Модель объект - свойство - отношение. Связи между наборами объектов и их типы

Инфологическая модель (информационно-логическая модель) - ориентированная на человека и не зависимая от типа СУБД модель предметной области, определяющая совокупности информационных объектов, их атрибутов и отношений между объектами, динамику изменений предметной области, а также характер информационных потребностей пользователей. Инфологическая модель предметной области может быть описана моделью "сущность-связь" (моделью Чена), в основе которой лежит деление реального мира на отдельные различимые сущности, находящиеся в определенных связях друг с другом, причем обе категории - сущность и связь полагаются первичными, неопределенными понятиями.

Цель инфологического моделирования

  • обеспечение наиболее естественных для человека способов сбора и представления той информации, которую предполагается хранить в создаваемой базе данных. Поэтому инфологическую модель данных пытаются строить по аналогии с естественным языком (последний не может быть использован в чистом виде из-за сложности компьютерной обработки текстов и неоднозначности любого естественного языка). Основными конструктивными элементами инфологических моделей являются сущности, связи между ними и их свойства (атрибуты).

Основные понятия

  • Сущность – любой различимый объект (объект, который мы можем отличить от другого), информацию о котором необходимо хранить в базе данных. Сущностями могут быть люди, места, самолеты, рейсы, вкус, цвет и т.д. Необходимо различать такие понятия, как тип сущности и экземпляр сущности. Понятие тип сущности относится к набору однородных личностей, предметов, событий или идей, выступающих как целое. Экземпляр сущности относится к конкретной вещи в наборе. Например, типом сущности может быть ГОРОД, а экземпляром – Москва, Киев и т.д.
  • Атрибут – поименованная характеристика сущности. Его наименование должно быть уникальным для конкретного типа сущности, но может быть одинаковым для различного типа сущностей (например, ЦВЕТ может быть определен для многих сущностей: СОБАКА, АВТОМОБИЛЬ, ДЫМ и т.д.). Атрибуты используются для определения того, какая информация должна быть собрана о сущности. Примерами атрибутов для сущности АВТОМОБИЛЬ являются ТИП, МАРКА, НОМЕРНОЙ ЗНАК, ЦВЕТ и т.д. Здесь также существует различие между типом и экземпляром. Тип атрибута ЦВЕТ имеет много экземпляров или значений: Красный, Синий, Банановый, Белая ночь и т.д., однако каждому экземпляру сущности присваивается только одно значение атрибута.

Абсолютное различие между типами сущностей и атрибутами отсутствует. Атрибут является таковым только в связи с типом сущности. В другом контексте атрибут может выступать как самостоятельная сущность. Например, для автомобильного завода цвет – это только атрибут продукта производства, а для лакокрасочной фабрики цвет – тип сущности.

  • Ключ – минимальный набор атрибутов, по значениям которых можно однозначно найти требуемый экземпляр сущности. Минимальность означает, что исключение из набора любого атрибута не позволяет идентифицировать сущность по оставшимся. Для сущности Расписание ключом является атрибут Номер_рейса или набор: Пункт_отправления, Время_вылета и Пункт_назначения (при условии, что из пункта в пункт вылетает в каждый момент времени один самолет).
  • Связь – ассоциирование двух или более сущностей. Если бы назначением базы данных было только хранение отдельных, не связанных между собой данных, то ее структура могла бы быть очень простой. Однако одно из основных требований к организации базы данных – это обеспечение возможности отыскания одних сущностей по значениям других, для чего необходимо установить между ними определенные связи. А так как в реальных базах данных нередко содержатся сотни или даже тысячи сущностей, то теоретически между ними может быть установлено более миллиона связей. Наличие такого множества связей и определяет сложность инфологических моделей.

Требования, предъявляемые к инфологической модели

  • Адекватное, отображение предметной области
  • Недопущение неоднозначной трактовки модели
  • Четкое определение моделируемой предметной области (конечность модели)
  • Легкая расширяемость, обеспечивающая ввод новых данных без изменения ранее определенных, то же относят и к удалению данных
  • Возможность композиции и декомпозиции модели в связи с большой размерностью реальных инфологических моделей
  • Легкое восприятие различными категориями пользователей; желательно, чтобы инфологическую модель строил (или хотя бы участвовал в ее создании) специалист, работающий в данной предметной области, а не только проектировщик систем машинной обработки данных
  • Применимость языка спецификаций модели как при ручном, так и при автоматизированном проектировании информационных систем

Компоненты инфологической модели

  • Описание объектов и связей между ними, называемой ER-моделью (расшифровывается как модель "Сущность-связь")
  • Описание информационных потребностей пользователей
  • Алгоритмические связи атрибутов
  • Лингвистические отношения, обусловленные особенностями обображения предметной области в языковой среде
  • Ограничения целостности

Построение модели "Объект - свойтво - отношение"

Классы объектов

В предметной области в процессе ее обследования и анализа выделяют классы объектов . Классом объектов называют совокупность объектов, обладающих одинаковым набором свойств. Например, если в качестве предметной области рассмотреть вуз, то в ней можно выделить следующие классы объектов: учащиеся, преподаватели, аудитории и т. д. Объекты могут быть реальными, как названные выше, а могут быть и абстрактными, как, например, предметы, которые изучают студенты.

При отражении в информационной системе каждый объект представляется своим идентификатором, который отличает один объект класса от другого, а каждый класс объектов представляется именем этого класса. Так, для объектов класса «ИЗУЧАЕМЫЕ ПРЕДМЕТЫ» идентификатором каждого объекта будет «НАЗВАНИЕ ПРЕДМЕТА». Идентификатор должен быть уникальным.

Каждый объект обладает определенным набором свойств. Для объектов одного класса набор этих свойств одинаков, а их значения, естественно, могут различаться. Например, для объектов класса «СТУДЕНТ» таким набором свойств, описывающим объекты класса, может быть «ГОД РОЖДЕНИЯ», «ПОЛ» и др.

При описании предметной области надо изобразить каждый из существующих классов объектов и набор свойств, фиксируемый для объектов данного класса.

Будем использовать для отображения объектов и их свойств следующие обозначения.

