Количество информации.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 бит [б] = 0,125 байт [Б]

Исходная величина

Преобразованная величина

бит ниббл байт символ машинное слово Машинное слово MAPM учетверенное слово блок кибибит кибибайт килобайт (10³байт) мебибит мебибайт мегабайт (10⁶ байт) гибибит гибибайт гигабайт (10⁹ байт) тебибит тебибайт терабайт (10¹² байт) пебибит пебибайт петабайт (10¹⁵ байт) эксбибит эксбибайт эксабайт (10¹⁸ байт) дискета (3.5, дв. плотности) дискета (3.5, выс. пл.) дискета (3.5, расшир. пл.) дискета (5,25, дв. пл.) дискета (5,25, выс. пл.) Zip 100 Zip 250 Jaz 1GB Jaz 2GB CD (74 минуты) CD (80 минут) DVD (1 слой, 1 сторона) DVD (2 слоя, 1 сторона) DVD (1 слой, 1 сторона) DVD (2 слоя, 2 стороны) Однослойный диск Blu-ray Двухслойный диск Blu-ray

Термическое сопротивление

Подробнее о единицах измерения количества информации

Общие сведения

Данные и их хранение необходимы для работы компьютеров и цифровой техники. Данные - это любая информация, от команд до файлов, созданных пользователями, например текст или видео. Данные могут храниться в разных форматах, но чаще всего их сохраняют как двоичный код. Некоторые данные хранятся временно и используются только во время исполнения определенных операций, а потом удаляются. Их записывают на устройствах временного хранения информации, например, в оперативной памяти, известной под названием запоминающего устройства с произвольным доступом (по-английски, RAM - Random Access Memory) или ОЗУ - оперативное запоминающее устройство. Некоторую информацию хранят дольше. Устройства, обеспечивающие более длительное хранение - это жесткие диски, твердотельные накопители, и различные внешние накопители.

Подробнее о данных

Данные представляют собой информацию, которая хранится в символьной форме и может быть считана компьютером или человеком. Бо́льшая часть данных, предназначенных для компьютерного доступа, хранится в файлах. Некоторые из этих файлов - исполняемые, то есть они содержат программы. Файлы с программами обычно не считают данными.

Избыточность

Во избежание потери данных при поломках используют принцип избыточности, то есть хранят копии данных в разных местах. Если эти данные перестанут читаться в одном месте, то их можно будет считать в другом. На этом принципе основывается работа избыточного массива независимых дисков RAID (от английского reduntant array of independent discs). В нем копии данных хранятся на двух или более дисках, объединенных в один логический блок. В некоторых случаях для большей надежности копируют сам RAID-массив. Копии иногда хранят отдельно от основного массива, иногда в другом городе или даже в другой стране, на случай уничтожения массива во время катаклизмов, катастроф, или войн.

Форматы хранения данных

Иерархия хранения данных

Данные обрабатываются в центральном процессоре, и чем ближе к процессору устройство, которое их хранит, тем быстрее их можно обработать. Скорость обработки данных также зависит от вида устройства, на котором они хранятся. Пространство внутри компьютера рядом с микропроцессором, где можно установить такие устройства, ограничено, и обычно самые быстрые, но маленькие устройства находятся ближе всего к микропроцессору, а те, что больше но медленнее - дальше от него. Например, регистр внутри процессора очень мал, но позволяет считывать данные со скоростью одного цикла процессора, то есть, в течение нескольких миллиардных долей секунды. Эти скорости с каждым годом улучшаются.

Первичная память

Первичная память включает память внутри процессора - кэш и регистры. Это - самая быстрая память, то есть время доступа к ней - самое низкое. Оперативная память также считается первичной памятью. Она намного медленнее регистров, но ее емкость гораздо больше. Процессор имеет к ней прямой доступ. В оперативную память записываются текущие данные, постоянно используемые для работы выполняемых программ.

Вторичная память

Устройства вторичной памяти, например накопитель на жестких магнитных дисках (НЖМД) или винчестер, находятся внутри компьютера. На них хранятся данные, которые не так часто используются. Они хранятся дольше, и не удаляются автоматически. В основном их удаляют сами пользователи или программы. Доступ к этим данным происходит медленнее, чем к данным в первичной памяти.

Внешняя память

Внешнюю память иногда включают во вторичную память, а иногда - относят в отдельную категорию памяти. Внешняя память - это сменные носители, например оптические (CD, DVD и Blu-ray), Flash-память, магнитные ленты и бумажные носители информации, такие как перфокарты и перфоленты. Оператору необходимо вручную вставлять такие носители в считывающие устройства. Эти носители сравнительно дешевы по сравнению с другими видами памяти и их часто используют для хранения резервных копий и для обмена информацией из рук в руки между пользователями.

