просмотреть его представление (Data Source View). В нашем примере получится схема, представленная на рисунке ниже.


Рис.2. Представление источника данных (Data Source View) в Business Intellingence Development Studio (BIDS)

Как видим, таблица фактов связана с таблицами измерений посредством однозначного соответствия полей-идентификаторов (PartnerID, EmployeeID и т.д.).

Посмотрим на результат. На вкладке обозревателя куба, перетаскивая меры и измерения в поля итогов, строк, столбцов и фильтров, можем получить представление интересующих данных (к примеру, заключенные сделки по страховым договорам, заключенные определенным работником в 2005 году).

Для решения аналитических задач, связанных со сложными расчетами, прогнозированием, моделированием сценариев «Что, если…» применяется технология многомерного анализа данных - Технология OLAP. Концепция OLAP впервые была описана в 1993 году Эдгаром Коддом, известным исследователем баз данных и автором реляционной модели данных, в книге “OLAP для пользователей-аналитиков: каким он должен быть”, где он изложил 12 законов аналитической обработки данных, по которым разработчики OLAP-продуктов живут и сейчас:

1. Концептуальное многомерное представление данных.

2. Прозрачность (прозрачный доступ к внешним данным для пользователя, позволяя ему, где бы он ни находился, связываться при помощи аналитического инструмента с сервером).

3. Доступность и детализация данных.

4. Постоянная производительность при разработке отчетов (Если число измерений или объем базы данных увеличиваются, пользователь-аналитик не должен чувствовать ухудшение в производительности).

5. Клиент-серверная архитектура (OLAP доступен с рабочего стола).

6. Общая многомерность.

7. Динамическое управление разреженными матрицами.

8. Многопользовательская поддержка. Часто бывает, что несколько пользователей-аналитиков испытывают потребность работать совместно с одной аналитической моделью или создавать различные модели из единых данных. И OLAP-инструмент должен предоставлять возможности совместного доступа (запроса и дополнения), целостности и безопасности.

9. Неограниченные перекрестные операции.

10. Интуитивная манипуляция данными.

11. Гибкие возможности получения отчетов.

12. Неограниченная размерность и число уровней агрегации (аналитический инструмент должен предоставлять не менее 15 измерений одновременно, а предпочтительно 20).

Недостатки обычных отчетов для менеджера очевидны: у руководителя нет времени выбирать интересующие цифры из отчёта, тем более что их может оказаться слишком много. Сложность отчетов для понимания, неудобство работы с ними привели к необходимости создания новой концепции работы с данными.

Когда аналитику необходимо получить информацию, он самостоятельно или с помощью программиста делает соответствующий SQL-запрос к базе данных, получает интересующие его данные в виде отчета. Отчеты могут строиться по заказу или по достижению некоторых событий или времени. При этом возникает множество проблем. Прежде всего, аналитик чаще всего не владеет навыками высокоуровневого программирования и не может самостоятельно осуществить SQL-запрос к базе данных. Кроме того, аналитику необходим не один отчет, а их множество и в реальном масштабе времени. Программисты же, которые легко могут осуществлять любые запросы к базе данных, если и будут ему помогать, то не постоянно, ведь у них есть и своя собственная работа. Массовые запросы к серверу базы данных усложняют работу и тех работников компании, которые постоянно работают с базами данных.

Концепция OLAP появилась именно для разрешения подобных проблем. OLAP (O nL ine A nalytical P rocessing) – это оперативная аналитическая обработка больших объемов данных в режиме реального времени. Цель OLAP-систем – облегчение решения задач анализа больших объемов данных и быстрая обработка сложных запросов к базе данных.

OLAP – это:

    не программный продукт

    не язык программирования

    не технология

OLAP – это совокупность концепций, принципов и требований, облегчающих аналитикам доступ к данным. Это инструмент для многомерного динамического анализа больших объемов данных в режиме реального времени.

Задача аналитика - находить закономерности в больших массивах данных. Аналитик не будет обращать внимания на отдельно взятый факт, ему нужна информация о нескольких десятках подобных событий. Одиночные факты в базе данных интересны, к примеру, бухгалтеру или работнику отдела продаж, в компетенции которого находится сделка. Аналитику одной записи мало - ему, к примеру, могут понадобиться все сделки данного филиала или представительства за месяц, год. Заодно аналитик отбрасывает ненужные ему подробности вроде ИНН покупателя, его точного адреса и номера телефона, индекса контракта и тому подобного. В то же время данные, которые требуются аналитику для работы, обязательно содержат числовые значения - это обусловлено самой сущностью его деятельности.