Каждому классу объектов в инфологической модели присваивается уникальное имя. Именем класса объектов является грамматический оборот существительного (существительное, у которого могут быть прилагательные и предлоги). Если имя состоит из нескольких слов, то желательно, чтобы первым стояло существительное. Существительное должно употребляться в единствен ном, а не во множественном числе. Поэтому для рассмотренного выше класса объектов «ИЗУЧАЕМЫЕ ДИСЦИПЛИНЫ» лучше дать имя «ДИСЦИПЛИНА ИЗУЧАЕМАЯ». Если в предметной области традиционно используются разные имена для обозначения какого-либо класса объектов (т. е. имеет место синонимия), то все они должны быть зафиксированы при описании системы, затем одно из них выбирается за основное, и только оно должно в дальнейшем использоваться в ИЛМ. Помимо имени класса объектов в ИЛМ может использоваться его короткое кодовое обозначение.

При построении инфологической модели желательно дать словесную интерпретацию каждой сущности, особенно если возможно неоднозначное толкование понятия.

Связи между объектом и его свойствами

При описании предметной области надо отразить связи между объектом и характеризующими его свойствами. Это изображается просто в виде линии, соединяющей обозначение объекта и его свойств.

Связь между объектом и его свойством может быть различной. Объект может обладать только одним значением какого-то свойства. Например, каждый человек может иметь только одну дату рождения. Назовем такие свойства единичными . Для других свойств возможно существование одновременно нескольких значений у одного объекта. Пусть, например, при описании «СОТРУДНИКА» фиксируется в качестве его свойства «ИНОСТРАННЫЙ ЯЗЫК», которым он владеет. Так как сотрудник может знать несколько иностранных языков, то такое свойство будем называть множественным . При изображении связи между объектом и его свойствами для единичных свойств будем использовать одинарную стрелку, а для множественных свойств - двойную.

Кроме того, некоторые свойства являются постоянными, их значение не может измениться с течением времени. Назовем такие свойства статическими , а те свойства, значение которых может изменяться со временем, будем называть динамическими .

Другой характеристикой связи между объектом и его свойством является признак того, присутствует ли это свойство у всех объектов данного класса либо отсутствует у некоторыми объектов. Например, для отдельных служащих может иметь место свойство «УЧЕНАЯ СТЕПЕНЬ», а другие объекты этого класса могут не обладать, указанным свойством. Назовем такие свойства условными.

При изображении связи условного свойства с объектом будем использовать пунктирную линию, а для обозначения динамических и статических свойств будем использовать буквы D и S над соответствующей линией.

Иногда в инфологической модели бывает полезно ввести понятие «составное свойство». Примерами таких свойств могут быть «АДРЕС», состоящий из «ГОРОДА», «УЛИЦЫ», «ДОМА» и «КВАРТИРЫ», и «ДАТА РОЖДЕНИЯ», состоящая из «ЧИСЛА», «МЕСЯЦА» и «ГОДА». Используем в ИЛМ для обозначения составного свойства квадрат, из которого исходят линии, соединяющие его с обозначениями составляющих его элементов.

Связи между объектами

Кроме связи между объектом и его свойствами, в инфологической модели фиксируются связи между объектами разных классов. Различают связи типа:

  • «один к одному» (1:1): в каждый момент времени каждому представителю (экземпляру) сущности А соответствует 1 или 0 представителей сущности В:
Студент может не "заработать" стипендию, получить обычную или одну из повышенных стипендий.
  • «один ко многим» (1:М): одному представителю сущности А соответствуют 0, 1 или несколько представителей сущности В.
Квартира может пустовать, в ней может жить один или несколько жильцов.
  • «многие к одному» (М:1)

Иногда эти типы связей называются степенью связи. Кроме степени связи в инфологической модели для характеристики связи между разными сущностями надо указывать так называемый «класс принадлежности», который показывает, может ли отсутствовать связь объекта данного класса с каким-либо объектом другого класса. Класс принадлежности сущности должен быть либо обязательным, либо необязательным.

Объясним сказанное на конкретных примерах. Как указывалось выше, инфологическая модель строится не для отдельного объекта, а отображает классы объектов и связи между ними. Соответствующая диаграмма, отображающая это, называется диаграммой ER-типа (такое название обусловлено тем, что по-английски слово «сущность» пишется «Entity», а связь - «Relationship»). Однако иногда, кроме диаграмм ER-типа, используются диаграммы ER-экземпляров.

Предположим, что в инфологической модели отображается связь между двумя классами объектов: «ЛИЧНОСТЬ» и «ЯЗЫК ИНОСТРАННЫЙ». -

Предположим, что предметной областью является завод, некоторые сотрудники которого знают иностранный язык, но ни один из них не владеет более чем одним языком. Естественно, что имеется много языков, которыми не владеет ни один из сотрудников, а также что некоторые из сотрудников владеют одним и тем же иностранным языком.

Предположим далее, что предметной областью является институт, а объект «ЛИЧНОСТЬ» отображает абитуриентов, поступающих в этот институт. Каждый из абитуриентов обязательно должен владеть каким-либо иностранным языком, но никто ни владеет более чем одним языком.

Как в первом, так и во втором рассмотренном случае между сущностями наблюдается отношение М:1. На диаграмме это отображено со стороны объекта «ЛИЧНОСТЬ» двойной стрелецкой, а со стороны объекта «ЯЗЫК ИНОСТРАННЫЙ» - одинарной стрелкой на линии, изображающей связь между данными сущностями.

Разница в рассматриваемых ситуациях заключается в том, что в первом случае класс принадлежности является необязательным для обоих сущностей, а во втором - для сущности «ЛИЧНОСТЬ» класс принадлежности является обязательным. На диаграмме это отображено точкой в прямоугольнике, соответствующем объекту «ЛИЧНОСТЬ».

Пусть предметная область будет та же, что и в предыдущем случае, но имеют место ситуации, что некоторые абитуриенты знают несколько иностранных языков. В этом случае связь между объектами будет иметь тип М: М.

Предположим, что предметной областью является некоторый лингвистический институт, в котором каждый из сотрудников обязательно знает несколько иностранных языков, и по каждому из известных науке языков в этом институте имеется хотя бы один специалист, владеющий им.

В этом случае связь между объектам» будет М: М, и класс принадлежности обоих сущностей является обязательным" .

Простые и сложные объекты

Объект называется простым, если он рассматривается как неделимый. Сложный объект представляет собой объединение других объектов, простых или сложных, также отображаемых в информационной системе. Понятие «простой» и «сложный» объект является относительным. В одном рассмотрении объект может считаться простым, а в другом этот же объект может рассматриваться как сложный. Например, объект «стул» в подсистеме учета материальных ценностей будет рассматриваться как простой объект, а для предприятия, производящего стулья, это будет составной объект (включающий «ножки», «спинку», «сиденье» и пр.).

