Чем отличается raid. Что такое RAID - массив

Начнем с малого: «RAID-массив» или в простонародье «RAID», что это?

RAID – это аббревиатура, которая расшифровывается как (англ. "Redundant Array of Independent Disks"), что в переводе на Русский - "избыточный (резервный) массив независимых дисков".
Проще говоря, «RAID-массив» - это объединение физических HDD дисков в один логический.
Логический диск – это, обычный HDD диск разделен на несколько логических. Обычно такое применяется в стационарных компьютерах, из одного делают несколько.
Как уже было упомянуто выше, что обычный физический диск можно разделить на несколько логических. В «RAID» происходит все на оборот - несколько HDD дисков устанавливаются в соединительный элемент (где они будут храниться), а потом операционная система воспринимает все HDD диски как один. т.е., операционная система 100% уверена, что подключен к ней всего один физический диск.

Какие бывают RAID-массивы их всего 2-а типа, аппаратные и программные:

1) Аппаратные RAID-массивы – обычно создаются до того, как производится загрузка операционной системы при помощи специализированных утилит, установленных (зашитых) в «RAID-контроллер» - что-то вроде «BIOS». После такой обработке, при подключении «RAID-массива» операционная система на стадии инсталляции видит ваши HDD диски как один.

2) Программные RAID-массивы - создаются посредством подключения HDD дисков к какой либо операционной системой. т.е., в то время когда вы подключите HDD диски она определяет несколько физических дисков и и только при помощи Операционной Системы, с помощью программного обеспечения, HDD диски объединяются в один массив. Сама же ОС будет располагаться не на самом «RAID-массиве», так как устанавливается до создания массива.

"Для чего это нужно?" – возникнет у Вас вопрос! Ответ прост: для того, чтобы повысить скорость чтения и записи данных или повышения безопасности и отказоустойчивости.
Давайте рассмотрим, каким же все-таки образом «RAID-массив» увеличивает производительность и безопасность для Ваших данных?" – чтобы ответить на этот вопрос, мы рассмотрим различные типы «RAID-массивов», как они формируются и что из этого получается.

Рассмотрим «RAID-0»:

Более одного HDD диска объединяются в один посредством последовательного соединения, после чего происходит суммирование объемов т.е. - если взять несколько HDD дисков, каждый из которых объемом «500Гб» и создадим из них «RAID-0», то операционная система будет воспринимать установленные HDD диски как один суммируя их, из чего мы получим один HDD диск объемом в 1000Gb (1Tb). После того, как произойдет слияние дисков в один массив, скорость чтения и записи у накопителя будет в два раза больше, чем у дисков по раздельности.

Пример – расположенная база данных на двух физических HDD дисках, один из которых пользователь будет производить только чтение данных, в то время как другой пользователь, будет производить запись данных на другой HDD диск, причем все это они будут делать одновременно. А вот если расположение базы данных будет только на одном диске, сам HDD диск функцию чтения или записи совершенно разных пользователей будет выполнять последовательно своему ПО. Массив «RAID-0» предоставит возможность выполнять чтение и запись параллельно. По скорости можно сделать вывод - сколько в вашем RAID-0 массиве HDD дисков, умножаем Ито число на существующую скорость (с той скоростью у вас быстрее будет работать RAID-0) – вся зависимость массива пропорциональная – скорость HDD исков возрастает в N раз, где N = количеству установленных HDD дисков, в массив.

Массив RAID-0 обладает только одним недостатком, этот минус перекрывает все, даже плюсы его использования – в массиве RAID-0 отсутствует отказоустойчивост. Проблема состоит в следующем, если выходит из строя один из физических HDD дисков установленный в массив, то следовательно умирает весь массив.
Существует старая шутка по этому поводу: "Что обозначает "0" в значении RAID-0? - объем информации которая восстанавливается после смерти массива!" (правда не весело совсем если там что-то очень важное).

Далее рассмотрим массив «RAID-1»:

Несколько или более HDD дисков объединяются в один путем установки в специализированный массив, т.е. если взять несколько HDD дисков емкостью 500Гб и сделаем из них массив «RAID-1», операционная система будет воспринимать его как один массив объемом в 500Гб.
Скорость чтения и записи у «RAID-1» массива будет точно такая же, как и у одного HDD диска, потому что, чтение и запись будет производиться производятся сразу на оба HDD диска одновременно.
Массив «RAID-1» не увеличит скорость производимости, зато отказоустойчивость вам обеспечена, в случае если выйдет из строя один из HDD дисков, на втором HDD диске будет полный бекап (резервная копия) информации. В случае удаления данных с массива целенаправленно, то удаление происходит с обоих дисков одновременно!

Далее рассматриваем массив «RAID-5»:

Наиболее из безопасных вариантов RAID-5. Заполнение массива информацией идет с расчетом, придерживаясь формулы «(N - 1) * DiskSize», где N число - это количество HDD дисков находящихся в массиве, а аббревиатура «DiskSize» - это объем каждого установленного HDD диска, т.е. при создании массива версии «RAID-5» из 3-х HDD дисков, емкостью каждый из которых по 500Гб, у нас получится массив объемом памяти в 1000Gb 1терабайт.

Суть RAID-5 массива заключается в следующем - несколько HDD дисков объединяются в «RAID-0», а на третьем HDD диске (который не учитывается) будет храниться, назовем ее "контрольная сумма" – это информация, предназначенная для восстановления одного из дисков массива, в случае его смерти. У массива «RAID-5» скорость записи немного ниже, так как есть небольшие затраты времени на расчет и запись полученной суммы на дополнительный диск, а скорость чтения остается такой же, как вмассиве «RAID-0».
Если случится, что один из находящихся у вас HDD дисков массива RAID-5 выйдет из строя, сразу резко понизится скорость чтения и записи, так как все происходящие операции имеют сопровождение дополнительным манипулятивными действиями.

Фактически RAID-5 превращается в RAID-0 и если своевременно не позаботиться восстановлением RAID-массива есть существенный риск потерять данные полностью.
Параллельно с массивом «RAID-5» есть возможность использовать «Spare-диск» - запасной. Во время стабильного режима работы «RAID-массива», диск «Spare» не используется и находится в режиме простоя. Но в случае возникновении любой критической ситуации, резервное восстановление «RAID-массива» начнется в автоматическом режиме - на запасной HDD диск будет происходить восстановление информации с поврежденного HDD при помощи контрольно-вычислительных сумм, нахождение которых находится на отдельном HDD диске.
Массив «RAID-5» обычно создается минимум из трех HDD дисков и поможет спасти Ваши данные только от одиночных возникших ошибок. При одновременном появлении различных ошибок на разных HDD дисках массив «RAID-5» не спасет.

Далее массив «RAID-6»:

Обладает улучшенными возможностями по сравнению с «RAID-5» массивом. В общем, суть работы такая же, как с массивом «RAID-5», только вычисление контрольных сумм будет происходить не на один HDD диск, а на два HDD диска, причем весь подсчет контрольных сумм делаются совершенно разных алгоритмов, что способствует существенному повышению отказоустойчивости всего «RAID-массива» в целом. Массив RAID-6 в основном собирается от 4-х HDD дисков. Формула, по которой ведутся расчеты, размера памяти массива выглядит следующее -- (N - 2) * DiskSize, где N - количество HDD дисков установленных в массив, а «DiskSize» - размер памяти каждого HDD диска, т.е. при создании массива «RAID-6» из пяти HDD дисков номиналом по 500Гб, в сумме получится массив размером в 1500Gb(1,5Tb-терабайта).
Скорость массива «RAID-6» при записи будет ниже чем у массива «RAID-5» приблизительно на 10-15%, снижение скорости обусловлено дополнительными затратами по времени на расчет с записью контрольных сумм.

Массив «RAID-10»:

Его иногда называют «RAID 0+1» или «RAID 1+0», Что представляет собой симбиоз «RAID-0 и RAID-1». Данный массив обычно создается минимум из четырех HDD дисков: на первом разделе «RAID-0» и на втором «RAID-0» для того, чтобы повысить скорость чтения и записи, между собой они будут находится в зеркале массива «RAID-1»- это нужно для повышения отказоустойчивости. Массив «RAID-10» смог совместить в себе плюсы двух первых вариантов - что последовало его быстродействию и отказоустойчивости.

Массив «RAID-50» - это аналог «RAID-10», являющимся симбиозом «RAID-0 и RAID-5» - по факту собирается как массив «RAID-5», только составляющие элементы которые входят в него будут не физические HDD диски, а он будет состоять из массивов плана «RAID-0». Таким образом, массив «RAID-50» предоставит Вам при работе, замечательную скорость чтения с записью и будет способствовать устойчивости и надежности «RAID-5».

Далее массив «RAID-60»:

Тот же принцип: фактически это «RAID-6», собирается из нескольких «RAID-0» массивов.
Существуют и другие комбинации массивов, таких как - «RAID 5+1 / RAID 6+1» - по сути, они схожи с «RAID-50 / RAID-60» с той разницей, что базой их элементов массива обладают не «RAID-0» как у других, а зеркала массива «RAID-1».

Понятия о комбинированных «RAID»-массивов:

По сути такие массивы как «RAID-10» / «RAID-50» / «RAID-60» и «RAID X+1» - это прямые наследники базовых массивов как - «RAID-0» / RAID-1 / RAID-5 и RAID-6 – в основном их используют для того, чтобы повысить либо скорость чтения, либо скорость записи или для повышения отказоустойчивости, используя в себе стандартный функционал базовых, стандартных типов RAID-массивов.