Третичная память

Третичная память включает в себя запоминающие устройства большого объема. Доступ к данным на таких устройствах происходит очень медленно. Обычно они используются для архивации информации в специальных библиотеках. По запросу пользователей механическая «рука» находит и помещает в считывающее устройство носитель с запрошенными данными. Носители в такой библиотеке могут быть разные, например оптические или магнитные.

Виды носителей

Оптические носители

Информацию с оптических носителей считывают в оптическом приводе с помощью лазера. Во время написания этой статьи (весна 2013 года) самые распространенные оптические носители - оптические диски CD, DVD, Blu-ray и Ultra Density Optical (UDO). Накопитель может быть один, или их может быть несколько, объединенных в одном устройстве, как например в оптических библиотеках. Некоторые оптические диски позволяют осуществлять повторную запись.

Полупроводниковые носители

Полупроводниковая память - одна из наиболее часто используемых видов памяти. Это вид памяти параллельного действия, позволяющий одновременный доступ к любым данным, независимо в какой последовательности эти данные были записаны.

Почти все первичные устройства памяти, а также устройства флеш-памяти - полупроводниковые. В последнее время в качестве альтернативы жестким дискам становятся более популярными твердотельные накопители SSD (от английского solid-state drives). Во время написания этой статьи эти накопители стоили намного дороже жестких дисков, но скорость записи и считывания информации на них значительно выше. При падениях и ударах они повреждаются намного меньше, чем магнитные жесткие диски, и работают практически безшумно. Кроме высокой цены, твердотельные накопители, по сравнению с магнитными жесткими дисками, со временем начинают работать хуже, и потерянные данные на них очень сложно восстановить, по сравнению с жесткими дисками. Гибридные жесткие диски совмещают твердотельный накопитель и магнитный жесткий диск, увеличивая тем самым скорость и срок эксплуатации, и уменьшая цену, по сравнению с твердотельными накопителями.

Магнитные носители

Поверхности для записи на магнитных носителях намагничиваются в определенной последовательности. Магнитная головка считывает и записывает на них данные. Примерами магнитных носителей являются накопители на жестких магнитных дисках и дискеты, которые уже почти полностью вышли из употребления. Аудио и видео также можно хранить на магнитных носителях - кассетах. Пластиковые карты часто хранят информацию на магнитных полосах. Это могут быть дебетовые и кредитные карты, карты-ключи в гостиницах, водительские права, и так далее. В последнее время в некоторые карты встраивают микросхемы. Такие карты обычно содержат микропроцессор и могут выполнять криптографические вычисления. Их называют смарт-картами.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Наука информатика - обширная область знаний и новейших технологий, связанных с информационной деятельностью человека. Информатика не просто важная научная и учебная дисциплина, но и отрасль национальной экономики, которая требует опережающего, приоритетного развития. Создание и реализация новых информационных технологий в сферах промышленности, науки, образования, культуры приобрело чрезвычайно большое значение во всем мире.

Цели урока: изучить понятия информация, её свойства, единицы измерения информации, объем информации, наука информатика; развивать умения высказывать свое мнение, аргументировать свою точку зрения; воспитывать внимательность, аккуратность при работе на ПК; развивать навыки работы с компьютерной презентацией.

Тип урока: урок формирования новых знаний.

Материально-техническое оснащение: компьютер с установленным пакетом Microsoft Office; презентация «9 класс. Урок №1. Информация. Информатика»; карточки с домашним заданием.

Структура урока

1. Организационный момент (2 мин).

2. Мотивация учебной деятельности. Постановка задач и целей урока (2мин.).

3. Изучение нового материала (38 мин).

4. Подведение итогов урока (2 мин).

5. Домашнее задание (1мин).

Ход урока

1. Организационный момент.

Приветственное слово учителя. Знакомство с учащимися. Ознакомление учащихся с требованиями учителя при изучении информатики и правилами работы с презентацией.

2. Мотивация учебной деятельности.

информатика в школе - наука о способах обработки информации с помощью компьютеров

Вы приступаете к изучению новой науки информатики - обширной области знаний и новейших технологий, связанных с информационной деятельностью человека. Информатика не только важная научная и учебная дисциплина, но и отрасль национальной экономики, которая требует опережающего, приоритетного развития. Создание и внедрение новых информационных технологий в сферах промышленности, науки, образования, культуры приобрело гигантское значение во всем мире.

Сегодня на уроке мы должны с вами выяснить, что же это за наука информатика, и что является объектом её изучения.

3. Изучение нового материала с использованием компьютерной презентации «9класс. Урок №1. Информация. Информатика».

1) Мозговой штурм

Наверняка, вы уже кое-что слышали об информатике, молодой, стремительно развивающейся науке.

Задание: закончите предложение 1-3 слова. « Информатика это наука, которая изучает …» (или с каким словом у вас ассоциируется слово «информатика»)?