Выделяют несколько разновидностей сложных объектов: составные объекты, обобщенные объекты и агрегированные объекты.

Составной объект соответствует отображению отношения «целое- часть». Примерами составных объектов являются УЗЛЫ - ДЕТАЛИ, КЛАСС -УЧЕНИКИ и т. п.

Для отображения составных объектов в инфологической модели обычно не используются какие-либо специальные условные обозначения. Связь между составным и составляющими его объектами отображается так же, как это было описано выше. Причем характер связи тоже может быть разный: так, «ДЕТАЛИ» и «УЗЛЫ» связаны между собой отношением типа М: М, а «ГРУППА» и «СТУДЕНТЫ» - отношением 1: М.

Обобщенный объект отражает наличие связи «род - вид» между объектами предметной области. Например, объекты СТУДЕНТ, ШКОЛЬНИК, АСПИРАНТ, УЧАЩИЙСЯ ТЕХНИКУМА образуют обобщенный объект УЧАЩИЕСЯ. Объекты, составляющие обобщенный объект, называются его категориями.

Как «родовой» объект, так и «видовые» объекты могут обладать определенным набором свойств. Причем наблюдается так называемое наследование свойств, т. е. «видовой» объект обладает всеми теми свойствами, которыми обладает «родовой» объект, плюс свойствами, присущими только объектам этого вида.

Агрегированные объекты соответствуют обычно какому-либо процессу, в который оказываются «вовлеченными» другие объекты. Например, агрегированный объект «ПОСТАВКА» объединяет в себе объекты «ПОСТАВЩИК», который поставляет продукцию, «ПОТРЕБИТЕЛЬ», который получает эту продукцию, а также саму поставляемую «ПРОДУКЦИЮ». Своеобразным объектом является «ДАТА ПОСТАВКИ». Агрегированный объект может, так же как и простой объект, иметь характеризующие его свойства. В рассматриваемом примере таким свойством может быть размер поставки.

Сравнение методик построения ER-моделей

ER-модели очень широко используются в практике проектирования баз данных. Причем они используются как при ручном, так и при автоматизированном проектировании. Методики графического представления ER-моделей несколько различаются в разных системах автоматизации проектирования и в разных литературных источниках.

Далее мы рассмотрим особенности представления ER-моделей в трех наиболее известных системах автоматизации проектирования (CASE-системах): Prokit*WORKBENCH, Desing/IDEF и CASE ORACLE, а также в некоторых литературных источниках.

Можно выделить несколько категорий различий в изображении ER-моделей.

1. Несущественные различия, связанные с использованием разных условных обозначений для отображения одних и тех же сущностей. Так, для обозначения объекта могут использоваться прямоугольники, блоки с закругленными углами, овалы и т. д.

Следующая совокупность различий связана со способом изображения связей между объектами и заданием имен связей. Так, в некоторых методиках для изображения связи в разъеме линии, отображающей эту связь, предлагается изображать ромб и внутри него или рядом с ним писать название связи (модель Чена). Так как связи являются двусторонними, то наименование связи будет меняться в зависимости от того, с какой стороны ее рассматривать. Поэтому часто в ИЛМ предлагается указывать оба этих названия (например, в системах CASE ORACLE, Prokit). Причем для того, чтобы было понятно, к какому из направлений связи какое название относится, принимают определенные соглашения о том, как располагать эти названия на схемах. Например, сверху линии помещать названия, относящиеся к левой стороне связи, а под линией - к правой. Наличие такого большого числа обозначений и подписей загромождает модель. Кроме того, само присвоение названий часто представляет некоторую трудность, что увеличивает трудоемкость инфологического моделирования. Поэтому в тех случаях, когда это не приводит к двусмысленностям и неясностям, если это позволяет система, можно рекомендовать не использовать особые обозначения и имена для связей.

Разные условные обозначения используются и для изображения типа связи (1:1, 1: М, М:М). Некоторые системы автоматизации проектирования, например Prokit, предоставляют пользователю возможность выбрать из множества возможных обозначений те, которые ему больше нравятся или более привычны. В этой системе для обозначения вида связей между объектами могут использоваться следующие условные обозначения.

Для отображения обязательности вхождения объектов в связь («класс принадлежности/членства») также используются разные условные обозначения. Так, в CASE ORACLE класс членства передается следующим образом; с той стороны связи, с которой элемент может не обязательно входить в связь, используется Пунктирная линия, а там, где членство обязательное, - сплошная линия. С учетом класса членства возможны типы отношений, представленные на рисунке.

Используемые в CASE ORACLE обозначения более удобны, так как если объект участвует в большом количестве связей, то дополнительные прямоугольники с точками становится неудобно располагать на рисунке.

В Desing IDEF характер членства в связи изображается, как показано на рисунке.

2. Различия, также связанные со способом изображения тех или иных ситуаций, но более существенные, приводящие к различиям в самих моделях. Например, в системе 3RACLE обобщенный объект изображается путем «вложения» блоков, обозначающих «видовые» объекты, внутрь блока, изображающего «родовой» объект. На рисунке показано изображение объекта «ЛИЧНОСТЬ», рассмотренного выше, в условных обозначениях, используемых в CASE ORACLE.

Как следует из сравнения рисунков, изображение обобщенных объектов в сравниваемых методиках различается не только по форме представления. Так, если объект классифицируется по разным признакам, то при использовании первого из рассмотренных способов изображения обобщенных объектов наглядно видно, по какому признаку осуществляется классификация. Второй же способ изображения не обеспечивает этого. Другими словами, предложенный в начале главы способ изображения обобщенных объектов является семантически более содержательным, информативным.

На рисунке изображен тот же обобщенный объект ЛИЧНОСТЬ с использованием синтаксиса системы IDEF1X. По своей семантике этот способ изображения ближе к предложенному нами базовому способу изображения ИЛМ. Разница заключается в том, что для сущностей-категорий и «общих» сущностей в IDEF1X используются одинаковые обозначения-

3. Кроме различия в изображении тех или иных сущностей, в теории инфологического моделирования наблюдается расхождение в используемой терминологии. Например, в CASE ORACLE родовой объект называется супертип (syper-type), а видовой - подтип (sub-type). Таких различий в терминологии можно привести много, но это не является сейчас нашей целью.

4. Следующий круг различий связан с пространственным изображением тех или иных компонентов ИЛМ. Например, свойства объекта иногда не отображаются на той же схеме, что объекты и связи между ними, а их описания выполняются отдельно. Часто «писание свойств представляют в табличной или иной аналитической форме, а не в графическом виде.