Если рассматривать с практической точки и обсудить применения любых «RAID-массивов» в жизни, то по логике все довольно просто:

1) Массив RAID-0 в чистом виде не используется (совсем!);
2) «RAID-1» массив используется в основном там, где скорость чтения или записи не особенно играют большую роль, а в большей степени требуется отказоустойчивость – пример: на массив «RAID-1» очень хорошо устанавливать различные операционные системы. В этом случае к HDD дискам кроме ОС не обращается никто, скорость самих HDD дисков для работы достаточно, отказоустойчивость обеспечена;
3) RAID-5 устанавливаем туда, где необходима скорость с отказоустойчивостью, но нет возможности приобрести большего количества HDD дисков или если есть нужда восстанавливать массивы если произойдет повреждение, при этом, чтобы работа самого массива не прекращалась – в этом случае помогут Spare-диски (запасные).
4) Стандартное применение массива «RAID-5»:
В хранилищах данных или как их еще называют NAS сервер;
5) «RAID-6» массив:
Применяется там, где есть угроза, что выйти из строя могут сразу нескольких HDD дисков в массиве. В практике такого практически нет, если только у параноиков;
6) «RAID-10» массив:
Применяют там, где нужна скорость, для быстрой работы и чтобы надежно. Так же основное направлением в применении массива «RAID-10» - это, серверы баз данных и файловые серверы.

Вот в принципе и все что хотелось выяснить, что к чему и почему!

Если Вы заинтересовались этой статьей, то Вы, по-видимому, столкнулись или предполагаете вскоре столкнуться с одной из ниже перечисленных проблем на Вашем компьютере:

- явно не хватает физического объема винчестера, как единого логического диска. Наиболее часто эта проблема возникает при работе с файлами большого объема (видео, графика, базы данных);
- явно не хватает производительности винчестера. Наиболее часто эта проблема возникает при работе с системами нелинейного видео монтажа или при одновременном обращении к файлам на винчестере большого количества пользователей;
- явно не хватает надежности винчестера. Наиболее часто эта проблема возникает при необходимости работать с данными, которые ни в коем случае нельзя потерять или которые должны быть всегда доступны для пользователя. Печальный опыт показывает, что даже самая надежная техника иногда ломается и, как правило, в самый не подходящий момент.
Решить эти и некоторые другие проблемы может создание на Вашем компьютере RAID-системы.

Что такое «RAID»?

В 1987 году Паттерсон (Patterson), Гибсон (Gibson) и Катц (Katz) из калифорнийского университета Беркли опубликовали статью «Корпус для избыточных массивов из дешевых дисководов (RAID)» (A Case for Redundant Arrays of Inexpensive Disks (RAID)). В этой статье описывались разные типы дисковых массивов, обозначаемых сокращением RAID - Redundant Array of Independent (или Inexpensive) Disks (избыточный массив независимых (или недорогих) дисководов). В основу RAID положена следующая идея: объединяя в массив несколько небольших и/или дешевых дисководов, можно получить систему, превосходящую по объему, скорости работы и надежности самые дорогие дисководы. Вдобавок ко всему такая система с точки зрения компьютера выглядит как один единственный дисковод.
Известно, что среднее время наработки на отказ массива дисководов равно среднему времени наработки на отказ одиночного дисковода, деленному на число дисководов в массиве. Вследствие этого среднее время наработки на отказ массива оказывается слишком малым для многих приложений. Однако дисковый массив можно несколькими способами сделать устойчивым к отказу одного дисковода.

В вышеупомянутой статье было определено пять типов (уровней) дисковых массивов: RAID-1, RAID-2, ..., RAID-5. Каждый тип обеспечивал устойчивость на отказ, а также различные преимущества по сравнению с одиночным дисководом. Наряду с этими пятью типами популярность приобрел также дисковый массив RAID-0, НЕ обладающий избыточностью.

Какие существуют уровни RAID и какой из них выбрать?

RAID-0 . Обычно определяется как НЕ избыточная группа дисководов без контроля четности. RAID-0 по способу размещения информации по дисководам, входящим в массив, иногда называется "Striping" ("полосатый" или "тельняшка"):

Так как RAID-0 не обладает избыточностью, авария одного дисковода приводит к аварии всего массива. С другой стороны RAID-0 обеспечивает максимальную скорость обмена и эффективность использования объема дисководов. Поскольку для RAID-0 не требуются сложные математические или логические вычисления, затраты на его реализацию минимальны.

Область применения: аудио- и видео приложения требующие высокой скорости непрерывной передачи данных, которую не может обеспечить одиночный дисковод. Например, исследования, проведенные фирмой Mylex, с целью определить оптимальную конфигурацию дисковой системы для станции нелинейного видео монтажа показывают, что, по сравнению с одним дисководом, массив RAID-0 из двух дисководов дает прирост скорости записи/чтения на 96%, из трех дисководов - на 143% (по данным теста Miro VIDEO EXPERT Benchmark).
Минимальное количество дисководов в массиве "RAID-0" - 2шт.

RAID-1 . Более известен как "Mirroring" ("Зеркалирование") - это пара дисководов, содержащих одинаковую информацию и составляющих один логический диск:

Запись производится на оба дисковода в каждой паре. Тем не менее, дисководы, входящие в пару, могут совершать одновременные операции чтения. Таким образом «зеркалирование» может удваивать скорость чтения, но скорость записи остается неизменной. RAID-1 обладает 100% избыточностью и авария одного дисковода не приводит к аварии всего массива - контроллер просто переключает операции чтения/записи на оставшийся дисковод.
RAID-1 обеспечивает наивысшую скорость работы среди всех типов избыточных массивов (RAID-1 - RAID-5), особенно в многопользовательском окружении, но наихудшее использование дискового пространства. Поскольку для RAID-1 не требуются сложные математические или логические вычисления, затраты на его реализацию минимальны.
Минимальное количество дисководов в массиве "RAID-1" - 2шт.
Для увеличения скорости записи и обеспечения надежности хранения данных несколько массивов RAID-1 можно, в свою очередь, объединить в RAID-0. Такая конфигурация называется «двухуровневый» RAID или RAID-10 (RAID 0+1):


Минимальное количество дисководов в массиве "RAID 0+1" - 4шт.
Область применения: дешевые массивы, в которых главное - надежность хранения данных.

RAID-2 . Распределяет данные по страйпам размером в сектор по группе дисководов. Некоторые дисководы выделяются для хранения ECC (код коррекции ошибок). Так как большинство дисководов по умолчанию хранят коды с ECC для каждого сектора, RAID-2 не дает особых преимуществ по сравнению с RAID-3 и, поэтому, практически не применяется.

RAID-3 . Как и в случае с RAID-2 данные распределяются по страйпам размером в один сектор, а один из дисководов массива отводится для хранения информации о четности:

RAID-3 полагается на коды с ECC, хранящиеся в каждом секторе для обнаружения ошибок. В случае отказа одного из дисководов восстановление хранившейся на нем информации возможно с помощью вычисления исключающего ИЛИ (XOR) по информации на оставшихся дисководах. Каждая запись обычно распределена по всем дисководам и поэтому этот тип массива хорош для работы в приложениях с интенсивным обменом с дисковой подсистемой. Так как каждая операция ввода-вывода обращается ко всем дисководам массива, RAID-3 не может одновременно выполнять несколько операций. Поэтому RAID-3 хорош для однопользовательского однозадачного окружения с длинными записями. Для работы с короткими записями требуется синхронизация вращения дисководов, так как иначе неизбежно уменьшение скорости обмена. Применяется редко, т.к. проигрывает RAID-5 по использованию дискового пространства. Реализация требует значительных затрат.
Минимальное количество дисководов в массиве "RAID-3" - 3шт.

RAID-4 . RAID-4 идентичен RAID-3 за исключением того, что размер страйпов много больше одного сектора. В этом случае чтение осуществляется с одного дисковода (не считая дисковода, хранящего информацию о четности), поэтому возможно одновременное выполнение нескольких операций чтения. Тем не менее, так как каждая операция записи должна обновить содержимое дисковода четности, одновременное выполнение нескольких операций записи невозможно. Этот тип массива не имеет заметных преимуществ перед массивом типа RAID-5.
RAID-5. Этот тип массива иногда называется «массив с вращающейся четностью». Данный тип массива успешно преодолевает присущий RAID-4 недостаток - невозможность одновременного выполнения нескольких операций записи. В этом массиве, как и в RAID-4, используются страйпы большого размера, но, в отличие от RAID-4, информация о четности хранится не на одном дисководе, а на всех дисководах по очереди:

Операции записи обращаются к одному дисководу с данными и к другому дисководу с информацией о четности. Так как информация о четности для разных страйпов хранится на разных дисководах выполнение нескольких одновременных операций записи невозможно только в тех редких случаях, когда либо страйпы с данными, либо страйпы с информацией о четности находятся на одном и том же дисководе. Чем больше дисководов в массиве, тем реже совпадает местоположение страйпов информации и четности.
Область применения: надежные массивы большого объема. Реализация требует значительных затрат.
Минимальное количество дисководов в массиве "RAID-5" - 3шт.

RAID-1 или RAID-5?
RAID-5 по сравнению с RAID-1 более экономно использует дисковое пространство, так как в нем для избыточности хранится не «копия» информации, а контрольное число. В результате в RAID-5 можно объединить любое количество дисководов, из которых только один будет содержать избыточную информацию.
Но более высокая эффективность использования дискового пространства достигается за счет более низкой скорости обмена информацией. Во время записи информации в RAID-5 надо каждый раз обновлять информацию о четности. Для этого надо определить, какие именно биты четности изменились. Сначала считывается подлежащая обновлению старая информация. Затем эта информация перемножается по XOR с новой информацией. Результат этой операции - битовая маска, в которой каждый бит =1 означает, что в информации о четности в соответствующей позиции надо заменить значение. Затем обновленная информация о четности записывается на соответствующее место. Следовательно, на каждое требование программы записать информацию, RAID-5 совершает два чтения, две записи и две операции XOR.
За то, что более эффективно используется дисковое пространство (вместо копии данных хранится блок четности) приходится платить: на генерацию и запись информации о четности уходит добавочное время. Это означает, что скорость записи на RAID-5 ниже, чем на RAID-1 в соотношении 3:5 или даже 1:3 (т.е. скорость записи на RAID-5 составляет от 3/5 до 1/3 от скорости записи RAID-1). Из-за этого RAID-5 бессмысленно создавать в программном варианте. Их также нельзя рекомендовать в тех случаях, когда именно скорость записи имеет решающее значение.