Многомерный набор данных часто представляют в виде OLAP – куба (см. рис.26). Оси OLAP-куба содержат параметры, а ячейки - зависящие от них агрегатные данные.

Рис. 26 OLAP – куб

Кубы OLAP представляют собой, по сути, мета-отчеты. Преимущества кубов очевидны - данные необходимо запросить из базы данных всего один раз - при построении куба. Поскольку аналитики, как правило, не работают с информацией, которая дополняется и меняется "на лету", сформированный куб является актуальным в течение достаточно продолжительного времени. Благодаря этому, не только исключаются перебои в работе сервера баз данных (нет запросов с тысячами и миллионами строк ответов), но и резко повышается скорость доступа к данным для самого аналитика.

Но есть и значительный недостаток: куб OLAP может занимать в десятки, и даже сотни раз больше места, чем исходные данные.

OLAP – куб совсем не обязательно должен быть трехмерным. Он может быть и двухмерным и многомерным - в зависимости от решаемой задачи. Аналитикам может понадобиться более 20 измерений - серьезные OLAP-продукты именно на такое количество и рассчитаны. Более простые настольные приложения поддерживают не более 6 измерений.

Должны быть заполнены далеко не все элементы куба: если отсутствует какая-либо информация, значение в соответствующей ячейке ей просто не будет определено. Совершенно необязательно также, чтобы приложение OLAP хранило данные непременно в многомерной структуре - главное, чтобы для пользователя эти данные выглядели именно так.

Наполнение OLAP - куба может вестись как реальными данными из оперативных систем, так и прогнозируемыми на основе исторических данных. Измерения гиперкуба могут носить сложный характер, быть иерархическими, между ними могут быть установлены отношения. В процессе анализа пользователь может менять точку зрения на данные (так называемая операция смены логического взгляда), тем самым просматривая данные в различных разрезах и разрешая конкретные задачи. Над кубами могут выполняться различные операции, включая прогнозирование и условное планирование (анализ типа “что, если”).

Трехмерный куб легко можно изобразить и представить. Однако адекватно представить или изобразить шестимерный или двадцатимерный куб почти невозможно. Поэтому перед употреблением из многомерного куба извлекают обычные двумерные таблицы, т.е. как бы "разрезают" измерения куба по меткам. Разрезая OLAP кубы по измерениям, аналитик получает, фактически, интересующие его «обычные двумерные отчеты» (не обязательно отчеты в обычном понимании этого термина - речь идет о структурах данных с такими же функциями). Эта операция называется "разрезанием" куба. Этим способом аналитик получает двумерный срез куба и с ним работает. Нужные разрезы - это отчёты.

Взаимодействуя с OLAP-системой, пользователь может осуществлять гибкий просмотр информации, получать произвольные срезы данных, и выполнять аналитические операции детализации, свертки, сквозного распределения, сравнения во времени (см. рис.27).

Рис. 27 П олучение произвольных срезов данных при разрезании OLAP куба.

Классификация OLAP-продуктов

Выполнение операций над данными осуществляется OLAP-машиной. OLAP-продукты классифицируют по способу хранения данных и по месту размещения OLAP-машины.

По способу хранения данных делятся на три категории MOLAP, ROLAP и HOLAP:

    MOLAP - исходные и агрегатные данные хранятся в многомерной базе данных или в многомерном локальном кубе.

    ROLAP - исходные данные хранятся в реляционной базе данных или в плоских локальных таблицах на файл-сервере. Агрегатные данные могут помещаться в служебные таблицы в той же базе данных. Преобразование данных из реляционной БД в многомерные кубы происходит по запросу OLAP-средства.

    HOLAP - исходные данные остаются в реляционной базе , а агрегатные данные размещаются в многомерной базе данных . Построение OLAP-куба выполняется по запросу OLAP-средства на основе реляционных и многомерных данных.

По месту размещения OLAP-машины можно выделить два основных класса OLAP-продуктов: OLAP-сервер и OLAP-клиент.