(Учащиеся высказывают свое мнение).

Учитель: «В конце урока мы выясним, кто был из вас прав».

2) Рассказ учителя (с элементами беседы с учащимися) с использованием презентации «9 класс. Урок №1. Информация. Информатика». (При отсутствии учебников, учащиеся записывают конспект урока, с помощью учителя).

Слайд 2 . Вы уже изучаете физику и химию, и вам известно, что окружающий мир состоит из энергии и вещества. Мир существует благодаря взаимным превращениям вещества в энергию и наоборот, энергии в вещество. Например: пища, которую вы употребляете ежедневно, преобразовывается в энергию необходимую для нормальной жизнедеятельности вашего организма.

Однако в мире существует еще один важнейший компонент, который нельзя отнести ни к энергии, ни к веществу. Это информация. Информация очень важна для полноценного развития живых организмов. Например: информацию о температуре внешней среды простейшие одноклеточные организмы используют для выбора благоприятных условий для своего существования; человек использует информацию из программы телепередач, чтобы выбрать интересующую его передачу и т. д.

Любое действие человека есть ответ на ту или иную информацию. Так. Что же такое «информация»?

@Информация ( от лат. Informatio) - это сведения об окружающем мире и протекающих в нем процессах.

Слайд 3. Кто же или что может «выступать» в качестве источника информации, а кто или что является потребителем информации?

@ Источники информации:

Технологические процессы;

Научные эксперименты;

Механизмы;

Природные объекты.

@ Потребители (получатели) информации:

Люди;

Растения;

Животные;

Механизмы.

Слайд 4. Выясним, в каких формах можно воспринимать информацию, т.е. на какие виды ее можно разделить. (Учитель и ученики приводят примеры, на все виды информации).

@ Виды информации:

? по способу восприятия (визуальная, аудиальная, обонятельная, вкусовая, тактильная);

? по способу обработки (числовая, текстовая, графическая, звуковая);

? по способу представления (образно-знаковая, сигнальная)

? по области применения (научно-техническая, художественно-эстетическая, учебная);

? как результат интеллектуальной деятельности человека (личная, общественная, общечеловеческая);

? относительно системы, обрабатывающей информацию (входная, внутренняя, исходная);

? по области распространения (массовая, с ограниченным доступом, конфиденциальная, открытая).

Слайд 5. Любое вещество можно охарактеризовать его свойствами, например, твёрдое, легкоплавкое, бурого цвета и т.д. Информация также обладает свойствами, правда, они не столь наглядны, как свойства веществ.

Как вы думаете, почему одни люди сразу реагируют на определённую информацию, в то время как других эта информация оставляет равнодушными? Например, расписание уроков вашего класса, абсолютно не интересует второклассника, но интересует вас, ваших родителей. Дело в том, что информация обладает таким свойством, как ценность. (Далее, аналогично приведённому выше примеру, учитель и ученики приводят примеры на каждое свойство информации.)

@Свойства информации:

Ценность;

Полнота;

Объективность;

Актуальность;

Достоверность;

Доступность (понятность).

Итак, мы рассмотрели свойства информации. Теперь зададимся вопросом, можно ли определить количество информации, подобно тому, как определяют расстояние, массу, объём. Оказывается, что это возможно, и существуют единицы информации.

Слайд 6. Единицей информации в информатике является бит.

@ Бит - это наименьшая единица измерения информации.

Что такое бит, проще всего понять на примерах ситуаций, когда вам нужно ответить на вопрос типа «да - нет». Например, «Ты пойдешь сегодня в школу?». Ответ «Да» или «Нет» и будет равен одному биту.

Название «бит» выбрано не случайно. Событие, имеющее два исхода, может быть записано с помощью двух цифр: 0 и 1. Числа, которые записаны с помощью только двух цифр 0 и 1 называются двоичными, с помощью этих чисел представляется вся информация в вычислительных машинах, но о них мы поговорим на следующем уроке.

Бит - единица довольно мелкая, и её недостаточно для измерения современных объёмов информации. Поэтому используют более крупные единицы, основной из них является байт.

@ 8 бит = 1 байт

@ 1 килобайт(1Кб) = 1024 байт

@ 1 мегабайт(1Мб) = 1024 Кб

@ 1 гигабайт(1Гб) = 1024 Мб

А теперь рассмотрим, как определить информационный объём текста или информационного сообщения. Любой текст записывается на каком - либо языке, а язык основывается на алфавите.

@, где N - количество символов в алфавите;

i - информационный вес одного символа алфавита.

Например, в компьютерном алфавите 256 символов, N = 256 = , значит, информационный вес символа равен i = 8бит = 1 байт.

Слайд 7. Для вычисления информационного объёма текста (сообщения) пользуются формулой

@ I = K . i , где I - информационный объём;

К - количество символов в тексте (сообщении);

i - информационный вес одного символа алфавита.