Какой выбрать способ реализации RAID - программный или аппаратный?

Прочитав описание различных уровней RAID можно заметить, что нигде не упоминаются какие-либо специфические требования к аппаратуре, которая необходима для реализации RAID. Из чего можно сделать вывод, что все, что нужно для реализации RAID - подключить необходимое количество дисководов к имеющемуся в компьютере контроллеру и установить на компьютер специальное программное обеспечение. Это верно, но не совсем!
Действительно, существует возможность программной реализации RAID. Примером может служить ОС Microsoft Windows NT 4.0 Server, в которой возможна программная реализация RAID-0, -1 и даже RAID-5 (Microsoft Windows NT 4.0 Workstation обеспечивает только RAID-0 и RAID-1). Однако данное решение следует рассматривать, как крайне упрощенное, не позволяющее полностью реализовать возможности RAID-массива. Достаточно отметить, что при программной реализации RAID вся нагрузка по размещению информации на дисководах, вычислению контрольных кодов и т.д. ложится на центральный процессор, что естественно, не увеличивает производительности и надежности системы. По тем же причинам, здесь практически отсутствуют какие-либо сервисные функции и все операции по замене неисправного дисковода, добавления нового дисковода, изменения уровня RAID и т. п. производятся с полной потерей данных и при полном запрете выполнения каких-либо других операций. Единственное достоинство программной реализации RAID - минимальная стоимость.
- специализированный контроллер освобождает центральный процессор от основных операций с RAID, причем эффективность контроллера тем более заметна, чем выше уровень сложности RAID;
- контроллеры, как правило, снабжены драйверами, позволяющими создать RAID практически для любой популярной ОС;
- встроенный BIOS контроллера и прилагаемые к нему программы управления позволяют администратору системы легко подключать, отключать или заменять дисководы, входящие в RAID, создавать несколько RAID-массивов, причем даже разных уровней, контролировать состояние дискового массива и т.д. У «продвинутых» контроллеров эти операции можно производить «на лету», т.е. не выключая системный блок. Многие операции могут быть выполнены в «фоновом режиме», т.е. не прерывая текущую работу и даже дистанционно, т.е. с любого (конечно при наличии доступа) рабочего места;
- контроллеры могут оснащаться буферной памятью («кэш»), в которой запоминаются несколько последних блоков данных, что, при частом обращении к одним и тем же файлам, позволяет значительно увеличить быстродействие дисковой системы.
Недостатком аппаратной реализации RAID является относительно высокая стоимость RAID-контроллеров. Однако, с одной стороны, за все (надежность, быстродействие, сервис) надо платить. С другой стороны, в последнее время, с развитием микропроцессорной техники, стоимость RAID-контоллеров (особенно младших моделей) стала резко падать и стала сравнимой со стоимостью обыкновенных дисковых контроллеров, что позволяет устанавливать RAID-системы не только в дорогие мэйнфреймы, но и в сервера начального уровня и даже в рабочие станции.

Как выбрать модель RAID-контроллера?

Можно выделить несколько типов RAID-контроллеров в зависимости от их функциональных возможностей, конструктивному исполнению и стоимости:
1. Контроллеры дисковода с функциями RAID.
По сути, это обыкновенный дисковый контроллер, который благодаря специальной прошивке BIOS позволяет объединять дисководы в RAID-массив, как правило, уровня 0, 1 или 0+1.

Ultra (Ultra Wide) SCSI контроллер фирмы Mylex KT930RF (KT950RF).
Внешне данный контроллер ни чем не отличается от обыкновенного SCSI-контроллера. Вся "специализация" находится в BIOS, который как бы разделен на две части - «Конфигурация SCSI» / «Конфигурация RAID». Несмотря на невысокую стоимость (менее $200) данный контроллер обладает неплохим набором функций:

- объединение до 8-и дисководов в RAID 0, 1или 0+1;
- поддержка Hot Spare для замены "на лету" вышедшего из строя дисковода;
- возможность автоматической (без вмешательства оператора) замены неисправного дисковода;
- автоматический контроль целостности и идентичности (для RAID-1) данных;
- наличие пароля для доступа в BIOS;
- программа RAIDPlus представляющая информацию о состоянии дисководов в RAID;
- драйвера для DOS, Windows 95, NT 3.5x, 4.0

Все современные материнские платы оснащены интегрированным RAID-контроллером, а топовые модели имеют даже по нескольку интегрированных RAID-контроллеров. Насколько интегрированные RAID-контроллеры востребованы домашними пользователями - вопрос отдельный. В любом случае современная материнская плата предоставляет пользователю возможность создания RAID-массива из нескольких дисков. Однако далеко не каждый домашний пользователь знает, как создать RAID-массив, какой уровень массива выбрать, да и вообще плохо представляет себе плюсы и минусы использования RAID-массивов.
В этой статье мы дадим краткие рекомендации по созданию RAID-массивов на домашних ПК и на конкретном примере продемонстрируем, каким образом можно самостоятельно протестировать производительность RAID-массива.

История создания

Впервые термин «RAID-массив» появился в 1987 году, когда американские исследователи Паттерсон, Гибсон и Катц из Калифорнийского университета Беркли в своей статье «Избыточный массив недорогих дисков» (“A Case for Redundant Arrays of Inexpensive Discs, RAID”) описали, каким образом можно объединить несколько дешевых жестких дисков в одно логическое устройство так, чтобы в результате повышались емкость и быстродействие системы, а отказ отдельных дисков не приводил к отказу всей системы.

С момента выхода этой статьи прошло уже более 20 лет, но технология построения RAID-массивов не утратила актуальности и сегодня. Единственное, что изменилось с тех пор, - это расшифровка аббревиатуры RAID. Дело в том, что первоначально RAID-массивы строились вовсе не на дешевых дисках, поэтому слово Inexpensive (недорогие) поменяли на Independent (независимые), что больше соответствовало действительности.

Принцип действия

Итак, RAID - это избыточный массив независимых дисков (Redundant Arrays of Independent Discs), на который возлагается задача обеспечения отказоустойчивости и повышения производительности. Отказоустойчивость достигается за счет избыточности. То есть часть емкости дискового пространства отводится для служебных целей, становясь недоступной для пользователя.

Повышение производительности дисковой подсистемы обеспечивается одновременной работой нескольких дисков, и в этом смысле чем больше дисков в массиве (до определенного предела), тем лучше.

Совместную работу дисков в массиве можно организовать с помощью либо параллельного, либо независимого доступа. При параллельном доступе дисковое пространство разбивается на блоки (полоски) для записи данных. Аналогично информация, подлежащая записи на диск, разбивается на такие же блоки. При записи отдельные блоки записываются на разные диски, причем запись нескольких блоков на различные диски происходит одновременно, что и приводит к увеличению производительности в операциях записи. Нужная информация также считывается отдельными блоками одновременно с нескольких дисков, что тоже способствует росту производительности пропорционально количеству дисков в массиве.

Следует отметить, что модель с параллельным доступом реализуется только при условии, что размер запроса на запись данных больше размера самого блока. В противном случае осуществлять параллельную запись нескольких блоков практически невозможно. Представим ситуацию, когда размер отдельного блока составляет 8 Кбайт, а размер запроса на запись данных - 64 Кбайт. В этом случае исходная информация нарезается на восемь блоков по 8 Кбайт каждый. Если имеется массив из четырех дисков, то одновременно можно записать четыре блока, или 32 Кбайт, за один раз. Очевидно, что в рассмотренном примере скорость записи и скорость считывания окажутся в четыре раза выше, чем при использовании одного диска. Это справедливо лишь для идеальной ситуации, однако размер запроса далеко не всегда кратен размеру блока и количеству дисков в массиве.

Если же размер записываемых данных меньше размера блока, то реализуется принципиально иная модель - независимый доступ. Более того, эта модель может использоваться и в том случае, когда размер записываемых данных больше размера одного блока. При независимом доступе все данные отдельного запроса записываются на отдельный диск, то есть ситуация идентична работе с одним диском. Преимущество модели с независимым доступом в том, что при одновременном поступлении нескольких запросов на запись (чтение) все они будут выполняться на отдельных дисках независимо друг от друга. Подобная ситуация типична, например, для серверов.

В соответствии с различными типами доступа существуют и разные типы RAID-массивов, которые принято характеризовать уровнями RAID. Кроме типа доступа, уровни RAID различаются способом размещения и формирования избыточной информации. Избыточная информация может либо размещаться на специально выделенном диске, либо распределяться между всеми дисками. Способов формирования этой информации достаточно много. Простейший из них - это полное дублирование (100-процентная избыточность), или зеркалирование. Кроме того, используются коды с коррекцией ошибок, а также вычисление четности.

Уровни RAID-массивов

В настоящее время существует несколько RAID-уровней, которые можно считать стандартизованными, - это RAID 0, RAID 1, RAID 2, RAID 3, RAID 4, RAID 5 и RAID 6.

Применяются также различные комбинации RAID-уровней, что позволяет объединить их достоинства. Обычно это комбинация какого-либо отказоустойчивого уровня и нулевого уровня, применяемого для повышения производительности (RAID 1+0, RAID 0+1, RAID 50).