OLAP-сервер получает запрос, вычисляет и хранит агрегатные данные на сервере, выдавая клиентскому приложению, установленному на компьютере клиента, только результаты запросов к многомерным кубам, которые хранятся на сервере. Многие современные OLAP-серверы поддерживают все три способа хранения данных: MOLAP, ROLAP и HOLAP.

OLAP-клиент производит построение многомерного куба и OLAP-вычисления не на отдельном сервере, а на самом клиентском компьютере пользователя. OLAP-клиенты также делятся на ROLAP и MOLAP.

Известно, что OLAP-сервер может обрабатывать более значительные объемы данных, чем OLAP-клиент при равной мощности компьютера. Это объясняется тем, что OLAP-сервер хранит на жестких дисках многомерную базу данных, содержащую заранее вычисленные кубы. Клиентские программы выполняют запросы к серверу, получая и куб, и его фрагменты. Скоростные характеристики OLAP-сервера менее чувствительны к росту объема данных.

OLAP-клиент в момент работы должен иметь в оперативной памяти весь куб. Поэтому, объем данных, обрабатываемых OLAP-клиентом, находится в прямой зависимости от объема оперативной памяти компьютера пользователя. OLAP-клиент генерирует запрос к базе данных, в котором описываются условия фильтрации и алгоритм предварительной группировки первичных данных. Сервер находит, группирует записи и возвращает компактную выборку для дальнейших OLAP-вычислений. Размер этой выборки может быть в десятки и сотни раз меньше объема первичных, не агрегированных записей. Следовательно, потребность такого OLAP-клиента в ресурсах компьютера существенно снижается.

OLAP-сервер предъявляет минимальные требования к мощности клиентских компьютеров. Требования же OLAP-клиента выше, т.к. он производит вычисления в своей оперативной памяти. Если мощности клиентских компьютеров мала, то OLAP-клиент будет работать медленно или не сможет работать вовсе. Покупка одного мощного сервера может оказаться дешевле модернизации всех компьютеров.

Стоимость OLAP-сервера достаточно высока, а внедрение и сопровождение OLAP-сервера требует от персонала высокой квалификации. Стоимость OLAP-клиента на порядок ниже стоимости OLAP-сервера.

С внедрением OLAP производительность и эффективность управления предприятием значительно возрастает. Главным лицом в процессе анализа данных является эксперт – специалист в предметной области. Эксперт выдвигает гипотезы (предположения) и для их анализа либо просматривает некие выборки различными способами, либо строит модели для проверки достоверности гипотез.

Аналитические средства позволяют конечному пользователю, не имеющему специальных знаний в области ИТ, работать с большими объемами данных. Цель аналитических бизнес-систем: поддержка принятия решений на всех уровнях управления предприятием.

Аналитические системы оперативного уровня обеспечивают управление предприятием в "режиме функционирования", т.е. выполнения определенной производственной программы. Аналитические системы стратегического уровня помогают руководству предприятия вырабатывать решения в "режиме развития". Системы стратегического управления– это аналитические ИС, поддерживающие решение ключевых задач стратегического управления компанией.

Множество статей, посвященных OLAP, можно прочитать на сайте: http://www.olap.ru/basic/oolap.asp

Настольные OLAP-программы и OLAP-компоненты

Классификация OLAP - программ

Сначала повторим общеизвестное определение OLAP. OLAP (On Line Analytical Processing) - процесс оперативного анализа - это класс программного обеспечения, предоставляющий пользователю возможность мгновенно, в режиме реального времени получать ответы на произвольные аналитические запросы.

Так сложилось, что не любые программы, которые быстро выполняют произвольные запросы, расчеты и выдают пользователю данные в понятном ему виде принято считать OLAP-средством. К классу OLAP относят только те программы, которые в качестве внешнего интерфейса предоставляют пользователю многомерную управляемую таблицу. Эта таблица позволяет пользователю менять местами колонки и строки, закрывать и раскрывать - описательные колонки, задавать условия фильтрации и при этом она автоматически вычисляет промежуточные в группах данных и окончательные итоги по - цифровым колонкам. Неотъемлемой частью OLAP-анализа является графическое отображение данных.