Задача. Книга, подготовленная с помощью компьютера, содержит 150 страниц. На каждой странице - 40 строк, в каждой строке - 60 символов (включая пробелы между словами). Каков объём информации в книге?

Решение. Количество символов в компьютерном алфавите 256, значит, N = 256 = , информационный вес символа равен i = 8бит = 1 байт.

Одна страниц содержит 1 байт.40.60 = 2400байт информации. Объём всей информации в книге I = 2400.150 = 360000байт.

Слайд 8. Теперь давайте вернёмся к вопросу «Что изучает информатика?»

@ Информатика - это раздел науки изучающий свойства информации, а также закономерности её поиска, сбора, хранения, обработки, передачи.

Информатика как наука сравнительно молода, она сформировалась во второй половине ХХ века, но, не смотря на свой юный возраст, стала обязательной частью образования современного человека. Ещё недавно (1975г.) информатика являлась названием научной дисциплины, привлекавшей внимание узкого круга специалистов, и по своему значению была близка к термину « документоведение», т.е. общие методы работы с различными документами. Однако к концу 70-х годов всё изменилось. Настоящим взрывом в развитии информатики стало появление персонального компьютера - первого массового инструмента обработки информации. Это ускорило вторжение информатики в жизнь человек, изменило различные стороны его жизнедеятельности: досуг, образование, работу и т.д. Английский вариант названия информатика звучит как Computer Science - компьютерная наука.

1. Подведение итогов урока.

Сегодня на уроке: изучили...; рассмотрели…; научились…

2. Домашнее задание.

1) Алфавит племени Мальта состоит из 32 букв. Какое количество информации несёт одна буква этого алфавита?

2) Сообщение, записанное из 16-символьного алфавита, содержит 50 символов. Какой объём информации оно несёт?

3) Сколько символов содержит текст, записанный с помощью 16-символьного алфавита, если его объём составил 1/16 часть Мегабайта?

В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее “длиной” (или “объемом”), которая выражается в битах. Бит- минимальная единица измерения информации (от английского BInary digiT -- двоичная цифра). Каждый бит может принимать значение 0 или 1. Битом также называют разряд ячейки памяти ЭВМ. Для измерения объема хранимой информации используются следующие единицы:

1 байт= 8 бит;

1 Кбайт= 1024 байт (Кбайт читается как килобайт);

1 Мбайт= 1024 Кбайт (Мбайт читается как мегабайт);

1 Гбайт= 1024 Мбайт (Гбайт читается как гигабайт).

Бит (от англ. binary digit ; также игра слов: англ. bit - немного)

По Шеннону бит - это двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях.

Один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: да/нет, 1/0, включено/выключено, и т.п.

Базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода. Это тождественно количеству информации в ответе на вопрос, допускающий ответы «да» либо «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос). В одном двоичном разряде содержится один бит информации.

В вычислительной технике и сетях передачи данных обычно значения 0 и 1 передаются различными уровнями напряжения либо тока. Например, в микросхемах на основе TTL 0 представляется напряжением в диапазоне от +0 до + 3 В , а 1 в диапазоне от 4,5 до 5,0 В.

Скорость передачи данных в сети обычно измеряется битами в секунду. Примечательно, что с ростом скорости передачи данных, бит приобрёл также ещё одно метрическое выражение: длину. Так, в современной гигабитной сети (1 Гигабит/сек) на один бит приходится примерно 30 метров провода. Из-за этого сложность сетевых адаптеров существенно возросла. Раньше, например, в одно-мегабитных сетях длина бита в 30 км была почти всегда заведомо больше длины кабеля между двумя устройствами.

В вычислительной технике, особенно в документации и стандартах, слово «бит» часто применяется в значении двоичный разряд. Например: первый бит - первый двоичный разряд байта или слова, о котором идёт речь.

В настоящее время бит - это наименьшая возможная единица измерения информации в вычислительной технике, но интенсивные исследования в области квантовых компьютеров предполагают наличие q-битов.

Байт (англ. byte ) - единица измерения количества информации, равная обычно восьми битам, может принимать 256 (2 8) различных значений.

Вообще, байт- это последовательность битов, число которых фиксировано, минимальный адресуемый объём памяти в компьютере. В современных компьютерах общего назначения байт равен 8 битам. Для того, чтобы подчеркнуть, что имеется в виду восьмибитный байт, в описании сетевых протоколов используется термин «октет» (англ. octet ).

Иногда байтом называют последовательность битов, которые составляют подполе слова. На некоторых компьютерах возможна адресация байтов разной длины. Это предусмотрено инструкциями извлечения полей ассемблеров LDB и DPB на PDP-10 и в языке Common Lisp.