Отметим, что все современные RAID-контроллеры поддерживают функцию JBOD (Just a Bench Of Disks), которая не предназначена для создания массивов, - она обеспечивает возможность подключения к RAID-контроллеру отдельных дисков.

Нужно отметить, что интегрированные на материнские платы для домашних ПК RAID-контроллеры поддерживают далеко не все RAID-уровни. Двухпортовые RAID-контроллеры поддерживают только уровни 0 и 1, а RAID-контроллеры с большим количество портов (например, 6-портовый RAID-контроллер, интегрированный в южный мост чипсета ICH9R/ICH10R) - также уровни 10 и 5.

Кроме того, если говорить о материнских платах на чипсетах Intel, то в них тоже реализована функция Intel Matrix RAID, которая позволяет создать на нескольких жестких дисках одновременно RAID-матрицы нескольких уровней, выделив для каждой из них часть дискового пространства.

RAID 0

RAID уровня 0, строго говоря, не является избыточным массивом и соответственно не обеспечивает надежности хранения данных. Тем не менее данный уровень активно применяется в случаях, когда необходимо обеспечить высокую производительность дисковой подсистемы. При создании RAID-массива уровня 0 информация разбивается на блоки (иногда эти блоки называют страйпами (stripe)), которые записываются на отдельные диски, то есть создается система с параллельным доступом (если, конечно, это позволяет размер блока). Благодаря возможности одновременного ввода-вывода с нескольких дисков, RAID 0 обеспечивает максимальную скорость передачи данных и максимальную эффективность использования дискового пространства, поскольку не требуется места для хранения контрольных сумм. Реализация этого уровня очень проста. В основном RAID 0 применяется в тех областях, где требуется быстрая передача большого объема данных.

RAID 1 (Mirrored disk)

RAID уровня 1 - это массив двух дисков со 100-процентной избыточностью. То есть данные при этом просто полностью дублируются (зеркалируются), за счет чего достигается очень высокий уровень надежности (как, впрочем, и стоимости). Отметим, что для реализации уровня 1 не требуется предварительно разбивать диски и данные на блоки. В простейшем случае два диска содержат одинаковую информацию и являются одним логическим диском. При выходе из строя одного диска его функции выполняет другой (что абсолютно прозрачно для пользователя). Восстановление массива выполняется простым копированием. Кроме того, этот уровень удваивает скорость считывания информации, так как эта операция может выполняться одновременно с двух дисков. Подобная схема хранения информации используется в основном в тех случаях, когда цена безопасности данных гораздо выше стоимости реализации системы хранения.

RAID 5

RAID 5 - это отказоустойчивый дисковый массив с распределенным хранением контрольных сумм. При записи поток данных разбивается на блоки (страйпы) на уровне байтов и одновременно записываются на все диски массива в циклическом порядке.

Предположим, что массив содержит n дисков, а размер страйпа d . Для каждой порции из n–1 страйпов рассчитывается контрольная сумма p .

Cтрайп d 1 записывается на первый диск, страйп d 2 - на второй и так далее вплоть до страйпа d n–1 , который записывается на (n –1)-й диск. Далее на n -й диск записывается контрольная сумма p n , и процесс циклически повторяется с первого диска, на который записывается страйп d n .

Процесс записи (n–1) страйпов и их контрольной суммы производится одновременно на все n дисков.

Для вычисления контрольной суммы используется поразрядная операция «исключающего ИЛИ» (XOR), применяемая к записываемым блокам данных. Так, если имеется n жестких дисков, d - блок данных (страйп), то контрольная сумма рассчитывается по следующей формуле:

p n = d 1 d 2 ... d 1–1 .

В случае выхода из строя любого диска данные на нем можно восстановить по контрольным данным и по данным, оставшимся на исправных дисках.

В качестве иллюстрации рассмотрим блоки размером по четыре бита. Пусть имеются всего пять дисков для хранения данных и записи контрольных сумм. Если есть последовательность битов 1101 0011 1100 1011, разбитая на блоки по четыре бита, то для расчета контрольной суммы необходимо выполнить следующую поразрядную операцию:

1101 0011 1100 1011 = 1001.

Таким образом, контрольная сумма, записываемая на пятый диск, равна 1001.

Если один из дисков, например четвертый, вышел из строя, то блок d 4 = 1100 окажется недоступным при считывании. Однако его значение легко восстановить по контрольной сумме и по значениям остальных блоков с помощью все той же операции «исключающего ИЛИ»:

d 4 = d 1 d 2 d 4 p 5 .

В нашем примере получим:

d 4 = (1101) (0011) (1100) (1011) = 1001.

В случае RAID 5 все диски массива имеют одинаковый размер, однако общая емкость дисковой подсистемы, доступной для записи, становится меньше ровно на один диск. Например, если пять дисков имеют размер 100 Гбайт, то фактический размер массива составляет 400 Гбайт, поскольку 100 Гбайт отводится на контрольную информацию.

RAID 5 может быть построен на трех и более жестких дисках. С увеличением количества жестких дисков в массиве его избыточность уменьшается.

RAID 5 имеет архитектуру независимого доступа, что обеспечивает возможность одновременного выполнения нескольких операций считывания или записи.

RAID 10

Уровень RAID 10 представляет собой некое сочетание уровней 0 и 1. Минимально для этого уровня требуются четыре диска. В массиве RAID 10 из четырех дисков они попарно объединяются в массивы уровня 0, а оба этих массива как логические диски объединяются в массив уровня 1. Возможен и другой подход: первоначально диски объединяются в зеркальные массивы уровня 1, а затем логические диски на основе этих массивов - в массив уровня 0.

Intel Matrix RAID

Рассмотренные RAID-массивы уровней 5 и 1 редко используются в домашних условиях, что связано прежде всего с высокой стоимостью подобных решений. Наиболее часто для домашних ПК применяется именно массив уровня 0 на двух дисках. Как мы уже отмечали, RAID уровня 0 не обеспечивает безопасности хранения данных, а потому конечные пользователи сталкиваются с выбором: создавать быстрый, но не обеспечивающий надежности хранения данных RAID-массив уровня 0 или же, увеличивая стоимость дискового пространства в два раза, - RAID-массив уровня 1, который обеспечивает надежность хранения данных, однако не позволяет получить существенного выигрыша в производительности.

Для того чтобы разрешить эту нелегкую проблему, корпорация Intel разработала технологию Intel Matrix Storage, позволяющую объединить достоинства массивов уровней 0 и 1 всего на двух физических дисках. А для того, чтобы подчеркнуть, что речь в данном случае идет не просто о RAID-массиве, а о массиве, сочетающем в себе и физические и логические диски, в названии технологии вместо слова «массив» используется слово «матрица».

Итак, что же представляет собой RAID-матрица из двух дисков по технологии Intel Matrix Storage? Основная идея заключается в том, что при наличии в системе нескольких жестких дисков и материнской платы с чипсетом Intel, поддерживающим технологию Intel Matrix Storage, возможно разделение дискового пространства на несколько частей, каждая из которых будет функционировать как отдельный RAID-массив.

Рассмотрим простой пример RAID-матрицы из двух дисков по 120 Гбайт каждый. Любой из дисков можно разбить на два логических диска, например по 40 и 80 Гбайт. Далее два логических диска одного размера (например, по 40 Гбайт) можно объединить в RAID-матрицу уровня 1, а оставшиеся логические диски - в RAID-матрицу уровня 0.

В принципе, используя два физических диска, также можно создать всего одну или две RAID-матрицы уровня 0, но вот получить только матрицы уровня 1 невозможно. То есть если в системе имеются всего два диска, то технология Intel Matrix Storage позволяет создавать следующие типы RAID-матриц:

  • одна матрица уровня 0;
  • две матрицы уровня 0;
  • матрица уровня 0 и матрица уровня 1.

Если в системе установлены три жестких диска, то возможно создание следующих типов RAID-матриц:

  • одна матрица уровня 0;
  • одна матрица уровня 5;
  • две матрицы уровня 0;
  • две матрицы уровня 5;
  • матрица уровня 0 и матрица уровня 5.

Если в системе установлены четыре жестких диска, то дополнительно имеется возможность создать RAID-матрицу уровня 10, а также комбинации уровня 10 и уровня 0 или 5.

От теории к практике

Ели говорить о домашних компьютерах, то наиболее востребованными и популярными являются RAID-массивы уровней 0 и 1. Использование RAID-массивов из трех и более дисков в домашних ПК - скорее исключение из правила. Связано это с тем, что, с одной стороны, стоимость RAID-массивов возрастает пропорционально количеству задействованных в нем дисков, а с другой - для домашних компьютеров первоочередное значение имеет емкость дискового массива, а не его производительность и надежность.

Поэтому в дальнейшем мы рассмотрим RAID-массивы уровней 0 и 1 на основе только двух дисков. В задачу нашего исследования будет входить сравнение производительности и функциональности RAID-массивов уровней 0 и 1, созданных на базе нескольких интегрированных RAID-контроллеров, а также исследование зависимости скоростных характеристик RAID-массива от размера страйпа.

Дело в том, что хотя теоретически при использовании RAID-массива уровня 0 скорость чтения и записи должна возрастать вдвое, на практике возрастание скоростных характеристик гораздо менее скромное и для разных RAID-контроллеров оно различно. Аналогично и для RAID-массива уровня 1: несмотря на то что теоретически скорость чтения должна увеличиваться вдвое, на практике не всё так гладко.