Программы, реализующие эту методику, делятся на следующие категории:

  1. OLAP-сервер или MOLAP-многомерная СУБД. Это машина вычислений и многомерная база данных, к которой обращаются клиентские программы с командами на получение данных и выполнение вычислений. В MOLAP хранятся - наборы данных, фактов и измерений, с заранее вычисленными агрегатами.
  2. MOLAP-компонента. Это инструмент программиста, при помощи которого разрабатываются клиентские программы, получающие вычисленные кубов от OLAP-сервера по какому-либо интерфейсу, например OLE DB for OLAP корпорации Microsoft.
  3. ROLAP-компонента. Это тоже инструмент программиста. В отличие от визуальной OLAP-компоненты она содержит собственную OLAP-машину для преобразования реляционных данных или многомерной матрицы в многомерные кубы. Другими словами, эта программа по запросу пользователя в оперативной памяти вычисляет агрегаты и сама же их отображает на экране.
  4. ROLAP-сервер. Относительно новый класс программного обеспечения. В отличие от OLAP-сервера не имеет в своем составе многомерной базы данных, а преобразует данные реляционной СУБД в многомерные кубы по запросу многих клиентских приложений.
  5. OLAP-программа. Это законченное решение, содержащее в своем составе OLAP-компоненту, средства описания произвольных запросов (Ad-hoc query) и интерфейс доступа к базам данных. В свою очередь такие программы можно разбить на две группы: MOLAP- и ROLAP-программы.

OLAP-компоненты

Любое конечное решение содержит OLAP-компоненту, которая является интерфейсом пользователя. Эти компоненты похожи друг на друга. Их визуальная часть состоит из элементов управления и элементов отображения данных. Как правило, это таблица, в полях которой содержаться данные, а колонки и строки являются элементами управления.

Подавляющее большинство поставщиков OLAP, а их в мире насчитывается около 140, не продают свои компоненты. Нам известно только три компоненты, которые можно купить для собственной разработки. Это Decision Cube компании Inprise в составе компиляторов Delphi и C++ Builder, Pivot Table корпорации Microsoft в составе MS Office, и Dynamic Cube компании Data Dynamic, специализирующейся на разработке OLAP-компонент.

Decision Cube компании Inprise поставляется как VCL-компонента. По нашей классификации относится к ROLAP-компонентам, то есть содержит в своем составе OLAP-машину и предназначен только для работы с реляционными СУБД или локальными таблицами. Он отличается весьма скромными возможностями. Например, в нем нельзя открыть один элемент измерения, или установить фильтр по нескольким измерениям, отобразить несколько фактов одновременно. Производительность компоненты невысока. Пределом является около 4000 записей при 5 измерениях. Компонента отображает в таблице одновременно только один факт. Неприятной особенностью является наличие в исходных текстах нескольких ошибок, в результате чего только высококвалифицированные программисты после исправления этих ошибок могут использовать компоненту в своих разработках. К достоинствам можно отнести простоту применения и освоения компоненты. При правильном использовании и небольших объемах данных продукты на базе этой компоненты могут оказаться полезными и приемлемыми по быстродействию.

Pivot Table корпорации Microsoft поставляется в двух вариантах: как составная часть MS Excel и как Web-компонента. Web-компонента (ActiveX) может быть использована как в браузере, так и собственном Windows-приложении. Pivot Table является одновременно и MOLAP- и ROLAP-компонентой. По протоколу OLE DB for OLAP он может взаимодействовать с многомерной СУБД MS OLAP Server, или другими 70-ю многомерными СУБД, разработчики которых поддержали этот протокол. По протоколу OLE DB Pivot Table может получать данные от реляционной СУБД и выполнять вычисления кубов в памяти. И конечно данные могут быть получены из заданной области таблицы MS Excel. В этом случае его производительность не отличается от производительности Decision Cube. Компонента отображает в таблице одновременно только один факт. Однако инструментарий компоненты шире, чем у Decision Cube - реализована произвольная фильтрация и раскрытие одного элемента измерения. Основным назначением компоненты является создание интерфейсов к OLAP-серверу в рамках концепции Business Intelligent корпорации Microsoft.