ИЛМ даже для небольшой и несложной предметной области включает в себя описание значительного числа компонентов и связей между ними. При этом встает проблема наглядности общей схемы. Эта проблема по-разному решается при ручном и автоматизированном построении инфологической модели. В автоматизированных системах чаще всего строится единое изображение ER-модели и используется прием масштабирования, когда, уменьшая или увеличивая масштаб изображения, на экране можно посмотреть как всю схему, так и отдельный ее фрагмент.

Различные приемы используются и для того, чтобы уменьшить число пересечений линий на схеме. Так, в системе Prokit для этих целей допускается дублирование изображения объекта и размещение этого дубля рядом с тем объектом, с которым его надо связать. Для того чтобы показать, что это не новый объект, используется какое-либо условное обозначение, например, у соответствующих блоков отчеркивается уголок.

При ручном проектировании изобразить всю ER-модель в виде единой схемы обычно не представляется возможным. В этом случае можно порекомендовать следующий прием: изобразить и описать каждый объект самостоятельно, присвоить каждому объекту короткий код. Используя эти кодовые обозначения, для каждого объекта указать его связи с другими объектами.

5. Некоторые возможности, имеющиеся в одних системах или методиках, отсутствуют в других. В этих случаях возможны различные варианты: а) для изображения ситуации используются возможности, предоставляемые моделью, но это требует применения определенных приемов, часто несколько искусственных, для их представления; б) ситуация просто не отображается в модели.

Например, во многих системах инфологического моделирования предполагается, что свойства у объекта могут быть только единичными. В этом случае каждое множественное свойство следует представлять как самостоятельный объект и изображать связь между этим вновь введенным объектом и исходным объектом.

В IDEF свойства объекта могут быть только единичные и всегда определенные (не условные). Если свойство может отсутствовать у каких-либо объектов, то надо выделять отдельные сущности, например, ШТАТНЫЙ СЛУЖАЩИЙ с атрибутом ОКЛАД и ПОЧАСОВИК, не имеющий такого атрибута. Это приведет к необходимости выделения большого числа объектов и связей в ИЛМ, к снижению наглядности модели. Например, отдельные экземпляры объекта ЛИЧНОСТЬ могут иметь или не иметь ученое звание, ученую степень, год окончания вуза и многих других признаков. По каждому из этих признаков придется выделять подклассы.

Некоторые методики не вводят агрегированный объект как самостоятельную категорию. В этом случае агрегированный объект изображается как простой, при этом пользователь должен предварительно определить его идентификатор и свойства. Если модель допускает изображение только двоичных связей, то проектировщик должен преобразовать n-арную связь в совокупность бинарных.

Кроме указанных сложностей при определении идентификатор ра агрегированной сущности, могут возникнуть и проблемы при переходе от ИЛМ к даталогической модели.

Вариант, когда ситуация не может быть отражена в ИЛМ, может быть проиллюстрирован на следующем: если методика построения модели не предполагает фиксацию класса членства в связи, то эта информация будет просто потеряна.

В некоторых CASE-системах имеет место ситуация, когда какая-то конструкция допускается в системе как промежуточная. Например, в IDEF и CASE ORACLE отношение М: М допускается как неспецифическое отношение. Его наличие разрешается на ранних стадиях разработки проекта, а в дальнейшем оно должно быть заменено на специфическое отношение посредством введения третьей сущности. Это является недостатком системы, так как, во-первых, не все СУБД требуют такого преобразования (некоторые системы поддерживают отношение М:М в явном виде), и, во-вторых, если такое преобразование потребуется, его вполне система автоматизации проектирования могла бы выполнить автоматически на этапе даталогического проектирования. Даже если выполняется «ручное» проектирование, то указанное преобразование должно выполняться проектировщиком на стадии даталогического проектирования, а не при описании предметной области. Кроме того, при рассматриваемом преобразовании на стадии инфологического проектирования в IDEF вводится новая категория сущностей - сущности пересечения или ассоциативные сущности. Введение новых сущностей влечет за собой введение в ИЛМ и дополнительных связей. Все это, вместе взятое, усложняет и без того нелегкую задачу инфологического проектирования.

В предметной области могут быть сущности, идентификаторы которых являются зависимыми от идентификатора какого-то другого объекта. Например, если участки на предприятии нумеруются в пределах цеха, то идентификатор участка будет составным, включающим в себя код цеха и код участка. В инфологической модели можно ограничиться указанием этого составного идентификатора. Некоторые методики построения ER-моделей (например, методология IDEFIX, Prokit) предусматривают введение особых видов сущностей и особых видов отношений для отображения подобных ситуаций. Так, в IDEF сущность, для идентификации которой надо рассматривать ее отношение с другими сущностями; называется зависимой от идентификатора сущностью, и для ее изображения используется блок с закругленными углами. Для изображения же не зависимой от идентификации сущности используется прямоугольник. Для связи объектов, один из которых нужен для полной идентификации другого, вводится понятие идентифицирующего отношения. Для него также вводится свое условное обозначение. В IDEF для идентифицирующего отношения используется сплошная линия, а для неидентифицирующего пунктирная.

6. Как отмечалось выше при рассмотрении принципов инфологического моделирования, понятия «объект», «свойство», «отношение» являются относительными. Так, в предложенной нами базовой инфологической модели выделяются разные виды объектов: простые, составные, агрегированные, обобщенные. В некоторых системах, например в IDEF, такой классификации объектов нет, и вместо этого используются разновидности отношений.

И тот, и другой подход имеет право на существование. Принципиальной разницы, влекущей за собой какие-то существенные последствия, в сравниваемых подходах нет.

Диаграмма ER-типа:

Упрощения:

1. Рассматриваются только те жители, которые имеют квартиру.

2. Житель может быть зарегистрирован только в одной квартире.

3. Учитываются только населенные квартиры, в которых зарегистрированы жители.

4. В одной квартире могут быть зарегистрированы несколько жителей.

5. Для одной квартиры один номер телефона.

6. Не во всякой квартире может быть телефон.

7. Имеются жители без источника дохода (дети).

8. У одного жителя может быть несколько источников дохода.

9. Разные виды дохода у разных жителей.

10. Имеются виды доходов, которые не используются.