В IBM-1401 байт был равен 6 битам так же, как и в Минск-32, а в БЭСМ - 7 битам, в некоторых моделях ЭВМ производства Burroughs Computer Corporation (ныне - Unisys) - 9 битам. Во многих современных цифровых сигнальных процессорах используется байт длиной 16 бит и больше.

Название было впервые использовано в 1956 году В. Бухгольцем при проектировании первого суперкомпьютера IBM 7030 для пучка одновременно передаваемых в устройствах ввода-вывода битов (шести штук), позже в рамках того же проекта расширили байт до восьми (2 3) бит.

Кратные приставки для образования производных единиц для байта применяются не как обычно: во-первых, уменьшительные приставки не используются совсем, а единицы измерения информации меньшие чем байт называются специальными словами (ниббл и бит); во-вторых, увеличительные приставки означают за каждую тысячу 1024=2 10 (килобайт равен 1024 байтам, мегабайт равен 1024 килобайтам или 1 048 576 байтам, и т. д. с гигабайтами, терабайтами и петабайтами (больше пока не употребляются)). Разница возрастает с ростом веса приставки. Более правильно использовать двоичные приставки, но на практике они пока не применяются, возможно, из-за неблагозвучности - кибибайт, мебибайт и т. п.

Иногда десятичные приставки используются и в прямом смысле, например при указании ёмкости жёстких дисков: у них гигабайт может обозначать миллион кибибайт, т. е. 1 024 000 000 байт, а то и просто миллиард байт, а не 1 073 741 824 байт, как, например, в модулях памяти.

Килобайт (кбайт, кБ) м., скл. - единица измерения количества информации, равная (2 10) стандартным (8-битным) байтам или 1024 байтам. Применяется для указания объёма памяти в различных электронных устройствах.

Название «килобайт» общепринято, но формально неверно, так как приставка кило -, означает умножение на 1 000, а не 1 024. Правильной для 2 10 является двоичная приставка киби- .

Таблица 1.2- Кратные приставки для образования производных единиц

Мегабайт (Мбайт, М) м., скл. - единица измерения количества информации, равная 1048576 (2 20) стандартным (8-битным) байтам или 1024 килобайтам. Применяется для указания объёма памяти в различных электронных устройствах.

Название «Мегабайт» общепринято, но формально неверно, так как приставка мега- , означает умножение на 1 000 000, а не 1 048 576. Правильной для 2 20 является двоичная приставка меби- . Сложившимся положением пользуются крупные корпорации, производящие жёсткие диски, которые при маркировке своих изделий под мегабайтом понимают 1 000 000 байт, а под гигабайтом - 1 000 000 000 байт.

Самую оригинальную трактовку термина мегабайт используют производители компьютерных дискет, которые понимают под ним 1 024 000 байта. Таким образом, дискета, на которой указан объём 1,44 Мбайт на самом деле вмещает лишь 1440 Кбайт, то есть 1,41 Мбайт в обычном понимании.

В связи с этим получилось, что мегабайт бывает коротким, средним и длинным:

короткий - 1 000 000 байт

средний - 1 024 000 байт

длинный - 1 048 576 байт

Гигабайт - кратная единица измерения количества информации, равная 1 073 741 824 (2 30) стандартным (8-битным) байтам или 1 024 мегабайтам.

Приставка СИ гига- используется ошибочно, так как она обозначает умножение на 10 9 . Для 2 30 же следует употреблять двоичную приставку гиби-. Сложившимся положением пользуются крупные корпорации, производящие жёсткие диски, которые при маркировке своих изделий под мегабайтом понимают 1 000 000 байт, а под гигабайтом - 1 000 000 000 байт

Машинное слово- машинно-зависимая и платформозависимая величина, измеряемая в битах или байтах, равная разрядности регистров процессора и/или разрядности шины данных (обычно некоторая степень двойки). Размер слова совпадает, также, с минимальным размером адресуемой информации (разрядностью данных, расположенных по одному адресу). Машинное слово определяет следующие характеристики машины:

разрядность данных, обрабатываемых процессором;

разрядность адресуемых данных (разрядность шины данных);

максимальное значение беззнакового целого типа, напрямую поддерживаемого процессором: если результат арифметической операции превосходит это значение, то происходит переполнение;

максимальный объём оперативной памяти, напрямую адресуемой процессором.

Максимальное значение слова длинной n бит можно легко рассчитать по формуле 2 n −1

Таблица 1.3 - Размер машинного слова на различных платформах

Количество информации

Количество информации как мера уменьшения неопределенности знания.
(Содержательный подход к определению количества информации)

Процесс познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.). Получение новой информации приводит к расширению знаний или, как иногда говорят, к уменьшению неопределенности знания. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.