Для нашего сравнительного тестирования RAID-контроллеров мы использовали материнскую плату Gigabyte GA-EX58A-UD7. Эта плата основана на чипсете Intel X58 Express с южным мостом ICH10R, имеющим интегрированный RAID-контроллер на шесть портов SATA II, который поддерживает организацию RAID-массивов уровней 0, 1, 10 и 5 с функцией Intel Matrix RAID. Кроме того, на плате Gigabyte GA-EX58A-UD7 интегрирован RAID-контроллер GIGABYTE SATA2, на базе которого реализованы два порта SATA II c возможностью организации RAID-массивов уровней 0, 1 и JBOD.

Также на плате GA-EX58A-UD7 интегрирован SATA III-контроллер Marvell 9128, на базе которого реализованы два порта SATA III c возможностью организации RAID-массивов уровней 0, 1 и JBOD.

Таким образом, на плате Gigabyte GA-EX58A-UD7 имеются три отдельных RAID-контроллера, на базе которых можно создать RAID-массивы уровней 0 и 1 и сравнить их друг с другом. Напомним, что стандарт SATA III обратно совместим со стандартом SATA II, поэтому на базе контроллера Marvell 9128, поддерживающего диски с интерфейсом SATA III, можно также создавать RAID-массивы с использованием дисков с интерфейсом SATA II.

Стенд для тестирования имел следующую конфигурацию:

  • процессор - Intel Core i7-965 Extreme Edition;
  • материнская плата - Gigabyte GA-EX58A-UD7;
  • версия BIOS - F2a;
  • жесткие диски - два диска Western Digital WD1002FBYS, один диск Western Digital WD3200AAKS;
  • интегрированные RAID-контроллеры:
  • ICH10R,
  • GIGABYTE SATA2,
  • Marvell 9128;
  • память - DDR3-1066;
  • объем памяти - 3 Гбайт (три модуля по 1024 Мбайт);
  • режим работы памяти - DDR3-1333, трехканальный режим работы;
  • видеокарта - Gigabyte GeForce GTS295;
  • блок питания - Tagan 1300W.

Тестирование проводилось под управлением операционной системы Microsoft Windows 7 Ultimate (32-bit). Операционная система инсталлировалась на диск Western Digital WD3200AAKS, который подключался к порту контроллера SATA II, интегрированного в южный мост ICH10R. RAID-массив собирался на двух дисках WD1002FBYS с интерфейсом SATA II.

Для измерения скоростных характеристик создаваемых RAID-массивов мы использовали утилиту IOmeter, которая является отраслевым стандартом для измерения производительности дисковых систем.

Утилита IOmeter

Поскольку мы задумывали эту статью как своеобразное руководство пользователя по созданию и тестированию RAID-массивов, логично будет начать с описания утилиты IOmeter (Input/Output meter), которая, как мы уже отметили, является своеобразным отраслевым стандартом для измерения производительности дисковых систем. Данная утилита бесплатна, и ее можно скачать с ресурса http://www.iometer.org.

Утилита IOmeter является синтетическим тестом и позволяет работать с неразбитыми на логические разделы жесткими дисками, благодаря чему можно тестировать диски независимо от файловой структуры и свести к нулю влияние операционной системы.

При тестировании возможно создание специфической модели доступа, или «паттерна», которая позволяет конкретизировать выполнение жестким диском специфических операций. В случае создания конкретной модели доступа разрешается менять следующие параметры:

  • размер запроса на передачу данных;
  • случайное/последовательное распределение (в %);
  • распределение операций чтения/записи (в %);
  • количество отдельных операций ввода-вывода, работающих параллельно.

Утилита IOmeter не требует инсталляции на компьютер и состоит из двух частей: собственно IOmeter и Dynamo.

IOmeter - это контролирующая часть программы с пользовательским графическим интерфейсом, позволяющим производить все необходимые настройки. Dynamo - это генератор нагрузки, который не имеет интерфейса. Каждый раз при запуске файла IOmeter.exe автоматически запускается и генератор нагрузки Dynamo.exe.

Для того чтобы начать работу с программой IOmeter, достаточно запустить файл IOmeter.exe. При этом открывается главное окно программы IOmeter (рис. 1).

Рис. 1. Главное окно программы IOmeter

Нужно отметить, что утилита IOmeter позволяет производить тестирование не только локальных дисковых систем (DAS), но и сетевых накопителей (NAS). К примеру, с ее помощью можно протестировать производительность дисковой подсистемы сервера (файл-сервера), используя для этого несколько сетевых клиентов. Поэтому часть закладок и инструментов в окне утилиты IOmeter относится именно к сетевым настройкам программы. Понятно, что при тестировании дисков и RAID-массивов эти возможности программы нам не потребуются, а потому мы не станем объяснять назначение всех вкладок и инструментов.

Итак, при запуске программы IOmeter в левой части главного окна (в окне Topology) будет отображаться древовидная структура всех запущенных генераторов нагрузки (экземпляров Dynamo). Каждый запущенный экземпляр генератора нагрузки Dynamo называется менеджером (manager). Кроме того, программа IOmeter является многопотоковой и каждый отдельный запущенный поток экземпляра генератора нагрузки Dynamo называется Worker. Количество запущенных Worker’ов всегда соответствует количеству логических ядер процессора.

В нашем примере используется только один компьютер с четырехъядерным процессором, поддерживающим технологию Hyper-Threading, поэтому запускается лишь один менеджер (один экземпляр Dynamo) и восемь (по количеству логических ядер процессора) Worker’ов.

Собственно, для тестирования дисков в данном окне нет необходимости что-либо менять или добавлять.

Если выделить мышью название компьютера в древовидной структуре запущенных экземпляров Dynamo, то в окне Target на вкладке Disk Target отобразятся все диски, дисковые массивы и прочие накопители (включая сетевые), установленные в компьютере. Это те накопители, с которыми программа IOmeter может работать. Носители могут быть помечены желтым или голубым цветом. Желтым цветом отмечаются логические разделы носителей, а голубым - физические устройства без созданных на них логических разделов. Логический раздел может быть перечеркнут или не перечеркнут. Дело в том, что для работы программы с логическим разделом его нужно прежде подготовить, создав на нем специальный файл, равный по размеру емкости всего логического раздела. Если логический раздел перечеркнут, то это значит, что раздел еще не подготовлен для тестирования (он будет подготовлен автоматически на первом этапе тестирования), ну а если раздел не перечеркнут, то это означает, что на логическом разделе уже создан файл, полностью готовый для тестирования.

Отметим, что, несмотря на поддерживаемую возможность работы с логическими разделами, оптимально тестировать именно не разбитые на логические разделы диски. Удалить логический раздел диска можно очень просто - через оснастку Disk Management . Для доступа к ней достаточно щелкнуть правой кнопкой мыши на значке Computer на рабочем столе и в открывшемся меню выбрать пункт Manage . В открывшемся окне Computer Management в левой части необходимо выбрать пункт Storage , а в нем - Disk Management . После этого в правой части окна Computer Management отобразятся все подключенные диски. Щелкнув правой кнопкой по нужному диску и выбрав в открывшемся меню пункт Delete Volume …, можно удалить логический раздел на физическом диске. Напомним, что при удалении с диска логического раздела вся информация на нем удаляется без возможности восстановления.

Вообще, с помощью утилиты IOmeter тестировать можно только чистые диски или дисковые массивы. То есть нельзя протестировать диск или дисковый массив, на котором установлена операционная система.

Итак, вернемся к описанию утилиты IOmeter. В окне Target на вкладке Disk Target необходимо выбрать тот диск (или дисковый массив), который будет подвергаться тестированию. Далее необходимо открыть вкладку Access Specifications (рис. 2), на которой можно будет определить сценарий тестирования.

Рис. 2. Вкладка Access Specifications утилиты IOmeter

В окне Global Access Specifications имеется список предустановленных сценариев тестирования, которые можно присвоить менеджеру загрузки. Впрочем, эти сценарии нам не понадобятся, поэтому все их можно выделить и удалить (для этого предусмотрена кнопка Delete ). После этого нажмем на кнопку New , чтобы создать новый сценарий тестирования. В открывшемся окне Edit Access Specification можно определить сценарий загрузки диска или RAID-массива.

Предположим, мы хотим выяснить зависимость скорости последовательного (линейного) чтения и записи от размера блока запроса на передачу данных. Для этого нам нужно сформировать последовательность сценариев загрузки в режиме последовательного чтения при различных размерах блока, а затем последовательность сценариев загрузки в режиме последовательной записи при различных размерах блока. Обычно размеры блоков выбираются в виде ряда, каждый член которого вдвое больше предыдущего, а первый член этого ряда равен 512 байт. То есть размеры блоков составляют следующий ряд: 512 байт, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 Кбайт, 1 Мбайт. Делать размер блока больше 1 Мбайт при последовательных операциях нет смысла, поскольку при таких больших размерах блока данных скорость последовательных операций не изменяется.

Итак, сформируем сценарий загрузки в режиме последовательного чтения для блока размером 512 байт.

В поле Name окна Edit Access Specification вводим название сценария загрузки. Например, Sequential_Read_512. Далее в поле Transfer Request Size задаем размер блока данных 512 байт. Ползунок Percent Random/Sequential Distribution (процентное соотношение между последовательными и выборочными операциями) сдвигаем до упора влево, чтобы все наши операции были только последовательными. Ну а ползунок , задающий процентное соотношение между операциями чтения и записи, сдвигаем до упора вправо, чтобы все наши операции были только чтением. Остальные параметры в окне Edit Access Specification менять не нужно (рис. 3).

Рис. 3. Окно Edit Access Specification для создания сценария загрузки последовательного чтения
при размере блока данных 512 байт

Нажимаем на кнопку Ok , и первый созданный нами сценарий отобразится в окне Global Access Specifications на вкладке Access Specifications утилиты IOmeter.