Конец работы -

Эта тема принадлежит разделу:

Сравнение однотабличной и многотабличной баз данных

На сайте сайт читайте: "сравнение однотабличной и многотабличной баз данных"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Компоненты БнД
Словарь данных – «хранилище» метаинформации. Метаинформация – информаци

Этап определения подсхем
В некоторых СУБД имеется возможность описать логическую структуру БД с точки зрения конкретной группы пользователей. Такая модель называется внешней, а ее описание – подсхе

Инфологическое моделирование предметной области. Состав инфологической модели (ИЛМ)
1-2. Описание предметной области представляется с помощью какой-либо знаковой системы, поэтому в

Описание объектов и их свойств. Разновидности свойств объектов
Класс объектов – совокупность объектов, обладающих одинаковым набором свойств. Классы объектов могут быть как материальными, так и абстрактными (например, предметы, по кот

Диаграмма ER-типа
Тип связи 1 к 1. Класс принадлежности объектов и для П и для К необязател

Разновидности сложных объектов
1. Составной объект. 2. Обобщенный объект. 3. Агрегированный объект. Составной объект

Определение состава БД
Один из подходов к определению состава БД – принцип синтезирования. Суть:В БД должны храниться только исходные показатели. Все производные показатели долж

Разновидности даталогических моделей (ДЛМ)
По способу установления связей между данными различают следующие модели: Реляционная модель, Иерархическая модель, Сетевая модель, Объектно-ориентированная модель. Реляцио

Индексация файлов (таблиц) в БД. Индексные файлы и индексные ключи
Для ускорения доступа к информации в файле осуществляется индексирование файла. В качестве индексного ключа при индексации используется атрибут или набор атрибутов, определенный в отношении. В част

Метод проектирования РБД на основе ИЛМ (правила 1-12)
1. Для каждого простого объекта и его единичных свойств строится отношение, атрибуты которого являются идентификаторами объекта и реквизиты соответствуют каждому из единичных свойс

Определение состава БД и отношений
Принцип синтезирования: В состав БД включают атрибуты всех сущностей + вычисляемый доход SumD. БД состоит из 5 отношений: PERSON (Nom, FIO, Rdate, Pol, S

Сравнение однотабличной и многотабличной баз данных
Могут возникать проблемы вставки, обновления, удаления. Проблема вставки В любой БД не должно быть полей с неопределенными или пустыми значениями. Например: для од

Structured Query Language
Конкретные реализации SQL учитывают требования стандарта, но предоставляют и дополнительные возможности (SQL1, SQL2(1992), SQL3(1999)) SQL можно использовать в 2-х режимах: 1. Инт

Предложение Select
В качестве ТРЗ может быть имя столбца, константа, выражение. Имя столбца идентифицирует один из столбцов, содержащихся в таблице, которая указана в предложении FROM. Оно может быть указано


Указывает, какие строки следует отбирать. Задается условие поиска, как критерий отбора. Виды условий поиска: 1. Сравнение. =, <>, <, >, <=, >=. 2. Прове

Составные условия поиска. Таблицы истинности
AND true false null OR true

Агрегатные функции языка SQL
Итоговые запросы можно составить из различных операторов и агрегатных функций языка. Все функции принимают в качестве аргумента какой-либо столбец данных целиком, а возвращает одно, подытоженное зн

Запросы с группировкой и ограничения на них
Select ADR, AVG(SUMD) FROM PERSON GROUP BY ADR 1. Сведения о жителях в таблице Person делятся на группы – по одной группе на каждую квартиру. В каждой группе все квартиры имеют 1

Ограничение на список возвращаемых столбцов
В запросе с группировкой все элементы списка возвращаемых столбцов должны иметь одно и то же значение для каждой группы слов. => В качестве элементов списка возвращаемых столбцов можно использов

Процедура выполнения запроса, в составе которого имеется связанный подзапрос
1) Выбрать строку из таблицы, имя которой указано в главном запросе. 2) Выполнить вложенный запрос с учетом значений, содержащихся в выбранной строке 3) Вычислить условия поиска г

Проверка на существование результатов вложенного запроса
SELECT *FROM PERSON WHERE EXISTS (SELECT ID FROM HAVE_D, PROVIT WHERE PROVIT.ID

Добавление новых элементов
Наименьшей единицей информации, которую можно добавить в базу данных, является одна строка. Существует 2 способа добавления новых строк: 1) однострочный оператор INSERT, включающи

Удаление существующих данных
Наименьшей единицей информации, которую можно удалить из БД является 1 строка. Для удаления строк из 1-й таблицы используется оператор DELETE. DELETE FROM – имя_таблицы -------------------

Условия уникальности данных
Возьмем таблицу PERSON, опишем ее структуру: CREATE TABLE PERSON (INTERBASE) (NOM INTEGER NOT N

Изменение определения таблицы
ALTER TABLE служит для: 1. добавить определение нового столбца. 2. изменить значение по умолчанию. 3. изменить или удалить первичный ключ таблицы.

Индексы
Индекс –это средство, которое обеспечивает быстрый доступ к строкам таблицы на основе значения 1-го или нескольких столбцов. В индексе хранятся значения данных и указатели на строк

Структурные элементы БД

В описании объекта данных нужно выделить 2 составляющие: структуру и экземпляр.

Структура – перечень атрибутов объекта и характеристики атрибутов.

Экземпляр – совокупность значений атрибутов.

Структура изменяется крайне редко. Экземпляр подвержен изменениям.

При хранении в ЭВМ базе данных соответствует группа файлов и папок, набору объектов соответствует файл. Каждому объекту соответствует запись в файле. Каждому атрибуту соответствует поле записи.

Для описания атрибута используются следующие характеристики:

1. имя, например, nContract, cStudent;

2. тип, например, символьный, числовой;

3. длина, например, 15 байт;

4. точность, для числовых данных.

5. описание, комментарий;

6. формат изображения на экране и бумаге;

7. подсказка;

8. формат ввода;

9. начальное значение;

10. диапазон значений.

Ключ – это средство упорядочивания объектов в наборе. Ключ содержит ключевое выражение, составляемое из атрибутов объектов. По возрастанию значения ключевого выражения объекты предъявляются для просмотра и обработки.

Для одного набора можно задать несколько ключей. Например, для набора Работники можно задать ключ по алфавиту фамилий, работники будут предъявляться по алфавиту.

Ключ называется первичным , если по одному значению его выражения из набора выделяется 0 или 1 объект. Например, для набора работников ключ «По табельному номеру» первичный, так как по одному значению табельного номера выделяется или ни одного, или только один работник.

Ключ называется вторичным , если по одному значению его выражения из набора выделяются 0 и более объектов. Например, ключ для набора работников ключ «По алфавиту фамилий» вторичен, так как среди работников могут быть однофамильцы.