Dynamic Cube компании Data Dynamic является классической ROLAP-компонентой. Он поставляется как VCL для программистов Delphi и C++ Builder и как COM для приверженцев компонентной модели. OLAP- машина компоненты весьма мощна. Она с легкостью обрабатывает десятки и чуть медленнее даже сотни тысяч записей. Есть множественная фильтрация, открытие элемента одного измерения, некоторые дополнительные функции. Компонента позволяет отображать в таблице одновременно несколько фактов. Однако эта компонента довольно дорога, особенно впечатляет ее стоимость для профессиональных разработчиков.

Все три описанные выше компоненты по сравнению с готовыми продуктами многих поставщиков имеют весьма скупую функциональность, ограничивающуюся классическими функциями OLAP: drill down, move, rotate и пр. В то же время в некоторых готовых продуктах часто встречается инструментальная панель, наполненная кнопками дополнительных удобных функций. Таких как, и даже кнопками, выполняющими популярные аналитические задачи, например классический маркетинговый анализ 20/80.

Настольные OLAP-программы

Еще недавно поставщики OLAP-серверов продавали свои продукты по таким ценам, что их покупатели должны были быть богаты как арабские шейхи. Так, приобретение Oracle Express обошлось бы в $100 000 за рабочие места двух аналитиков и двух администраторов. Но, даже после выхода на рынок компании Microsoft, которая обрушила цены, предоставив OLAP-сервер бесплатно в составе MS SQL Server, создание Хранилищ данных или витрин данных остается серьезным мероприятием, требующим привлечения профессионального разработчика, администрирования в процессе эксплуатации и других расходов.

Поэтому на рынке появился особый класс продуктов - DOLAP (Desktop OLAP) - настольный OLAP. Это программа, которая устанавливается на каждый персональный компьютер. Она не требует сервера, имеет "нулевое администрирование". Программа позволяет пользователю настроиться на существующие у него базы данных; как правило, при этом создается словарь, скрывающий физическую структуру данных за ее предметным описанием, понятным специалисту. После этого программа выполняет произвольные запросы и результаты их отображает в OLAP-таблице. В этой таблице, в свою очередь, пользователь может манипулировать данными и получать на экране или на бумаге сотни различных отчетов.

По способу получения данных такие программы можно разделить на локальные и корпоративные:

  • Локальные манипулируют данными таблицы MS Excel или небольших баз данных типа Access, DBF, Paradox.
  • Корпоративные DOLAP имеют доступ к SQL-серверам или многомерным базам данных и, таким образом, тоже делятся на две категории.

Корпоративные DOLAP, предназначенные для анализа данных SQL-серверов позволяют анализировать уже имеющиеся в корпорации данные, хранящиеся в OLTP-системах. Однако вторым их назначением может быть быстрое и дешевое создание Хранилищ или витрин данных, когда программистам организации требуется лишь создать совокупности таблиц типа "звезда" и процедуры загрузки данных. Наиболее трудоемкая часть работы - разработка интерфейсов с многочисленными вариантами пользовательских запросов, интерфейсов и отчетов становится ненужной. Это буквально за несколько часов реализуется в DOLAP-программе. Освоение же такой программы конечным пользователем требует 30 минут.

DOLAP программы поставляются самими разработчиками баз данных, многомерных и реляционных. Это SAS Corporate Reporter, являющийся почти эталонным по удобству и красоте продуктом, Oracle Discovery, комплекс программ MS Pivot Services и Pivot Table и другие. Эти продукты, за исключением программ Microsoft, стоят недешево. Так SAS Corporate Reporter обойдется в $2000 на одного пользователя.

Большая группа программ поставляется в рамках компании "OLAP в массы", которую проводит корпорация Microsoft. Эти программы предназначены для работы с MS OLAP Services. Как правило, они являются улучшенными вариантами Pivot Table и предназначены для использования в рамках MS Office или Web. Это Matryx, Knosys и т.д.

Благодаря простоте, дешевизне и огромной эффективности этот класс продуктов приобрел огромную популярность на Западе. Большие корпорации строят свои Хранилища с распределенным доступом на основе таких программ.

OLAP-продукты компании "Intersoft Lab"

Контур Стандарт

Основным продуктом компании "Intersoft Lab" является большая информационно-управленческая система "Контур Корпорация", построенная по принципам Хранилища данных. Однако в процессе общения с клиентами компании осознала, что далеко не все готовы на инвестиции и организационные мероприятия, связанные с построением серьезного Хранилища данных. Первым шагом на этом пути для многих банков и предприятий мог бы стать OLAP-анализ данных из имеющихся OLTP-систем и собственных аналитических базах данных.