Аналогично нужно создать сценарии и для остальных блоков данных, однако, чтобы облегчить себе работу, проще не создавать сценарий каждый раз заново, нажимая для этого кнопку New , а, выбрав последний созданный сценарий, нажать кнопку Edit Copy (редактировать копию). После этого опять откроется окно Edit Access Specification с настройками нашего последнего созданного сценария. В нем достаточно будет поменять лишь название и размер блока. Проделав аналогичную процедуру для всех остальных размеров блоков, можно приступить к формированию сценариев для последовательной записи, что делается совершенно аналогично, за исключением того, что ползунок Percent Read/Write Distribution , задающий процентное соотношение между операциями чтения и записи, нужно сдвинуть до упора влево.

Аналогично можно создать сценарии для выборочной записи и чтения.

После того как все сценарии будут готовы, их нужно присвоить менеджеру загрузки, то есть указать, с какими сценариями будет работать Dynamo .

Для этого еще раз проверяем, что в окне Topology выделено название компьютера (то есть менеджер нагрузки на локальном ПК), а не отдельный Worker. Это гарантирует, что сценарии нагрузки будут присваиваться сразу всем Worker’ам. Далее в окне Global Access Specifications выделяем все созданные нами сценарии нагрузки и нажимаем кнопку Add . Все выделенные сценарии нагрузки добавятся в окно (рис. 4).

Рис. 4. Присвоение созданных сценариев нагрузки менеджеру нагрузки

После этого нужно перейти к вкладке Test Setup (рис. 5), на которой можно задать время выполнения каждого созданного нами сценария. Для этого в группе Run Time задаем время выполнения сценария нагрузки. Вполне достаточно будет задать время, равное 3 мин.

Рис. 5. Задание времени выполнения сценария нагрузки

Кроме того, в поле Test Description необходимо указать название всего теста. В принципе, данная вкладка имеет массу других настроек, однако для наших задач они не нужны.

После того как все необходимые настройки произведены, рекомендуется сохранить созданный тест, нажав на панели инструментов на кнопку с изображением дискеты. Тест сохраняется с расширением *.icf. Впоследствии можно будет воспользоваться созданным сценарием нагрузки, запустив не файл IOmeter.exe, а сохраненный файл с расширением *.icf.

Теперь можно приступить непосредственно к тестированию, нажав на кнопку с изображением флажка. Вам будет предложено указать название файла с результатами тестирования и выбрать его местоположение. Результаты тестирования сохраняются в CSV-файле, который потом легко экспортировать в Excel и, установив фильтр по первому столбцу, выбрать нужные данные с результатами тестирования.

В ходе тестирования промежуточные результаты можно наблюдать на вкладке Result Display , а определить, к какому сценарию нагрузки они относятся, можно на вкладке Access Specifications . В окне Assigned Access Specification исполняемый сценарий отображается зеленым, выполненные сценарии - красным, а еще не выполненные сценарии - синим цветом.

Итак, мы рассмотрели базовые приемы работы с утилитой IOmeter, которые потребуются для тестирования отдельных дисков или RAID-массивов. Отметим, что мы рассказали далеко не обо всех возможностях утилиты IOmeter, но описание всех ее возможностей выходит за рамки данной статьи.

Создание RAID-массива на базе контроллера GIGABYTE SATA2

Итак, мы начинаем создание RAID-массива на базе двух дисков с использованием интегрированного на плате RAID-контроллера GIGABYTE SATA2. Конечно, сама компания Gigabyte не производит чипов, а потому под чипом GIGABYTE SATA2 скрывается перемаркированный чип другой фирмы. Как можно выяснить из INF-файла драйвера, речь идет о контроллере серии JMicron JMB36x.

Доступ в меню настройки контроллера возможен на этапе загрузки системы, для чего нужно нажать комбинацию клавиш Ctrl+G, когда появится соответствующая надпись на экране. Естественно, прежде в настройках BIOS нужно определить режим работы двух SATA-портов, относящихся к контроллеру GIGABYTE SATA2, как RAID (в противном случае доступ в меню конфигуратора RAID-массива будет невозможен).

Меню настройки RAID-контроллера GIGABYTE SATA2 довольно простое. Как мы уже отмечали, контроллер является двухпортовым и позволяет создавать RAID-массивы уровня 0 или 1. Через меню настройки контроллера можно удалить или создать RAID-массив. При создании RAID-массива имеется возможность указать его название, выбрать уровень массива (0 или 1), задать размер страйпа для RAID 0 (128, 84, 32, 16, 8 или 4K), а также определить размер массива.

Если массив создан, то какие-либо изменения в нем уже невозможны. То есть нельзя впоследствии для созданного массива изменить, например, его уровень или размер страйпа. Для этого прежде нужно удалить массив (с потерей данных), а потом создать его заново. Собственно, это свойственно не только контроллеру GIGABYTE SATA2. Невозможность изменения параметров созданных RAID-массивов - особенность всех контроллеров, которая вытекает из самого принципа реализации RAID-массива.

После того как массив на базе контроллера GIGABYTE SATA2 создан, текущую информацию о нем можно просмотреть, используя утилиту GIGABYTE RAID Configurer, которая устанавливается автоматически вместе с драйвером.

Создание RAID-массива на базе контроллера Marvell 9128

Конфигурирование RAID-контроллера Marvell 9128 возможно только через настройки BIOS платы Gigabyte GA-EX58A-UD7. Вообще, нужно сказать, что меню конфигуратора контроллера Marvell 9128 несколько сыровато и может ввести в заблуждение неискушенных пользователей. Впрочем, об этих незначительных недоработках мы расскажем чуть позже, а пока рассмотрим основные функциональные возможности контроллера Marvell 9128.

Итак, несмотря на то что этот контроллер поддерживает работу с дисками с интерфейсом SATA III, он также полностью совместим с дисками с интерфейсом SATA II.

Контроллер Marvell 9128 позволяет создать RAID-массив уровней 0 и 1 на базе двух дисков. Для массива уровня 0 можно задать размер страйпа 32 или 64 Кбайт, а также указать имя массива. Кроме того, имеется и такая опция, как Gigabyte Rounding, которая нуждается в пояснении. Несмотря на название, созвучное с именем компании-производителя, функция Gigabyte Rounding никакого отношения к ней не имеет. Более того, она никак не связана с RAID-массивом уровня 0, хотя в настройках контроллера ее можно определить именно для массива этого уровня. Собственно, это первая из тех недоработок конфигуратора контроллера Marvell 9128, о которых мы упоминали. Функция Gigabyte Rounding определена только для RAID-массива уровня 1. Она позволяет использовать для создания RAID-массива уровня 1 два диска (например, различных производителей или разные модели), емкость которых немного отличается друг от друга. Функция Gigabyte Rounding как раз и задает разницу в размерах двух дисков, применяемых для создания RAID-массива уровня 1. В контроллере Marvell 9128 функция Gigabyte Rounding позволяет установить разницу в размерах дисков 1 или 10 Гбайт.

Еще одна недоработка конфигуратора контроллера Marvell 9128 заключается в том, что при создании RAID-массива уровня 1 у пользователя имеется возможность выбора размера страйпа (32 или 64 Кбайт). Однако понятие страйпа вообще не определено для RAID-массива уровня 1.

Создание RAID-массива на базе контроллера, интегрированного в ICH10R

RAID-контроллер, интегрированный в южный мост ICH10R, является самым распространенным. Как уже отмечалось, данный RAID-контроллер 6-портовый и поддерживает не только создание массивов RAID 0 и RAID 1, но также RAID 5 и RAID 10.

Доступ в меню настройки контроллера возможен на этапе загрузки системы, для чего нужно нажать комбинацию клавиш Ctrl+I, когда появится соответствующая надпись на экране. Естественно, прежде в настройках BIOS следует определить режим работы этого контроллера как RAID (в противном случае доступ в меню конфигуратора RAID-массива будет невозможен).

Меню настройки RAID-контроллера достаточно простое. Через меню настройки контроллера можно удалить или создать RAID-массив. При создании RAID-массива можно указать его название, выбрать уровень массива (0, 1, 5 или 10), задать размер страйпа для RAID 0 (128, 84, 32, 16, 8 или 4K), а также определить размер массива.

Сравнение производительности RAID-массивов

Для тестирования RAID-массивов с помощью утилиты IOmeter мы создали сценарии нагрузки последовательного чтения, последовательной записи, выборочного чтения и выборочной записи. Размеры блоков данных в каждом сценарии нагрузки составляли следующую последовательность: 512 байт, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 Кбайт, 1 Мбайт.

На каждом из RAID-контроллеров создавался массив RAID 0 со всеми допустимыми размерами страйпов и массив RAID 1. Кроме того, дабы иметь возможность оценить прирост производительности, получаемый от использования RAID-массива, мы также протестировали на каждом из RAID-контроллеров одиночный диск.

Итак, обратимся к результатам нашего тестирования.

Контроллер GIGABYTE SATA2

Прежде всего рассмотрим результаты тестирования RAID-массивов на базе контроллера GIGABYTE SATA2 (рис. 6-13). В общем-то контроллер оказался в буквальном смысле загадочным, а его производительность просто разочаровала.

Рис. 6. Скорость последовательных
и выборочных операций для диска
Western Digital WD1002FBYS

Рис. 7. Скорость последовательных

c размером страйпа 128 Кбайт
(контроллер GIGABYTE SATA2)

Рис. 12. Скорость последовательных
и выборочных операций для RAID 0
c размером страйпа 4 Кбайт
(контроллер GIGABYTE SATA2)

Рис. 13. Скорость последовательных
и выборочных операций
для RAID 1 (контроллер GIGABYTE SATA2)

Если посмотреть на скоростные характеристики одного диска (без RAID-массива), то максимальная скорость последовательного чтения составляет 102 Мбайт/с, а максимальная скорость последовательной записи - 107 Мбайт/с.