По аксиоме отличия у каждого набора существует первичный ключ. В крайнем случае в его выражение включает все атрибуты объекта в наборе.

Хорошей практикой служит введение для объекта данных искусственного атрибута «Порядковый № в наборе», который автоматически присваивается и уникален. Ключ по такому атрибуту называется суррогатным .

Заметим, что понятия первичного и вторичного ключа не зависят от количества и значений объектов в наборе. Первичные и вторичные ключи бывают для пустых наборов.

Пусть имеется n наборов объектов Е 1 , Е 2, … , Е n .

Связью называется множество последовательностей объектов (е i 1 , е i 2, …, е i n), где е i 1 Î Е 1, е i 2 Î Е 2, …, е i n Î Е n.

С помощью связей наборы объектов объединяются в единую информационную структуру.

Между двумя наборами объектов (n=2) различают три типа связей:

1. один к одному (1:1);



2. один ко многим (1:М);

3. много ко многим (М:N).

«один к одному», если для каждого объекта из первого набора можно указать 0 или 1 объект из второго набора и для каждого объекта из второго набора можно указать 0 или 1 объект из первого набора.

Примерами связей типа 1:1 служат связи между:

· студентами и зачетными книжками,

· между государствами и валютами,

· между офицерами и табельным оружием,

· между гражданами и заграничными паспортами. У каждого студента или нет зачетной книжки, или есть только одна.

Для каждой зачетки или студент не указан, или имеется только один.

Связь между двумя наборами Е 1 и Е 2 относится к типу «один ко многим» 0 или более 0 или 1 объект из первого набора.

Примерами связей 1:М служат связи между

· банками и вкладами,

· вкладами и взносами,

· между группами и студентами,

· между отделами и сотрудниками,

· между ведомостями и строками ведомостей,

· между клиентами и заявками.

В каждом банке или нет вкладов (банк еще не открылся) или может быть много вкладов. Для каждого вклада или банк не указан, или есть только один.

Связь между двумя наборами Е 1 и Е 2 относится к типу «многие ко многим» , если для каждого объекта из первого набора можно указать 0 или более объектов из второго набора и для каждого объекта из второго набора можно указать 0 или более объектов из первого набора.

Примерами связей M:N служат связи между

· продуктами и странами,

· между студентами и дисциплинами,

· между сотрудниками и проектами,

· между заявками и товарами,

· между магазинами и покупателями.

Каждый продукт может поставляться из многих стран и не поставляться вовсе. Каждая страна может поставлять много продуктов и не поставлять никаких.

Графически связи изображаются стрелками (рис.4.5).

В реальных СУБД реализуется только один тип связи – один ко многим.

Связь 1:1 получается из связи 1:М путем ее ограничения.

Для реализации связи М:N вводится новый набор объектов и используются две связи 1:М.

Например, связь между странами и продуктами типа M:N получается с помощью набора данных «поставки» (рис.4.6).

Одно – однозначные связи

Одно – однозначные связи имеют место, когда каждому экземпляру первого объекта (А) соответствует только один экземпляр второго объекта (В)и наоборот, каждому экземпляру второго объекта (В) соответствует только один экземпляр первого объекта (А). Следует заметить, что такие объекты легко могут быть объединены в один, структура которого образуется объединением реквизитов обоих исходных объектов, а ключевым реквизитом может быть выбран любой из альтернативных ключей, т.е. ключей исходных объектов. Графическое изображение одно – однозначных связей являются группа – староста, фирма – расчетный счет в баке и т.п.

Рис.1 Графическое изображение одно – однозначных отношений объектов

Одно – многозначные связи (1:М)

Одно – многозначные связи (1:М) – это такие связи, когда экземпляру одного объекта (А) может соответствовать несколько экземпляров другого объекта (В), а каждому экземпляра второго объекта (В) может соответствовать только один экземпляр первого объекта (А).

Рис.2 Графическое изображение одно – многозначный связи отношений объектов.

В такой связи объект А является главным объектом, а объект В – подчиненным, т.е. имеет место иерархическая подчиненность объекта В объекту А. Примером одно – многозначных связей являются подразделения – сотрудники, кафедра – преподаватель, группа студент и т.п.

Много – многозначные связи (M:N)

Много – многозначные связи (M:N) – это когда, каждому экземпляру одного объекта (А) могут соответствовать несколько экземпляров второго объекта (В) и наоборот, каждому экземпляру второго объекта (В) может соответствовать тоже несколько экземпляров первого объекта (А).

Рис.3 Преобразование связи типа M:N через объект – связку

Объект – связка должен иметь идентификатор, образованный из идентификаторов исходных объектов Ка и Кб.
Примером много – многозначных связей является связь поставщики – товары, если один поставщик поставляет разные наименования товаров, а товар одного наименования поставляется несколькими поставщиками.

Определение связей между информационными объектами

Рассмотрим определение связей между информационными объектами и тип отношений, которыми они характеризуются, для предметной области Учебный процесс .

Связи между объектами ГРУППА - СТУДЕНТ характеризуются одно – многозначными отношениями (1:М), поскольку одна группа включает много студентов, а один студент входит только в одну группу. Связь между ними осуществляется по номеру группы, который является уникальным идентификатором главного объекта ГРУППА входит в составной идентификатор объекта СТУДЕНТ (см.табл.1)

Аналогично устанавливается связь между объектами КАФЕДРА ПРЕПОДАВАТЕЛЬ , которые также находятся в одно – многозначных отношениях. Связь между ними осуществляются по уникальному ключу главного объекта КАФЕДРА – коду кафедры, который в подчиненном объекте ПРЕПОДАВАТЕЛЬ является описательным.

Таблица 1. Объекты справочной информации о студентах, группах и предметах

Таблица 2. Группировка реквизитов по информационным объектам документа Список преподавателей кафедры

В таблице приняты обозначения для ключа: П – простой, У – уникальный.

В каждой группе в течение семестра проводятся занятия по разным предметам (объект ИЗУЧЕНИЕ ). С другой стороны, каждое занятие определенно для каждой группы. Поэтому имеет место связь типа один – ко – многим между объектами ПРЕДМЕТ - ИЗУЧЕНИЕ .