Для этих целей был создан DOLAP-продукт "Контур Стандарт".

Контур Стандарт 1.0 Первая версия системы относилась к классу локальных DOLAP. Средства программы позволяли организовать прямой доступ к dbf- и paradox-файлам. Кроме того, в состав дистрибутивного пакета входил мигратор данных, который помогал собрать в локальные таблицы данные из имеющихся у организации систем.

Контур Стандарт 2.0 В дальнейшем, для расширения мощности продукта в системе "Контур Стандарт" 2.0 был обеспечен и доступ к произвольным SQL-серверам на уровне таблиц и, что не встречается в зарубежных аналогах, хранимых процедур. Это превратило программу в корпоративную информационно-аналитическую систему. Отдельно был реализован интерфейс к системе "Контур Корпорация".

Одновременно для удобства администрирования программа была разделена на две редакции. Редакция "Developer" позволяет IT-специалисту описать источники данных и выборки. При этом создаются семантические словари, которые скрывают от конечного пользователя физический слой и переводят данные на язык предметной области. Редакция "Run-Time" позволяет анализировать данные и выпускать отчеты. Основным способом манипуляции данными является OLAP-компонента, которая позволяет без программирования и специальных навыков создавать необходимые отчеты. Одновременно были созданы и новые виды удобных аналитических инструментов, которые формально не являются OLAP-таблицами, но являются OLAP-средствами по духу, т.е. реализуют on-line анализ, но в другой форме представления данных.

В первых двух версиях применялась ROLAP-компонента Decision Cube компании Inprise. Однако ее невысокая мощность и функциональная упрощенность сдерживала применение программы в банках и организациях для анализа больших объемов данных. Поэтому было принято решение о ее замене. Маркетинговый анализ и ревизия интеллектуальных и производственных мощностей самой компании привели к решению о создании собственной OLAP-компоненты. В результате разработки компоненты, которую назвали Contour Cube, появилась следующая версия программы - "Контур Стандарт" 3.0, которая позволяет обрабатывать выборки данных до миллиона записей и обладает расширенной аналитической функциональностью.

Contour Cube

Компонента Contour Cube компании "Intersoft Lab" является представителем ROLAP-компонент. Она состоит из OLAP-машины, интерфейса доступа к данным, находящимся в SQL-серверах и других источниках, и визуальной части.

Компонента будет реализована в нескольких версиях для различных применений.

Версия VCL для использования в средах Delphi и C++ Builder компании Inprise. В этом случае данные поставляются через стандартный Data Set этих компиляторов. Доступ к источникам обеспечивается как при помощи BDE, так и ADO, поддержанной в последних версиях этих сред.

Версия COM предназначена для разработчиков на Visual Basic, Visual С++ и т.д. Она обеспечивает доступ к данным при помощи ADO. В будущих версиях будет поддержан и доступ к OLAP-серверам через интерфейс OLE DB for OLAP.

Версия ActiveX является Web-компонентой для создания аналитических Интернет-интерфейсов в стиле, предложенном Microsoft.

Версия DHTML состоит из сервера и DHTML-страниц. Она предназначена для создания аналитических Интернет-интерфейсов в среде UNIX, а также для бурно развивающегося рынка мобильных Интернет-устройств.

Основными достоинствами компоненты являются:

  • Обработка больших объемов данных.
  • Минимальные требования к памяти.
  • Расширенная функциональность.

Высокие характеристики компоненты достигнуты за счет уникальной математической модели, созданной специалистами компании.

Создание множества версий компоненты стало возможно благодаря ее многослойной архитектуре. Слой OLAP Engine является относительно независимой частью компоненты. Он реализован как кросс-платформенная библиотека, имеющая API для различных слоев визуализации. Этот API обладает функциями загрузки данных, вычисления срезов многомерного куба и выполнения аналитических и сервисных функций. Сам слой OLAP Engine состоит из машины вычислений и абстрактного многомерного Хранилища данных, которое может сохраняться в виде файла для передачи другим пользователям или длительного использования.