Например, после сдачи зачета или выполнения контрольной работы вы мучаетесь неопределенностью, вы не знаете, какую оценку получили. Наконец, учитель объявляет результаты, и вы получаете одно из двух информационных сообщений: "зачет" или "незачет", а после контрольной работы одно из четырех информационных сообщений: "2", "3", "4" или "5".

Информационное сообщение об оценке за зачет приводит к уменьшению неопределенности вашего знания в два раза, так как получено одно из двух возможных информационных сообщений. Информационное сообщение об оценке за контрольную работу приводит к уменьшению неопределенности вашего знания в четыре раза, так как получено одно из четырех возможных информационных сообщений.

Ясно, что чем более неопределенна первоначальная ситуация (чем большее количество информационных сообщений возможно), тем больше мы получим новой информации при получении информационного сообщения (тем в большее количество раз уменьшится неопределенность знания).

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

Рассмотренный выше подход к информации как мере уменьшения неопределенности знания позволяет количественно измерять информацию. Существует формула, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

N = 2 i (1.1)

Бит . Для количественного выражения любой величины необходимо сначала определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы - килограмм и т. д. Аналогично, для определения количества информации необходимо ввести единицу измерения.

За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза. Такая единица названа битом .

Если вернуться к рассмотренному выше получению информационного сообщения о результатах зачета, то здесь неопределенность как раз уменьшается в два раза и, следовательно, количество информации, которое несет сообщение, равно 1 биту.

Производные единицы измерения количества информации. Минимальной единицей измерения количества информации является бит, а следующей по величине единицей - байт, причем:

1 байт = 8 битов = 2 3 битов.

В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10 n , где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам "Кило" (10 3), "Мега" (10 6), "Гига" (10 9) и т. д.

В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2 n

Так, кратные байту единицы измерения количества информации вводятся следующим образом:

1 килобайт (Кбайт) = 2 10 байт = 1024 байт;

1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт;

1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт.

Контрольные вопросы

    1. Приведите примеры информационных сообщений, которые приводят к уменьшению неопределенности знания.
    2. Приведите примеры информационных сообщений, которые несут 1 бит информации.

Определение количества информации

Определение количества информационных сообщений. По формуле (1.1) можно легко определить количество возможных информационных сообщений, если известно количество информации. Например, на экзамене вы берете экзаменационный билет, и учитель сообщает, что зрительное информационное сообщение о его номере несет 5 битов информации. Если вы хотите определить количество экзаменационных билетов, то достаточно определить количество возможных информационных сообщений об их номерах по формуле (1.1):

Таким образом, количество экзаменационных билетов равно 32.

Определение количества информации. Наоборот, если известно возможное количество информационных сообщений N, то для определения количества информации, которое несет сообщение, необходимо решить уравнение относительно I.

Представьте себе, что вы управляете движением робота и можете задавать направление его движения с помощью информационных сообщений: "север", "северо-восток", "восток", "юго-восток", "юг", "юго-запад", "запад" и "северо-запад" (рис. 1.11). Какое количество информации будет получать робот после каждого сообщения?

Всего возможных информационных сообщений 8, поэтому формула (1.1) принимает вид уравнения относительно I:

Разложим стоящее в левой части уравнения число 8 на сомножители и представим его в степенной форме:

8 = 2 × 2 × 2 = 2 3 .

Наше уравнение:

Равенство левой и правой частей уравнения справедливо, если равны показатели степени числа 2. Таким образом, I = 3 бита, т. е. количество информации, которое несет роботу каждое информационное сообщение, равно 3 битам.

Алфавитный подход к определению количества информации

При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Информационная емкость знака . Представим себе, что необходимо передать информационное сообщение по каналу передачи информации от отправителя к получателю. Пусть сообщение кодируется с помощью знаковой системы, алфавит которой состоит из N знаков {1, ..., N}. В простейшем случае, когда длина кода сообщения составляет один знак, отправитель может послать одно из N возможных сообщений "1", "2", ..., "N", которое будет нести количество информации I (рис. 1.5).

Рис. 1.5. Передача информации

Формула (1.1) связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение. Тогда в рассматриваемой ситуации N - это количество знаков в алфавите знаковой системы, а I - количество информации, которое несет каждый знак:

С помощью этой формулы можно, например, определить количество информации, которое несет знак в двоичной знаковой системе:

N = 2 => 2 = 2 I => 2 1 = 2 I => I=1 бит.

Таким образом, в двоичной знаковой системе знак несет 1 бит информации. Интересно, что сама единица измерения количества информации "бит" (bit) получила свое название ОТ английского словосочетания "Binary digiT" - "двоичная цифра".

Информационная емкость знака двоичной знаковой системы составляет 1 бит.

Чем большее количество знаков содержит алфавит знаковой системы, тем большее количество информации несет один знак. В качестве примера определим количество информации, которое несет буква русского алфавита. В русский алфавит входят 33 буквы, однако на практике часто для передачи сообщений используются только 32 буквы (исключается буква "ё").