При создании массива RAID 0 с размером страйпа 128 Кбайт максимальная скорость последовательного чтения и записи увеличивается до 125 Мбайт/с, то есть возрастает примерно на 22%.

При размере страйпа 64, 32 или 16 Кбайт максимальная скорость последовательного чтения составляет 130 Мбайт/с, а максимальная скорость последовательной записи - 141 Мбайт/с. То есть при указанных размерах страйпа максимальная скорость последовательного чтения возрастает на 27%, а максимальная скорость последовательной записи - на 31%.

Вообще-то это маловато для массива уровня 0, и хотелось бы, чтобы максимальная скорость последовательных операций была выше.

При размере страйпа 8 Кбайт максимальная скорость последовательных операций (чтения и записи) остается примерно такой же, как и при размере страйпа 64, 32 или 16 Кбайт, однако с выборочным чтением - явные проблемы. При увеличении размера блока данных вплоть до 128 Кбайт скорость выборочного чтения (как и должно быть) возрастает пропорционально размеру блока данных. Однако при размере блока данных более 128 Кбайт скорость выборочного чтения падает практически до нуля (примерно до 0,1 Мбайт/с).

При размере страйпа 4 Кбайт падает не только скорость выборочного чтения при размере блока более 128 Кбайт, но и скорость последовательного чтения при размере блока более 16 Кбайт.

Использование массива RAID 1 на контроллере GIGABYTE SATA2 практически не изменяет (в сравнении с одиночным диском) скорость последовательного чтения, однако максимальная скорость последовательной записи уменьшается до 75 Мбайт/с. Напомним, что для массива RAID 1 скорость чтения должна возрастать, а скорость записи не должна уменьшаться в сравнении со скоростью чтения и записи одиночного диска.

На основании результатов тестирования контроллера GIGABYTE SATA2 можно сделать только один вывод. Использовать данный контроллер для создания массивов RAID 0 и RAID 1 имеет смысл только в том случае, когда все остальные RAID-контроллеры (Marvell 9128, ICH10R) уже задействованы. Хотя представить себе подобную ситуацию довольно сложно.

Контроллер Marvell 9128

Контроллер Marvell 9128 продемонстрировал гораздо более высокие скоростные характеристики в сравнении с контроллером GIGABYTE SATA2 (рис. 14-17). Собственно, различия проявляются даже при работе контроллера с одним диском. Если для контроллера GIGABYTE SATA2 максимальная скорость последовательного чтения составляет 102 Мбайт/с и достигается при размере блока данных 128 Кбайт, то для контроллера Marvell 9128 максимальная скорость последовательного чтения составляет 107 Мбайт/с и достигается при размере блока данных 16 Кбайт.

При создании массива RAID 0 с размером страйпа 64 и 32 Кбайт максимальная скорость последовательного чтения увеличивается до 211 Мбайт/с, а последовательной записи - до 185 Мбайт/с. То есть при указанных размерах страйпа максимальная скорость последовательного чтения возрастает на 97%, а максимальная скорость последовательной записи - на 73%.

Существенной разницы по скоростным показателям массива RAID 0 с размером страйпа 32 и 64 Кбайт не наблюдается, однако применение страйпа 32 Кбайт более предпочтительно, поскольку в этом случае скорость последовательных операций при размере блока менее 128 Кбайт будет немного выше.

При создании массива RAID 1 на контроллере Marvell 9128 максимальная скорость последовательных операций практически не изменяется в сравнении с одиночным диском. Так, если для одиночного диска максимальная скорость последовательных операций составляет 107 Мбайт/с, то для RAID 1 она равна 105 Мбайт/с. Также заметим, что для RAID 1 скорость выборочного чтения немного ухудшается.

В целом же нужно отметить, что контроллер Marvell 9128 обладает неплохими скоростными характеристиками и его вполне можно задействовать как для создания RAID-массивов, так и для подключения к нему одиночных дисков.

Контроллер ICH10R

RAID-контроллер, встроенный в ICH10R, оказался самым высокопроизводительным из всех протестированных нами (рис. 18-25). При работе с одиночным диском (без создания RAID-массива) его производительность фактически такая же, как и производительность контроллера Marvell 9128. Максимальная скорость последовательного чтения и записи составляет 107 Мбайт и достигается при размере блока данных 16 Кбайт.

Рис. 18. Скорость последовательных
и выборочных операций
для диска Western Digital WD1002FBYS (контроллер ICH10R)

Если говорить о массиве RAID 0 на контроллере ICH10R, то максимальная скорость последовательного чтения и записи не зависит от размера страйпа и составляет 212 Мбайт/с. От размера страйпа зависит лишь размер блока данных, при котором достигается максимальное значение скорости последовательного чтения и записи. Как показывают результаты тестирования, для RAID 0 на базе контроллера ICH10R оптимально использовать страйп размером 64 Кбайт. В этом случае максимальное значение скорости последовательного чтения и записи достигается при размере блока данных всего 16 Кбайт.

Итак, резюмируя, еще раз подчеркнем, что RAID-контроллер, встроенный в ICH10R, существенно превосходит по производительности все остальные интегрированные RAID-контроллеры. А учитывая, что он обладает и большей функциональностью, оптимально использовать именно этот контроллер и просто забыть о существовании всех остальных (если, конечно, в системе не применяются диски SATA III).

RAID массив (Redundant Array of Independent Disks) – подключение нескольких устройств, для повышения производительности и\или надежности хранения данных, в переводе - избыточный массив независимых дисков.

Согласно закону Мура, нынешняя производительность возрастает с каждым годом (а именно количество транзисторов на чипе удваивается каждые 2 года). Это можно заметить практически в каждой отрасли производства оборудования для компьютеров. Процессоры увеличивают количество ядер и транзисторов, уменьшая при этом тех процесс, оперативная память увеличивает частоту и пропускную способность, память твердотельных накопителей повышает износостойкость и скорость чтения.

Но вот простые жесткие диски (HDD) особо не продвинулись за последние 10 лет. Как была стандартной скорость 7200 об/мин, так она и осталась (не беря в расчет серверные HDD c оборотами 10.000 и более). На ноутбуках все еще встречаются медленные 5400 об/мин. Для большинства пользователей, чтобы повысить производительность своего компьютера будет удобнее купить SDD, но цена за 1 гигабайт такого носителя значительно больше, чем у простого HDD. «Как повысить производительность накопителей без сильной потери денег и объема? Как сохранить свои данные или повысить безопасность сохранности Ваших данных?» На эти вопросы есть ответ – RAID массив.

Виды RAID массивов

На данный момент существуют следующие типы RAID массивов:

RAID 0 или «Чередование» – массив из двух или более дисков для повышения общей производительности. Объем рейда будет общий (HDD 1 + HDD 2 = Общий объем), скорость считывания\записи будет выше (за счет разбиения записи на 2 устройства), но страдает надежность сохранности информации. Если одно из устройств выйдет из строя, то вся информация массива будет потеряна.

RAID 1 или «Зеркало» –несколько дисков копирующих друг друга для повышения надежности. Скорость записи остаётся на прежнем уровне, скорость считывания увеличивается, многократно повышается надежность (даже если одно устройство выйдет из строя, второе будет работать), но стоимость 1 Гигабайта информации увеличивается в 2 раза (если делать массив из двух hdd).

RAID 2 – массив, построенный на работе дисков для хранения информации и дисков коррекции ошибок. Расчет количества HDD для хранения информации выполняется по формуле «2^n-n-1», где n - количество HDD коррекции. Данный тип используется при большом количестве HDD, минимальное приемлемое число – 7, где 4 для хранения информации, а 3 для хранения ошибок. Плюсом этого вида будет повышенная производительность, по сравнению с одним диском.

RAID 3 – состоит из «n-1» дисков, где n – диск хранения блоков четности, остальные устройства для хранения информации. Информацию делится на куски меньше объема сектора (разбиваются на байты), хорошо подходит для работы с большими файлами, скорость чтения файлов малого объема очень мала. Характерен высокой производительностью, но малой надежностью и узкой специализацией.

RAID 4 – похож на 3й тип, но разделение происходит на блоки, а не байты. Этим решением получилось исправить малую скорость чтения файлов малого объема, но скорость записи осталось низкой.

RAID 5 и 6 – вместо отдельного диска для корреляции ошибок, как в прошлых вариантах, используются блоки, равномерно распределённые по всем устройствам. В этом случае повышается скорость чтения\записи информации за счет распараллеливания записи. Минусом данного типа является долговременное восстановление информации в случае выхода из строя одного из дисков. Во время восстановления идёт очень высокая нагрузка на другие устройства, что понижает надежность и повышает выход другого устройства из строя и потерю всех данных массива. Тип 6 повышает общую надежность, но понижает производительность.

Комбинированные виды RAID массивов:

RAID 01 (0+1) – Два Рейд 0 объединяются в Рейд 1.

RAID 10 (1+0) – дисковые массивы RAID 1, которые используются в архитектуре 0 типа. Считается самым надежным вариантом хранения данных, объединяя в себе высокую надежность и производительность.

Также можно создать массив из SSD накопителей . Согласно тестированию 3DNews, такое комбинирование не даёт существенного прироста. Лучше приобрести накопитель с более производительным интерфейсом PCI или eSATA

Рейд массив: как создать

Создается путем подключения через специальный RAID контроллер. На данный момент есть 3 вида контроллеров:

  1. Программный – программными средствами эмулируется массив, все вычисления производятся за счет ЦП.
  2. Интегрированный – в основном распространено на материнских платах (не серверного сегмента). Небольшой чип на мат. плате, отвечающий за эмуляцию массива, вычисления производятся через ЦП.
  3. Аппаратный – плата расширения (для стационарных компьютеров), обычно с PCI интерфейсом, обладает собственной памятью и вычислительным процессором.