По каждому предмету проводится множество занятий в различных группах разными преподавателями. С другой стороны, каждое занятие проводится по конкретному предмету, что определяет отношения типа один – ко – многим между объектами ПРЕДМЕТ - ИЗУЧЕНИЕ . Аналогично определяются отношения типа один – ко – многим между объектами ПРЕПОДАВАТЕЛЬ – ИЗУЧЕНИЕ .
Объект ИЗУЧЕНИЕ фактически играет роль объекта связки в много – многозначных отношениях объектов.

Рис.4 Много – многозначные связи информационных объектов


Рис.5 Информационно – логическая модель предметной области Учебный процесс

Объект УСПЕВАЕМОСТЬ содержит данные об успеваемости (оценку) конкретного студента по конкретному занятию. Поэтому он является связанным с объектом СТУДЕНТ и объектом ИЗУЧЕНИЕ . Один студент имеет оценки по нескольким занятиям, но каждая оценка всегда относится к одному конкретному студенту. Это означает, объект УСПЕВАЕМОСТЬ является подчиненным и находится в одно – многозначных отношениях с объектом СТУДНТ . Объект УСПЕВАЕМОСТЬ , а также является подчиненным и находится в одно – многозначных отношениях с объектом ИЗУЧЕНИЕ. Объект УСПЕВАЕМОСТЬ выполняет роль объект – связки много – многозначных отношениях объектов СТУДЕНТ и ИЗУЧЕНИЕ . Много – многозначные отношения между этими объектами определяются тем, что одному студенту соответствует много занятий, отображаемых объектом ИЗУЧЕНИЕ , а одно занятие проводится со многими студентами.

В табл.3 перечислены все одно – многозначные связи между объектами, указаны ключи, по которым должны устанавливаться связи, и определены главные и подчиненные информационные объекты в этих связях.

Таблица 3 Связи информационных объектов

Информационно – логическая модель предметной области Учебный процесс

Информационно – логическая модель приведена в каноническом виде и объекты в ней размещены по уровням. Уровень остальных объектов определяется наиболее длинным путем к объекту от нулевого уровня. Такое размещение объектов дает представление об их иерархической подчиненности, делает модель более наглядной и облегчает понимание одно – многозначных отношений между объектами.

Логическая структура реляционной базы данных

Логическая структура реляционной базы данных Access является адекватным отображением полученной информационно – логической модели, не требующим дополнительных преобразований. Каждый информационный объект модели данных отображается соответствующей реляционной таблицей. Структура реляционной таблицы определяется реквизитным составом соответствующего информационного объекта, где каждый столбец (поле) соответствует одному из реквизитов объекта. Ключевые реквизиты объекта образуют уникальный ключ реляционной таблицы. Для каждого столбца задается тип, размер данных и другие свойства. Строки (записи) таблицы соответствуют экземплярам объекта и формируются при загрузке таблиц.

Связи между объектами модели данных реализуются одинаковыми реквизитами – ключами связи в соответствующих таблицах. При этом ключом связи всегда является уникальный ключ главной таблицы. Ключом связи в подчиненной таблице является либо некоторая часть уникального ключа в ней, либо поле, не входящее в состав первичного ключа (например, код кафедры в таблице ПРЕПОДАВАТЕЛЬ ). Ключ связи в подчиненной таблице называется внешним ключом . В Access может быть создана схема данных , наглядно отображающая логическую структуру базы данных. Определение одно – многозначных связей в этой схеме должно осуществляться в соответствии с построенной моделью данных. Внешний вид схемы данных практически совпадает с графическим представлением информационно – логической модели. Для модели данных, построенной в рассмотренном примере, логическая структура базы данных в виде схемы данных Access приведена на рис.2.7.

На этой схеме прямоугольники отображают таблицы базы данных с полным списком их полей, а связи показывают, по каким полям осуществляется взаимосвязь таблиц. Имена ключевых полей находятся в левой части полного списка полей каждой таблицы.

При разработке базы данных сначала исследуется предметная область (например, «Университет»). В ней выделяются основные объекты. Они могут быть реальными («Студент») или абстрактными («Дисциплина»). Каждый объект характеризуется набором свойств – атрибутов объекта (поля данных) . Для каждого объекта атрибуты заполняются определенными значениями. Атрибуты могут быть простыми и ключевыми.

Ключевой атрибут (ключ) – это отдельные элементы данных, по которым можно определить все остальные элементы данных («Номер зачетной книжки»). Ключ может быть простым или составным («Фамилия», «Имя», «Отчество»).

После определения основных объектов предметной области с помощью их ключевых атрибутов устанавливаются связи между этими объектами:

a) 1:1 ("один к одному») – каждому экземпляру объекта А соответствует только один экземпляр объекта В и наоборот (рисунок 17).

Рисунок 17 – Связь «один к одному»

b) 1:М («один ко многим») – каждому экземпляру объекта А может соответствовать 0, 1 или несколько экземпляров объекта В, однако каждому экземпляру объекта В соответствует только 1 экземпляр объекта А (рисунок 18).

Рисунок 18 – Связь «один ко многим»

c) М:М («многие ко многим») – каждому экземпляру объекта А соответствует 0, 1 или несколько экземпляров объекта В и наоборот (рисунок 19).

Рисунок 19 - Связь «многие ко многим»

Выделенные основные объекты предметной области с установленными связями между ними представляют собой инфологическую модель.

Отношения

Объект предметной области может быть представлен в виде таблицы-отношения – таблицы особого рода, у которой:

· каждая строка содержит информацию об одном экземпляре объекта (строка отношения - кортеж );

· все столбцы однородные, то есть все элементы в столбце имеют одинаковый тип и длину, имеют имя и содержат информацию об отдельном атрибуте объекта;

· каждый элемент представляет собой один элемент данных об объекте;

· все строки и столбцы уникальны (нет повторений);

· в таблицах нет пустых ячеек.

Базы данных, основанные на таблицах-отношениях, называются реляционными (relation - отношение). Набор отношений (таблиц) используется в БД для хранения информации об объектах реального мира и моделирования связей между ними. Например, для хранения объекта «студент» используют отношение СТУДЕНТ , в котором свойства объекта располагаются в столбцах таблицы, являющихся атрибутами объекта (таблица 8):

Таблица 8 – Отношение СТУДЕНТ


Список имен атрибутов отношения называется схемой отношения . Схему отношения СТУДЕНТ можно записать так:СТУДЕНТ = (Фамилия, Возраст, Группа).

Реляционная БД – набор взаимосвязанных отношений. Каждое отношение (таблица) в ЭВМ представляется в виде файла записей.