С помощью формулы (1.1) определим количество информации, которое несет буква русского алфавита:

N = 32 => 32 = 2 I => 2 5 = 2 I => I=5 битов.

Таким образом, буква русского алфавита несет 5 битов информации (при алфавитном подходе к измерению количества информации).

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так в среднем на 1000 знаков осмысленного текста приходится 200 букв "а" и в сто раз меньшее количество буквы "ф" (всего 2). Таким образом, с точки зрения теории информации, информационная емкость знаков русского алфавита различна (у буквы "а" она наименьшая, а у буквы "ф" - наибольшая).

Количество информации в сообщении. Сообщение состоит из последовательности знаков, каждый из которых несет определенное количество информации.

Если знаки несут одинаковое количество информации, то количество информации I c в сообщении можно подсчитать, умножив количество информации I з, которое несет один знак, на длину кода (количество знаков в сообщении) К:

I c = I з × K

Так, каждая цифра двоичного компьютерного кода несет информацию в 1 бит. Следовательно, две цифры несут информацию в 2 бита, три цифры - в 3 бита и т. д. Количество информации в битах равно количеству цифр двоичного компьютерного кода (табл. 1.1).

Таблица 1.1. Количество информации, которое несет двоич ный компьютерный код

Наш высокотехнологичный век отличается своими широкими возможностями. С развитием электронных вычислительных машин перед людьми открылись удивительные горизонты. Любую интересующую новость теперь можно найти в глобальной сети совершенно бесплатно, не выходя из дома. Это прорыв в сфере техники. Но как же столько данных может храниться в памяти компьютера, обрабатываться и передаваться на далекие расстояния? Какие единицы измерения информации в информатике существуют? И как с ними работать? Сейчас не только люди, непосредственно занимающиеся написанием компьютерных программ, но и обычные школьники должны знать ответы на эти вопросы. Ведь это основа всего.

в компьютерной науке

Мы привыкли считать, что информация - это все те знания, которые доносят до нас. Но в информатике и компьютерных науках это слово имеет немного другое определение. Это базовая составляющая всей науки об электронных вычислительных машинах. Почему базовая, или фундаментальная? Потому что компьютерная техника обрабатывает данные, сохраняет и доносит до людей. Минимальная единица измерения информации исчисляется в битах. Сведения хранятся в компьютере до тех пор, пока юзер не захочет просмотреть их.

Мы привыкли думать, что информация - единица языка. Да, это так, но в информатике используется другое определение. Это сведения о состоянии, свойствах и параметрах объектов окружающей нас среды. Совершенно ясно, что чем больше мы узнаем сведений об объекте или явлении, тем больше понимаем, что наше представление о них мизерное. Но теперь благодаря такому огромному объему совершенно бесплатных и доступных со всех точек планеты материалов стало гораздо проще обучаться, заводить новые знакомства, работать, отдыхать и просто расслабляться за чтением книг или просмотром кинофильмов.

Алфавитный аспект измерения объема информации

Печатая документы для работы, статьи на сайты и ведя свой личный блог в интернете, мы не задумываемся о том, как проходит обмен данными между пользователем и самой вычислительной машиной. Как машина способна понимать команды, в каком виде хранит все файлы? В информатике за единицу измерения информации принят бит, который может хранить из ноликов и единиц. Суть алфавитного подхода в измерении текстовых символов заключается в последовательности знаков. Но не стоит переплетать алфавитный подход с содержанием текста. Это совершенно разные вещи. Объем таких данных пропорционален количеству введенных символов. Благодаря этому получается, что информационный вес знака из бинарного алфавита равен одному биту. Единицы измерения информации в информатике существуют разные, как и любые другие меры. Бит - это минимальная величина измерения.

Содержательный аспект высчитывания объема информации

Измерение информации базируется на основе теории вероятности. В данном случае рассматривается вопрос о том, какое количество данных содержится в получаемом человеком сообщении. Тут в ход идут теоремы дискретной математики. Для расчета материалов берутся две разные формулы в зависимости от вероятности события. При этом остаются прежними единицы измерения информации в информатике. Задачи расчета количества символов, графики по содержательному подходу гораздо сложнее, чем по алфавитному.

Виды информационных процессов

Существуют основные три типа процессов, осуществляемых в электронной вычислительной машине:

  1. Как проходит данный процесс? Через инструменты ввода данных, будь то клавиатура, оптическая мышь, принтер или другие получает сведения. Затем конвертирует их в бинарный код и записывает на жесткий диск в битах, байтах, мегабайтах. Для перевода любой единицы измерения информации в информатике существует таблица, по которой можно высчитать, сколько в одном мегабайте бит, и осуществить другие переводы. Компьютер все делает автоматически.
  2. Хранение файлов и данных в памяти устройства. Компьютер способен запоминать все в бинарном виде. Двоичный код состоит из нулей и единиц.
  3. Еще один из основных процессов, происходящих в электронной вычислительной машине, - передача данных. Она тоже осуществляется в бинарном виде. Но на экран монитора информация выводится уже в символьном или другом привычном для нашего восприятия виде.