Обработка больших объемов данных

Тесты на персональном компьютере с процессором Intel Celeron 400 и оперативной памятью 64 Мб дали следующие результаты. Загрузка 60 000 записей с 6-ю измерениями занимает 5 секунд; дальнейшие манипуляции, такие как полный поворот таблицы, drill down и drill up выполняются за десятые доли секунды.

Это лучшие по порядку величины (sic!) результаты из известных нам OLAP-компонент. Так, Decision Cube и Pivot Table (без использования OLAP Services) требуют десятки секунд для загрузки и поворота таблицы объемом в 4000 записей и 6-ю измерениями. Скорость работы Dynamic Cube ниже, чем у Contour Cube, в среднем на 30% на средних объемах данных и в разы на предельных объемах.

Таким образом, во многих случаях благодаря своей мощности компонента делает необязательным использование OLAP-сервера. Это значительно упрощает процессы внедрения и администрирования корпоративной системы.

Минимальные требования к памяти

В момент работы с данными компонента занимает наименьший объем оперативной памяти по сравнению с одноклассниками. Так при загрузке 40 000 записей Contour Cube потребляет 7 МБ, Decision Cube 15 МБ.

Расширенная функциональность

В компоненте объединены функции лучших OLAP-компонент:

  • Множественный фильтр по измерениям.
  • Генерация как стандартных временных периодов ("Год", "Квартал", "Месяц", "Декада", "Неделя", etc.), так и задаваемых пользователем ("Финансовый год", "Сезон", "Время суток") по измерению типа "дата".
  • Сортировка по измерениям.
  • Сортировка по фактам.
  • Открытие одного значения измерения (ветви).
  • Автоматическое управление диаграммой.
  • Ручная настройка диаграммы.
  • Множество фактов.
  • Множество стандартных алгоритмов агрегации фактов.
  • Алгоритм агрегации "Остаток счета".

Уникальное свойство компоненты - алгоритм агрегации "Остаток счета". В связи с тем, что в основном OLAP-компоненты предназначаются для анализа продаж и других суммирующих видов анализов, они агрегируют по времени и остатки счетов. Это является ошибкой - остаток счета за квартал не является суммой остатков счета за день, а является остатком за последний день квартала. Реализация этого алгоритма позволяет использовать компоненту для анализа балансов и делает ее полезной не только для экономистов и маркетологов, но и для бухгалтеров.

Для того чтобы при использовании компоненты за минимальное время создавались мощные законченные продукты, в нее встроен набор часто встречающихся в реальной работе аналитических функций. Каждая из этих функций реализована как кнопка в инструментальной панели визуальной части компоненты. Вот перечень этих функций:

  • Удалить нулевые колонки, удалить нулевые строки, удалить нулевые колонки и строки. Применяется для сжатия разреженных таблиц.
  • Полный поворот. При этом колонки и строки таблицы меняются местами. Применяется для улучшения восприятия таблиц аналитиком, для подбора лучшей печатной формы.
  • Фильтр по факту. Позволяет задать абсолютные граничные значения факта или количество наибольших или наименьших элементов. Является одним из инструментов факторного анализа.
  • Кластерный анализ. Разбиение данных на заданное количество групп по предельным значениям факта. Например, разбиение клиентов на крупных, средних и мелких по объемам полученных от них доходов.
  • 80/20. Популярная на Западе разновидность кластерного анализа в маркетинге. Пример ее применения: показать 20% клиентов, которые приносят 80% прибыли.
  • Ранжирование. Генерация нового измерения "место в списке" по значению заданного факта и сортировка по нему. Полезно для анализа избирательных компаний, сравнения банков, предприятий, филиалов по заданному показателю.
  • Отображение одновременно нескольких статистических итогов, таких как среднее, среднеквадратическое отклонение и т.д. Эта функция понравится продвинутым специалистам, особенно в области финансового, фондового анализа.
  • Выгрузка в форматы MS Excel, MS Word, html. Позволяют продолжить анализ привычными средствами MS Excel, создать отчет произвольной формы, опубликовать отчет в Интернет.

В связи с невозможностью защиты авторских прав в России на программные продукты, физическая защита которых принципиально не реализуема, компонента как коммерческий продукт будет поставляться только на Западный рынок. Однако российские потребители могут воспользоваться ее достоинствами для развития собственного бизнеса в продуктах "Контур Стандарт" и "Контур Корпорация".