Над таблицами - отношениями можно выполнять восемь различных операций теории множеств и реляционной алгебры (объединение, выборка, проекция, пересечение, сложение, умножение, разность, деление). Вследствие этого из введенных (базовых) отношений можно получать много новых (вычисляемых) таблиц - отношений (отчетов, выборок, запросов и т.п.).

Благодаря тому, что информация в базах данных представлена в двух видах – хранимая информация (исходные, введенные таблицы) и вычисляемая информация (таблицы, полученные на основании исходных), можно существенно экономить память и ускорить процесс обработки этой информации.

Для создания простой и надёжной базы данных необходимо нормализовать отношения. Нормализация отношений пошаговый процесс разложения отношений на более мелкие и простые. Не смотря на увеличение при этом количества отношений, операции доступа к данным существенно ускоряются благодаря улучшению корректности, устранению дублирования и обеспечению непротиворечивости данных в базе.

Существует несколько нормальных форм :

1-я нормальная форма. Отношение считается находящимся в первой нормальной форме, если все его атрибуты – неделимые (простые). К примеру, приведенное ниже на рисунке 20 отношение не нормализовано, поскольку содержит сложный атрибут Спорт . Чтобы привести это отношение к нормализованному виду, нужно избавиться от этого сложного атрибута.


Рисунок 20 – Приведение к первой нормальной форме

В полученном отношении ключ является составным, состоящим из атрибутов Фамилия и Вид спорта .

2-я нормальная форма . Отношение считается находящимся во второй нормальной форме, если все его атрибуты зависят от составного ключа в целом, а не от его частей. Следовательно, если отношение находится в первой нормальной форме и имеет простой, а не составной ключ, то оно автоматически находится и в первой, и во второй нормальной форме.

Например, в отношении ВЕДОМОСТЬ (рисунок 21), имеющем составной ключ «Студент, Дисциплина», атрибут Лектор зависит только от Дисциплины , а не от всего ключа. Это отношение можно нормализовать, «разбив» его на два отношения УСПЕВАЕМОСТЬ и ПРЕПОДАВАТЕЛЬ :

ВЕДОМОСТЬ = (Студент, Дисциплина, Лектор, Оценка)


УСПЕВАЕМОСТЬ = (Студент, Дисциплина , Оценка) ПРЕПОДАВАТЕЛЬ = (Дисциплина , Лектор)

Рисунок 21 – Приведение ко второй нормальной форме

3-я нормальная форма. Отношение считается находящимся в третьей нормальной форме, если устранены зависимости между не ключевыми атрибутами (транзитивные зависимости). Например, в отношении ПРЕДМЕТ = (Название, Лектор, Кафедра, Телефон) не ключевой атрибут Телефон зависит от не ключевого атрибута Кафедра .

Для устранения транзитивной зависимости необходимо «расщепить» исходное отношение на два ДИСЦИПЛИНА = (Название , Лектор, Кафедра) и ДАННЫЕ КАФЕДРЫ = (Кафедра , Телефон).

Дальнейшее упрощение таблиц связано с дальнейшим ограничением типов зависимости между атрибутами отношений.

После нормализации отношений и установления связей между ними формируется инфологическая модель предметной области. Ниже (на рисунке 22) представлен пример инфологической модели фирмы, оформляющей сделки с заказчиками через своих сотрудников-менеджеров:


Заказчик Фамилия И. О. № сделки Фамилия И. О. Должность Дата Адрес Стаж Фамилия И. О. менеджера Телефон Фамилия И. О. заказчика

Рисунок 22 – Модель фирмы

На основании инфологической модели разрабатывается модель данных, которая дает описание логической структуры базы данных на языке описания данных (ЯОД), – даталогическая модель (ДМ) .

Для привязки ДМ к среде хранения используется модель данных физического уровня – физическая модель (ФМ). На этом этапе физического проектирования базы данных осуществляется выбор типа носителя, разрабатывается формат хранимых записей и проектируются методы доступа к данным.

СУБД

После этого уже возможно формирование (заполнение) базы данных и непосредственно работа с ней. Работа с базами данных сводится к выполнению следующих операций:

1) запись (заполнение базы данных);

2) просмотр;

3) редактирование (добавление, удаление, исправление);

4) выборка (запросы, отчеты).

Эти операции накопления и манипулирования данными выполняет специальная программасистема управления базами данных (СУБД).

По технологии решения задач, выполняемых СУБД, базы данных можно разделить на два вида:

Централизованная БД (хранится целиком на ВЗУ одной вычислительной системы и, если система входит в состав сети, то возможен доступ к этой БД других систем);

Распределенная БД (состоит из нескольких, иногда пересекающихся или дублирующих друг друга БД, хранящихся на ВЗУ разных узлов сети).

СУБД предоставляет доступ к данным БД двумя способами:

Локальный доступ (предполагает, что СУБД обрабатывает БД, которая хранится на ВЗУ того же компьютера);

Удаленный доступ (это обращение к БД, которая хранится на одном из узлов сети).

Удаленный доступ может быть выполнен по технологии файл-сервер или клиент-сервер. Технология файл-сервер предполагает выделение одной из вычислительных систем, называемой сервером, для хранения БД. Все остальные компьютеры сети (клиенты) исполняют роль рабочих станций, которые копируют требуемую часть централизованной БД в свою память, где и происходит обработка. Технология клиент-сервер предполагает, что сервер, выделенный для хранения централизованной БД, дополнительно производит обработку запросов клиентских рабочих станций. Клиент посылает запрос серверу. Сервер пересылает клиенту данные, являющиеся результатом поиска в БД по ее запросу.

Система управления базами данных– совокупность программных и языковых средств.

Программные средства обеспечивают организацию ввода, обработки и хранения данных, а также обеспечивают взаимодействие всех частей системы при её функционировании (настройка, тестирование, восстановление).

Языковые средства обеспечивают взаимодействие пользователя с базой данных. К ним относятся:

  • языки манипулирования данными (ЯМД) – языки запросов к БД, представляющие собой систему команд для работы с данными (выборка, запрос, вставка, удаление и т.п.);
  • языки определения данных (ЯОД) – языки, предназначенные для создания схемы базы данных (описания типов данных, структуры базы, взаимодействия и связей между элементами).


Рисунок 22 - Схема взаимодействия пользователя с базой данных

Современная СУБД прикладная программа, которая предназначена для облегчения работы неквалифицированного пользователя с БД. Он работает с ней на естественном языке без знания языка манипулирования данными и языка определения данных (рисунок 22). Одним из примеров такой СУБД является широко известный продукт фирмы Microsoft – СУБД Access.