Кодирование информации и мера ее измерения

За единицу измерения информации принят бит, с которым достаточно легко работать, ведь он может вмещать значение 0 или 1. Как компьютер осуществляет кодирование обычных десятичных чисел в двоичный код? Рассмотрим небольшой пример, который объяснит принцип кодирования информации компьютерной техникой.

Допустим, у нас есть число в привычной системе исчисления - 233 . Чтобы перевести его в бинарный вид, необходимо делить на 2 до того момента, пока оно не станет меньше самого делителя (в нашем случае - 2).

  1. Начинаем деление: 233/2=116. Остаток записываем отдельно, это и будут составляющие ответного бинарного кода. В нашем случае это 1.
  2. Вторым действием будет такое: 116/2=58. Остаток от деления - 0 - опять записываем отдельно.
  3. 58/2=29 без остатка. Не забываем записывать оставшийся 0, ведь, утеряв всего один элемент, вы получите уже совершенно другую величину. Этот код далее будет храниться на винчестере компьютера и являть собой биты - минимальные единицы измерения информации в информатике. 8-классники уже способны справиться с переводом чисел из десятичного типа исчисления в двоичный, и наоборот.
  4. 29/2=14 с остатком 1. Его и записываем отдельно к уже полученным двоичным цифрам.
  5. 14/2=7. Остаток от деления равен 0.
  6. Еще немного, и бинарный код будет готов. 7/2=3 с остатком 1, который и записываем в будущий ответ двоичного кода.
  7. 3/2=1 с остатком 1. Отсюда записываем в ответ две единицы. Одну - как остаток, другую - как последнее оставшееся число, которое уже не делится на 2.

Необходимо запомнить, что ответ записывается в обратном порядке. Первое получившееся бинарное число из первого действия будет последней цифрой, из второго - предпоследней, и так далее. Наш итоговый ответ - 11101001 .

Такое записывается в памяти компьютера и хранится в этом виде до тех пор, пока пользователь не захочет посмотреть на него с экрана монитора. Бит, байт, мегабайт, гигабайт - единицы измерения информации в информатике. Именно в таких величинах и хранятся бинарные данные в компьютере.

Обратный перевод числа из бинарной в десятичную систему

Для того чтобы осуществить обратный перевод из бинарной величины в десятичную систему исчисления, необходимо воспользоваться формулой. Считаем количество знаков в двоичной величине, начиная с 0. В нашем случае их 8, но если начинать отсчет с нуля, тогда они заканчиваются порядковым номером 7. Теперь необходимо каждую цифру из кода умножить на 2 в степени 7, 6, 5,…, 0.

1*2 7 +1*2 6 +1*2 5 +0*2 4 +1*2 3 +0*2 2 +0*2 1 +1*2 0 =233. Вот и наше начальное число, которое было взято еще до перевода в бинарный код.

Теперь вам известна суть компьютерным устройством и минимальная мера хранения информации.

Минимальная единица измерения информации: описание

Как уже упоминалось выше, наименьшей величиной измерения информации считается бит. Это слово английского происхождения, в переводе оно означает "двоичная цифра". Если посмотреть на данную величину с другой стороны, то можно сказать, что это ячейка памяти в электронных вычислительных машинах, которая хранится в виде 0 либо 1. Биты можно перевести в байты, мегабайты и еще большие величины информации. Электронная вычислительная машина сама занимается такой процедурой, когда сохраняет бинарный код в ячейки памяти винчестера.

Некоторые пользователи компьютера могут захотеть вручную и быстро перевести меры объема цифровой информации из одной в другую. Для таких целей были разработаны онлайн-калькуляторы, они сию же секунду осуществят операцию, на которую вручную можно было бы потратить много времени.

Единицы измерения информации в информатике: таблица величин

Компьютеры, флеш-накопители и другие устройства запоминания и обработки информации отличаются между собой объемом памяти, который обычно исчисляется в гигабайтах. Необходимо посмотреть на основную таблицу величин, чтобы увидеть сопоставимость одной единицы измерения информации в информатике в порядке возрастания со второй.

Использование максимальной единицы измерения информации

В наше время максимальную меру объема информации, которая называется йоттабайтом, планируют использовать в агентстве национальной безопасности в целях хранения всех аудио- и видеоматериалов, полученных из общественных мест, где установлены видеокамеры и микрофоны. На данный момент йоттабайты - наибольшие единицы измерения информации в информатике. Это предел? Вряд ли кто-то сможет дать сейчас точный ответ.