RAID массив hdd: Как сделать из 2 дисков через IRST


Восстановление данных

Некоторые варианты восстановления данных:

  1. В случае сбоя Рейд 0 или 5 может помочь утилита RAID Reconstructor , которая соберет доступную информацию накопителей и перезапишет на другое устройство или носитель в виде образа прошлого массива. Данный вариант поможет, если диски исправны и ошибка программная.
  2. Для Linux систем используется mdadm восстановление (утилита для управления программными Рейд-массивами).
  3. Аппаратное восстановление должно выполняться через специализированные сервисы, потому что без знания методики работы контроллера можно потерять все данные и вернуть их будет очень сложно или вообще невозможно.

Есть множество нюансов, которые нужно учитывать при создании Рейд на Вашем компьютере. В основном большинство вариантов используются в серверном сегменте, где важна и необходима стабильность и сохранность данных. Если у Вас есть вопросы или дополнения, Вы можете оставить их в комментариях.

Отличного Вам дня!

Приветствую читателей блога!
Сегодня будет очередная статья на компьютерную тему, а посвящена она будет такому понятию, как Raid массив дисков — уверен, многим это понятие абсолютно ничего не скажет, а те, кто уже где-то про это слышал, не имеют представление о том, что это вообще такое. Давайте разбираться вместе!

Не вдаваясь в детали терминологии, Raid массив — это некий комплекс, построенный из нескольких жестких дисков, который позволяет более грамотно распределять между ними функции. Как обычно мы размещаем жесткие диски в компе? Подключаем к Sata один жесткий диск, потом другой, третий. И появляются в нашей операционке диски D, E, F и так далее. Мы можем поместить на них какие-то файлы или установить Windows, но по сути это будут отдельные диски — вынув один из них мы ровным счетом ничего не заметим (если на нем не была установлена ОС) кроме того, что нам не будут доступны записанные на них файлы. Но есть другой путь — объединить эти диски в систему, задать им определенный алгоритм совместной работы, в результате которого значительно повысится надежность хранения информации или скорость их работы.

Но прежде, чем мы сможем создать эту систему, нужно знать, поддерживает ли материнская плата работу с дисковыми массивами Raid. Во многих современных материнках уже имеется встроенный Raid-контроллер, который-то и позволяет объединить жесткие диски. Поддерживаемые схемы массивов имеются в описаниях к материнской плате. Например, возьмем первую попавшуюся мне на глаза в Яндекс Маркете плату ASRock P45R2000-WiFi.

Здесь описание поддерживаемых Raid массивов отображается в разделе «Дисковые контроллеры Sata».


В данном примере мы видим, что Sata контроллер поддерживает создание массивов Raid: 0, 1, 5, 10. Что означают эти цифры? Это обозначение различных типов массивов, в которых диски взаимодействуют между собой по разным схемам, которые призваны, как я уже говорил, либо ускорять их работу, либо увеличивают надежность от потери данных.

Если же системная плата компьютера не поддерживает Raid, то можно приобрести отдельный Raid-контроллер в виде PCI платы, которая вставляется в PCI слот на материнке и дает ей возможность создавать массивы из дисков. Для работы контроллера после его установки нужно будет также установить raid драйвер, который либо идет на диске с данной моделью, либо можно просто скачать из интернета. Лучше всего на данном устройстве не экономить и купить от какого-то известного производителя, например Asus, и с чипсетами Intel.


Я подозреваю, что пока что вы еще не очень имеете представление, о чем все же идет речь, поэтому давайте внимательно разберем каждый из самых популярных типов Raid массивов, чтобы все стало более понятно.

Массив RAID 1

Массив Raid 1 — один из самых распространенных и бюджетных вариантов, который использует 2 жестких диска. Этот массив призван обеспечить максимальную защиту данных пользователя, потому что все файлы будут одновременно копироваться сразу на 2 жестких диска. Для того, чтобы его создать, берем два одинаковых по объему харда, например по 500 Гб и делаем соответствующие настройки в BIOS для создания массива. После этого в вашей системе будет виден один жесткий диск размеров не 1 Тб, а 500 Гб, хотя физически работают два жестких диска — формула расчета приведена чуть ниже. И все файлы одновременно будут писаться на два диска, то есть второй будет полной резервной копией первого. Как вы понимаете, при выходе из строя одного из дисков вы не потеряете ни частички своей информации, так как у вас будет вторая копия этого диска.

Также поломки и не заметит операционная система, которая продолжит работу со вторым диском — о неполадке вас известит лишь специальная программа, которая контролирует функционирование массива. Вам нужно лишь удалить неисправный диск и подключить такой же, только рабочий — система автоматически скопирует на него все данные с оставшегося исправного диска и продолжит работу.

Объем диска, который будет видеть система, рассчитывается здесь по формуле:

V = 1 x Vmin, где V — это общий объем, а Vmin — объем памяти самого маленького жесткого диска.


Массив RAID 0

Еще одна популярная схема, которая призвана повысить не надежность хранения, а наоборот, скорость работы. Также состоит из двух HDD, однако в этом случае ОС видим уже полный суммарный объем двух дисков, т.е. если объединить в Raid 0 диски по 500 Гб, то система увидит один диск размером 1 Тб. Скорость чтения и записи повышается за счет того, что блоки файлов пишутся поочередно на два диска — но при этом отказоустойчивость данной системы минимальная — при выходе из строя одного из дисков почти все файлы будут повреждены и вы потеряете часть данных — ту, которая была записана на сломавшийся диск. Восстанавливать информацию после этого придется уже в сервисном центре.

Формула расчета общего объема диска, видимого Windows, выглядит так:

Если вы до прочтения данной статьи по большому счету не беспокоились об отказоустойчивости вашей системы, но хотели бы повысить скорость работы, то можете купить дополнительный винчестер и смело использовать этот тип. По большому счету, в домашних условиях подавляющее количество пользователей не хранит какой-то супер-важной информации, а скопировать какие-то важные файлы можно на отдельный внешний жесткий диск.

Массив Raid 10 (0+1)

Как следует уже из самого названия, этот тип массива объединяет в себе свойства двух предыдущих — это как бы два массива Raid 0, объединенных в Raid 1. Используются четыре жестких диска, на два из них информация записывается блоками поочередно, как это было в Raid 0, а на два других — создаются полные копии двух первых. Система очень надежная и при этом достаточно скоростная, однако весьма дорогая в организации. Для создания нужно 4 HDD, при этом система будет видеть общий объем по формуле:


То есть, если возьмем 4 диска по 500 Гб, то система увидит 1 диск размером 1 Тб.

Данный тип, также как и следующий, чаще всего используется в организациях, на серверных компьютерах, где нужно обеспечить как высокую скорость работы, так и максимальную безопасность от потери информации в случае непредвиденных обстоятельств.

Массив RAID 5

Массив Raid 5 — оптимальное сочетание цены, скорости и надежности. В данном массиве минимально могут быть задействованы 3 HDD, объем рассчитывается из более сложной формулы:

V = N x Vmin — 1 x Vmin, где N — количество жестких дисков.

Итак, допустим у нас 3 диска по 500 Гб. Объем, видимый ОС, будет равен 1 Тб.

Схема работы массива выглядит следующим образом: на первые два диска (или три, в зависимости от их количества) записываются блоки разделенных файлов, а на третий (или четвертый) — контрольная сумма первых двух (или трех). Таким образом, при отказе одного из дисков, его содержимое легко восстановить за счет имеющейся на последнем диске контрольной суммы. Производительность такого массива ниже, чем у Raid 0, но такая же надежная, как Raid 1 или Raid 10 и при этом дешевле последнего, т.к. можно сэкономить на четвертом харде.

На схеме ниже представлена схема Raid 5 из четырех HDD.

Есть также другие режимы — Raid 2,3, 4, 6, 30 и т.д., но они являются по большому счету производными от перечисленных выше.

Как установить Raid массив дисков на Windows?

С теорией, надеюсь, разобрались. Теперь посмотрим на практику — вставить в слот PCI Raid контроллер и установить драйвера, думаю, опытным пользователям ПК труда не составит.

Как же теперь создать в операционной системе Windows Raid массив из подключенных жестких дисков?

Лучше всего, конечно, это делать, когда вы только-только приобрели и подключили чистенькие винчестеры без установленной ОС. Сначала перезагружаем компьютер и заходим в настройки BIOS — здесь нужно найти SATA контроллеры, к которым подключены наши жесткие диски, и выставить их в режим RAID.

После этого сохраняем настройки и перезагружаем ПК. На черном экране появится информация о том, что у вас включен режим Raid и о клавише, с помощью которой можно попасть в его настройку. В примере ниже предложено нажать клавишу «TAB».

В зависимости от модели Raid-контроллера она может быть другой. Например, «CNTRL+F»

Заходим в утилиту настройки и нажимаем в меню что-то типа «Create array» или «Create Raid» — надписи могут отличаться. Также если контроллер поддерживает несколько типов Raid, то будет предложено выбрать, какой именно нужно создать. В моем примере доступен только Raid 0.

После этого возвращаемся обратно в BIOS и в настройке порядка загрузки видим уже не несколько отдельных дисков, а один в виде массива.

Вот собственно и все — RAID настроен и теперь компьютер будет воспринимать ваши диски как один. Вот так, например, будет виден Raid при установке Windows.

Думаю, что вы уже поняли преимущества использования Raid. Напоследок приведу сравнительную таблицу замеров скорости записи и чтения диска отдельно или в составе режимов Raid — результат, как говорится, на лицо.